What's Wrong with Amazon's DynamoDB Pricing?

04 Mar 2012

tl;dr: There’s no good reason why strong consistency should cost double what eventual consistency costs. Strong consistency in DynamoDB shouldn’t cost Amazon anywhere near double and wouldn’t cost you double if you ran your own data store. While the benefit to your application may not be worth this high price, hiding consistency statistics encourages you to overpay.

Amazon recently released an open beta for DynamoDB, a hosted, “fully managed NoSQL database service.” DynamoDB automatically handles database scaling, configuration, and replica maintenance under a pay-for-throughput model. Interestingly, DynamoDB costs twice as much for consistent reads compared to eventually consistent reads. This means that if you want to be guaranteed to read the data you last wrote, you need to pay double what you could be paying otherwise.

Now, I can’t come up with any good technical explanation for why consistent reads cost 2x (and this is what I’m handsomely compensated to do all day). As far as I can tell, this is purely a business decision that’s bad for users:

  1. The cost of strong consistency to Amazon is low, if not zero. To you? 2x.
  2. If you were to run your own distributed database, you wouldn’t incur this cost (although you’d have to factor in hardware and ops costs).
  3. Offering a “consistent write” option instead would save you money and latency.
  4. If Amazon provided SLAs so users knew how well eventual consistency worked, users could make more informed decisions about their app requirements and DynamoDB. However, Amazon probably wouldn’t be able to charge so much for strong consistency.

I’d love if someone (read: from Amazon) would tell me why I’m wrong.

The cost of consistency for Amazon is low, if not zero. To you? 2x.

Regardless of the replication model Amazon chose, I don’t think it’s possible that it’s costing them 2x to perform consistent reads compared to eventually consistent reads:

Dynamo-style replication. If Amazon decided to stick to their original Dynamo architecture, then all reads and writes are sent to all replicas in the system. When you perform an eventually consistent read, it means that DynamoDB gives you an answer when the first replica (or first few replicas) reply. This cuts down on latency: after all, waiting for the first of three replicas to reply is faster than waiting for a single replica to respond! However, all of the replicas will eventually respond to your request, whether you wait for them or not.

This means that eventually consistent reads in DynamoDB would use the same number of messages, amount of bandwidth, and processing power as strongly consistent reads. It shouldn’t cost Amazon any more to perform consistent reads, but it costs you double.

If you ran your own Dynamo-style NoSQL database, like Riak, Cassandra, or Voldemort, you wouldn’t have this artificial cost increase when choosing between eventual and strongly consistent reads.

Possible explanations: Maybe Amazon didn’t adopt the Dynamo design’s “send-to-all” semantics. This would save bandwidth but cause a significant latency hit. However, Amazon might save in terms of messages and I/O without compromising latency if they chose not to send read requests to remote sites (e.g., across availability zones) for eventually consistent reads . Another possibility is that, because eventual consistency is faster, transient effects like queuing are reduced, which helps with their back-end provisioning. Regardless, none of these possibilities necessitate a 2x price increase. Note that the Dynamo model covers most variants of quorum replication plus anti-entropy. edit: As I mentioned, it’s possible that weak consistency saves an extra I/O per read. However, I’m still unconvinced that this leads to a 2x TCO increase.

Cost to Amazon: probably zero

Master-slave replication. If Amazon has chosen a master-slave replication model in DynamoDB, eventually consistent reads could go to a slave, reducing load on the master. However, this would mean Amazon is performing some kind of monetary-cost-based load-balancing, which seems strange and hard to enforce. Even if this is the case, is doubling the price really the right setting for proper load-balancing at all times and for all data? Is the 2x cost bump really necessary? I’m not convinced.

If you ran your own NoSQL store that used master-slave replication, like HBase or MongoDB, you wouldn’t be faced with this 2x cost increase for strong consistency.

Cost to Amazon: increased master load. 2x load? Probably not, given proper load balancing.

Read vs. Write Cost

Amazon decided to place this extra charge on the read path. Instead, they could have offered a “consistent write” option, where all subsequent reads would return the data you wrote. This would slow down consistent writes (and speed up reads). I’d wager that a vast majority of DynamoDB operations are reads, so this “consistent write” option would decrease revenue compared to the current “consistent read” option. So, compared to a consistent write option, you’re currently getting charged more, and the majority of your DynamoDB operations are slower.

FUD Helps Sell Warranties

Amazon is vague about eventual consistency in DynamoDB. Amazon says that:

Consistency across all copies of data is usually reached within a second. Repeating a[n eventually consistent] read after a short time should return the updated data.

What does “usually” mean? What’s “a short time”? These are imprecise metrics, and they certaintly aren’t guarantees. This may be intentional.

Best Buy tries to sell you an in-house extended warranty when you buy a new gadget. Most of the time, you don’t buy the warranty because you make a judgment that the chance of failure isn’t worth the price of the warranty. With DynamoDB, you have no idea what the likelihood of inconsistency is, except that “a second” is “usually” long enough. What if you don’t want to wait? What about the best case? Or the worst? Amazon could release a distribution for these delays so you could make an informed decision, but they don’t. Why not?

It’s not for technical reasons. Amazon has to know this distribution. I’ve spent the last six months thinking about how to provide SLAs for consistency. Our new techniques show that you can make predictions with arbitrary precision simply by measuring message delays. Even without our work, I’d bet all my chips on the fact that Amazon has tested the hell out of their service and know exactly how eventual eventual consistency is in DynamoDB. After all, if the window of inconsistency was prohibitively long, it’s unlikely that Amazon would offer eventual consistency as an option in the first place.

With more information, most customers probably wouldn’t pay 2x

So why doesn’t Amazon release this data to customers? There are several business reasons that disincentivize them from doing so, but the basic idea is that it’s not clear that strong consistency delivers a 2x value to the customer in most cases. However, without the data, customers can’t make this call for themselves without a lot of benchmarking. And profiling doesn’t buy you any guarantees like an SLA.

I don’t think many people would pay 2x for their reads if they were provided with this data or some consistency SLA. Maybe some total rockstars are okay with this vagueness, but it sure seems hard to design a reliable service without any consistency guarantees from your backend. By only giving users an extremely conservative upper bound on the eventuality of reads (say, if your clients switch between data centers between reads and writes and DynamoDB experiences extremely high message delays), Amazon may be scaring the average (prudent) user into paying more than they probably should.


Strong consistency in DynamoDB probably doesn’t cost Amazon much (if anything) but it costs you twice as much as eventual consistency. It’s highly likely that Amazon has quantitative metrics for eventual consistency in DynamoDB, but keeping those numbers private makes you more likely to pay extra for guaranteed consistency. Without those numbers, it’s much harder for you to reason about your application’s behavior under average-case eventual consistency.

Sometimes you absolutely need strong consistency. Pay in those cases. However, especially for web data, eventual is often good enough. The current problem with DynamoDB is that, because customers don’t have access to quantitative metrics about their window of inconsistency, it’s easy for Amazon to set prices irrationally high.

Disclaimer: I (perhaps obviously) have no privileged knowledge of Amazon’s AWS architecture (or any other parts of Amazon, for that matter). I just happen to spend a lot of time thinking about and working on cool distributed systems problems.

You can follow me on Twitter here.