
PBS
Peter Bailis @pbailis
Shivaram Venkataraman,
Mike Franklin,
Joe Hellerstein,
Ion Stoica

@ Twitter
6.22.12

UC Berkeley

Probabilistically
Bounded
Staleness

PBS

1. Fast
2. Scalable
3. Available

solution:
replicate for
1. request capacity
2. reliability

solution:
replicate for
1. request capacity
2. reliability

solution:
replicate for
1. request capacity
2. reliability

keep replicas in sync

keep replicas in sync

keep replicas in sync

keep replicas in sync

keep replicas in sync

keep replicas in sync

keep replicas in sync

keep replicas in sync

slow

keep replicas in sync

slow
alternative: sync later

keep replicas in sync

slow
alternative: sync later

keep replicas in sync

slow
alternative: sync later

keep replicas in sync

slow
alternative: sync later

inconsistent

keep replicas in sync

slow
alternative: sync later

inconsistent

keep replicas in sync

slow
alternative: sync later

inconsistent

keep replicas in sync

slow
alternative: sync later

inconsistent

⇧consistency, ⇧latency
contact more replicas,

read more recent data

 consistency,
⇧ ⇧

latency
contact fewer replicas,

read less recent data

⇧consistency, ⇧latency
contact more replicas,

read more recent data

 consistency,
⇧ ⇧

latency
contact fewer replicas,

read less recent data

eventual consistency
“if no new updates are

made to the object,
eventually all accesses

will return the last
updated value”

W. Vogels, CACM 2008

How
How long do I have to wait?

eventual?

consistent?
How

What happens if I don’t wait?

solution:

problem:

technique:

no guarantees with
eventual consistency

consistency prediction

measure latencies
 use WARS model

PBS

Dynamo:
Amazon’s Highly Available Key-value Store

SOSP 2007

Apache, DataStax

Project Voldemort

Adobe

Cisco

Digg

Gowalla

IBM

Morningstar

NetflixPalantir

Rackspace

Reddit

Rhapsody

Shazam

Spotify

Soundcloud

Twitter

Mozilla

Ask.comYammer
Aol

GitHub
JoyentCloud

Best Buy

LinkedIn

Boeing

Comcast

Cassandra

RiakVoldemort
Gilt Groupe

N = 3 replicas

Coordinator

client

read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

N = 3 replicas

Coordinator

client

read(“key”)
read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

N = 3 replicas

Coordinator

read(“key”)

client

read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

N = 3 replicas

Coordinator

(“key”, 1)(“key”, 1)(“key”, 1)

client

read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

N = 3 replicas

Coordinator

(“key”, 1)(“key”, 1)(“key”, 1)

client

(“key”, 1)
read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

N = 3 replicas

Coordinator
read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client

N = 3 replicas

Coordinator

read(“key”)
read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client

N = 3 replicas

Coordinator

read(“key”)

read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client

N = 3 replicas

Coordinator

(“key”, 1)

read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client

N = 3 replicas

Coordinator

(“key”, 1)(“key”, 1)

read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client

N = 3 replicas

Coordinator

(“key”, 1)(“key”, 1)(“key”, 1)

read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client

N = 3 replicas

Coordinator

(“key”, 1)(“key”, 1)(“key”, 1)

(“key”, 1)
read
R=3

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client

N = 3 replicas

Coordinator
read
R=1

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client

N = 3 replicas

Coordinator

read(“key”)
read
R=1

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client

N = 3 replicas

Coordinator

read(“key”)

send
read
to all

read
R=1

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client

N = 3 replicas

Coordinator

(“key”, 1)

send
read
to all

read
R=1

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client

N = 3 replicas

Coordinator

(“key”, 1)

(“key”, 1)

send
read
to all

read
R=1

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client

N = 3 replicas

Coordinator

(“key”, 1)(“key”, 1)

(“key”, 1)

send
read
to all

read
R=1

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client

N = 3 replicas

Coordinator

(“key”, 1)(“key”, 1)(“key”, 1)

(“key”, 1)

send
read
to all

read
R=1

R1 R2 R3(“key”, 1) (“key”, 1) (“key”, 1)

client

N replicas/key
read: wait for R replies
write: wait for W acks

Coordinator W=1

R1(“key”, 1) R2 (“key”, 1) R3 (“key”, 1)

Coordinator

write(“key”, 2)

W=1

R1(“key”, 1) R2 (“key”, 1) R3 (“key”, 1)

Coordinator

write(“key”, 2)

W=1

R1(“key”, 1) R2 (“key”, 1) R3 (“key”, 1)

Coordinator

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

Coordinator

ack(“key”, 2)

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

Coordinator Coordinator

read(“key”)ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

R=1

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

read(“key”)

R=1

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

(“key”, 1)

R=1

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

(“key”,1)

R=1

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

(“key”,1)

R=1

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

(“key”,1)

R=1

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 (“key”, 1) R3 (“key”, 1)(“key”, 2)

(“key”,1)

R=1

(“key”, 2)

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 R3 (“key”, 1)(“key”, 2)

(“key”,1)

ack(“key”, 2)

R=1

(“key”, 2)

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 R3(“key”, 2)

(“key”,1)

ack(“key”, 2) ack(“key”, 2)

(“key”, 2)

R=1

(“key”, 2)

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 R3(“key”, 2)

(“key”,1)

(“key”, 2)

R=1

(“key”, 2)

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 R3(“key”, 2)

(“key”,1)

(“key”, 2)

(“key”, 2)

R=1

(“key”, 2)

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 R3(“key”, 2)

(“key”,1)

(“key”, 2)

(“key”, 2) (“key”, 2)

R=1

(“key”, 2)

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2 R3(“key”, 2)

(“key”,1)

(“key”, 2)

R=1

“strong”
consistency

else:

R+W > Nif:

eventual
consistency

then:

R+W

R+W

strong consistency

R+W

strong consistency
lower latency

R+W

strong consistency
lower latency

R+W

strong consistency
lower latency

Cassandra:
R=W=1, N=3

by default

(1+1 ≯ 3)

http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/

"In the general case, we typically
use [Cassandra’s] consistency level
of [R=W=1], which provides

maximum performance. Nice!"
	

 --D. Williams,
	

 “HBase vs Cassandra: why we moved”
	

 February 2010

http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/
http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/

http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6

http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6
http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6

http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6

http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6
http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6

Consistency or Bust: Breaking a Riak Cluster

NoSQL Primer

Sunday, July 31, 11

23

Consistency or Bust: Breaking a Riak Cluster

Low Value Data

n = 2, r = 1, w = 1

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

Consistency or Bust: Breaking a Riak Cluster

Low Value Data

n = 2, r = 1, w = 1

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

Consistency or Bust: Breaking a Riak Cluster

Mission Critical Data

n = 5, r = 1, w = 5, dw = 5

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

Consistency or Bust: Breaking a Riak Cluster

Mission Critical Data

n = 5, r = 1, w = 5, dw = 5

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

Voldemort @ LinkedIn

N=3 not required, “some consistency”:

R=W=1, N=2
Alex Feinberg, personal communication

“very low latency and high availability”:

R=W=1, N=3

Anecdotally, EC
“worthwhile” for

many kinds of data

Anecdotally, EC
“worthwhile” for

many kinds of data

How eventual?
How consistent?

Anecdotally, EC
“worthwhile” for

many kinds of data

How eventual?
How consistent?

“eventual and consistent enough”

Can we do better?

Probabilistically
Bounded Staleness

can’t make promises
can give expectations

Can we do better?

PBS is:
a way to quantify
latency-consistency
trade-offs

what’s the latency cost of consistency?
what’s the consistency cost of latency?

PBS is:
a way to quantify
latency-consistency
trade-offs

what’s the latency cost of consistency?
what’s the consistency cost of latency?

an “SLA” for consistency

t-visibility: probability p
of consistent reads after
after t seconds

(e.g., 99.9% of reads will be consistent after 10ms)

How eventual?

t-visibility depends on:
	

 	

 1) message delays
	

 	

 2) background version 	

	

 	

	

 	

 	

 exchange (anti-entropy)

t-visibility depends on:
	

 	

 1) message delays
	

 	

 2) background version 	

	

 	

	

 	

 	

 exchange (anti-entropy)

anti-entropy:
only decreases staleness
comes in many flavors
hard to guarantee rate

Focus on message delays

focus on

with failures:

 steady state

unavailable
or sloppy

Coordinator Replicaonce per replica T
i
m
e

Coordinator Replica
write

once per replica T
i
m
e

Coordinator Replica
write

ack

once per replica T
i
m
e

Coordinator Replica
write

ack
wait for W
responses

once per replica T
i
m
e

Coordinator Replica
write

ack
wait for W
responses

t seconds elapse

once per replica T
i
m
e

Coordinator Replica
write

ack

read

wait for W
responses

t seconds elapse

once per replica T
i
m
e

Coordinator Replica
write

ack

read

response

wait for W
responses

t seconds elapse

once per replica T
i
m
e

Coordinator Replica
write

ack

read

response

wait for W
responses

t seconds elapse

wait for R
responses

once per replica T
i
m
e

Coordinator Replica
write

ack

read

response

wait for W
responses

t seconds elapse

wait for R
responses

response is
stale

if read arrives
before write

once per replica T
i
m
e

Coordinator Replica
write

ack

read

response

wait for W
responses

t seconds elapse

wait for R
responses

response is
stale

if read arrives
before write

once per replica T
i
m
e

Coordinator Replica
write

ack

read

response

wait for W
responses

t seconds elapse

wait for R
responses

response is
stale

if read arrives
before write

once per replica T
i
m
e

Coordinator Replica
write

ack

read

response

wait for W
responses

t seconds elapse

wait for R
responses

response is
stale

if read arrives
before write

once per replica T
i
m
e

N=2

T
i
m
e

write write

N=2

T
i
m
e

write

ack

write

ack

N=2

T
i
m
e

write

ack

write

ackW=1

N=2

T
i
m
e

write

ack

write

ackW=1

N=2

T
i
m
e

write

ack

read

write

ackW=1

N=2

read

T
i
m
e

write

ack

read

response

write

ackW=1

N=2

read

response

T
i
m
e

write

ack

read

response

write

ackW=1

R=1

N=2

read

response

T
i
m
e

write

ack

read

response

write

ackW=1

R=1

N=2

read

response

good

T
i
m
e

N=2

T
i
m
e

write
write

N=2

T
i
m
e

write

ack

write

ackN=2

T
i
m
e

write

ack

write

ack

W=1

N=2

T
i
m
e

write

ack

write

ack

W=1

N=2

T
i
m
e

write

ack

read

write

ack

W=1

N=2

read

T
i
m
e

write

ack

read

response

write

ack

W=1

N=2

read

response

T
i
m
e

write

ack

read

response

write

ack

W=1

R=1

N=2

read

response

T
i
m
e

write

ack

read

response

write

ack

W=1

R=1

N=2

read

response

bad

T
i
m
e

write

ack

read

response

write

ack

W=1

R=1

N=2

read

response

bad

T
i
m
e

write

ack

read

response

write

ack

W=1

R=1

N=2

read

response

bad

T
i
m
e

write

ack

read

response

wait for W
responses

t seconds elapse

wait for R
responses

response is
stale

if read arrives
before write

once per replicaCoordinator Replica T
i
m
e

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2(“key”, 1) R3 (“key”, 1)(“key”, 2)

R=1

Coordinator Coordinator

ack(“key”, 2)

W=1

R1 R2(“key”, 1) R3 (“key”, 1)(“key”, 2)

(“key”, 1)

(“key”,1)

R=1

Coordinator Coordinator

write(“key”, 2)

ack(“key”, 2)

W=1

R1 R2(“key”, 1) R3 (“key”, 1)(“key”, 2)

(“key”, 1)

(“key”,1)

R=1

R3 replied before
last write arrived!

write

ack

read

response

wait for W
responses

t seconds elapse

wait for R
responses

response is
stale

if read arrives
before write

once per replicaCoordinator Replica T
i
m
e

(W)
write

ack

read

response

wait for W
responses

t seconds elapse

wait for R
responses

response is
stale

if read arrives
before write

once per replicaCoordinator Replica T
i
m
e

(W)
write

ack

read

response

wait for W
responses

t seconds elapse

wait for R
responses

response is
stale

if read arrives
before write

once per replica

(A)

Coordinator Replica T
i
m
e

(R)

(W)
write

ack

read

response

wait for W
responses

t seconds elapse

wait for R
responses

response is
stale

if read arrives
before write

once per replica

(A)

Coordinator Replica T
i
m
e

(R)

(W)
write

ack

read

response

wait for W
responses

t seconds elapse

wait for R
responses

response is
stale

if read arrives
before write

once per replica

(A)

(S)

Coordinator Replica T
i
m
e

Solving WARS: hard
Monte Carlo methods: easier

To use WARS:

W
53.2
44.5
101.1

...

A
10.3
8.2
11.3
...

R
15.3
22.4
19.8
...

S
9.6
14.2
6.7
...

run simulation
Monte Carlo, sampling

gather latency data

How eventual?

key: WARS model
need: latencies

t-visibility: consistent
reads with probability p
after after t seconds

consistent?
What happens if I don’t wait?

How

Probability of reading later older than k
versions is exponentially reduced by k

Pr(reading latest write) = 99%
Pr(reading one of last two writes) = 99.9%

Pr(reading one of last three writes) = 99.99%

https://issues.apache.org/jira/browse/CASSANDRA-4261

https://issues.apache.org/jira/browse/CASSANDRA-4261
https://issues.apache.org/jira/browse/CASSANDRA-4261

Cassandra cluster,
injected latencies:

t-staleness RMSE: 0.28%
latency N-RMSE: 0.48%

WARS Simulation accuracy

Yammer
100K+ companies

uses Riak

LinkedIn
150M+ users

built and uses Voldemort

production latencies
fit gaussian mixtures

N=3

10 ms

N=3

99.9% consistent reads:
R=2, W=1

t = 13.6 ms
Latency: 12.53 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 15.01 ms

LNKD-DISK

N=3

99.9% consistent reads:
R=2, W=1

t = 13.6 ms
Latency: 12.53 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 15.01 ms

LNKD-DISK

N=3

16.5%
faster

99.9% consistent reads:
R=2, W=1

t = 13.6 ms
Latency: 12.53 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 15.01 ms

LNKD-DISK

N=3

16.5%
faster
worthwhile?

N=3

N=3

N=3

99.9% consistent reads:
R=1, W=1

t = 1.85 ms
Latency: 1.32 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 4.20 ms

LNKD-SSD

N=3

99.9% consistent reads:
R=1, W=1

t = 1.85 ms
Latency: 1.32 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 4.20 ms

LNKD-SSD

N=3

59.5%
faster

Coordinator Replica

write

ack
(A)

(W)

response
(S)

(R)

wait for W
responses

t seconds elapse

wait for R
responses

response is
stale

if read arrives
before write

once per replica

critical factor
in staleness

read

10�2 10�1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

W=3

10�2 10�1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

C
D

F

W=1

10�2 10�1 100 101 102 103

Write Latency (ms)

0.2
0.4
0.6
0.8
1.0

W=2

LNKD-SSD LNKD-DISK YMMR WANLNKD-SSD LNKD-DISK YMMR WAN

N=3

10�2 10�1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

W=3

10�2 10�1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

C
D

F

W=1

10�2 10�1 100 101 102 103

Write Latency (ms)

0.2
0.4
0.6
0.8
1.0

W=2

LNKD-SSD LNKD-DISK YMMR WANLNKD-SSD LNKD-DISK YMMR WAN

N=3

10�2 10�1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

W=3

10�2 10�1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

C
D

F

W=1

10�2 10�1 100 101 102 103

Write Latency (ms)

0.2
0.4
0.6
0.8
1.0

W=2

LNKD-SSD LNKD-DISK YMMR WANLNKD-SSD LNKD-DISK YMMR WAN

N=3

Coordinator Replica

write

ack
(A)

(W)

response
(S)

(R)

wait for W
responses

t seconds elapse

wait for R
responses

response is
stale

if read arrives
before write

once per replica

SSDs reduce
variance

compared to
disks!

read

N=3

N=3

N=3

99.9% consistent reads:
R=1, W=1

t = 202.0 ms
Latency: 43.3 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 230.06 ms

YMMR

N=3

99.9% consistent reads:
R=1, W=1

t = 202.0 ms
Latency: 43.3 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 230.06 ms

YMMR

N=3

81.1%
faster

1. Tracing
2. Simulation
3. Tune N, R, W
4. Profit

Workflow

https://issues.apache.org/jira/browse/CASSANDRA-4261

https://issues.apache.org/jira/browse/CASSANDRA-4261
https://issues.apache.org/jira/browse/CASSANDRA-4261

solution:

problem:

technique:

no guarantees with
eventual consistency

consistency prediction

measure latencies
 use WARS model

PBS

consistency

to measure
 is a metric

to predict

R+W

strong consistency
lower latency

R+W

latency vs. consistency trade-offs

simple modeling with WARS

model staleness in time, versionsPBS

latency vs. consistency trade-offs

simple modeling with WARS

model staleness in time, versionsPBS
eventual consistency

often fast
often consistent

PBS helps explain when and why

latency vs. consistency trade-offs

simple modeling with WARS

model staleness in time, versions

pbs.cs.berkeley.edu/#demo

PBS
eventual consistency

often fast
often consistent

PBS helps explain when and why

@pbailis

http://bailis.org/projects/pbs
http://bailis.org/projects/pbs

cassandra patch

VLDB 2012 early print
tinyurl.com/pbsvldb

tinyurl.com/pbspatch

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf

Extra Slides

Related Work

Quorum System Theory
e.g., Probabilistic Quorums

k-quorums

Deterministic Staleness
e.g., TACT/conits

FRACS

Consistency Verification
e.g., Golab et al.

(PODC ’11),
Bermbach and Tai
(M4WSOC ’11)

PBS
and
apps

staleness requires
either:

staleness-tolerant data structures
timelines, logs

cf. commutative data structures
 logical monotonicity

asynchronous compensation code
detect violations after data is returned; see paper

cf. “Building on Quicksand”
 memories, guesses, apologies

write code to fix any errors

minimize:
(compensation cost)×(# of expected anomalies)

asynchronous
compensation

Read only newer data?

client’s read rate
global write rate

(monotonic reads session guarantee)

versions
tolerable
staleness

=

(for a given key)

Failure?

 latency
spikes

Treat failures as

How l o n g
do partitions last?

what time interval?
99.9% uptime/yr
⇒ 8.76 hours downtime/yr

8.76 consecutive hours down
⇒ bad 8-hour rolling average

what time interval?
99.9% uptime/yr
⇒ 8.76 hours downtime/yr

8.76 consecutive hours down
⇒ bad 8-hour rolling average

hide in tail of distribution OR
continuously evaluate SLA, adjust

10�2 10�1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

W=3

10�2 10�1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

C
D

F

W=1

10�2 10�1 100 101 102 103

Write Latency (ms)

0.2
0.4
0.6
0.8
1.0

W=2

LNKD-SSD LNKD-DISK YMMR WAN

LNKD-SSD LNKD-DISK YMMR WANLNKD-SSD LNKD-DISK YMMR WAN

LNKD-SSD LNKD-DISK YMMR WAN

N=3

10�2 10�1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

R=3

LNKD-SSD LNKD-DISK YMMR WAN

LNKD-SSD LNKD-DISK YMMR WANLNKD-SSD LNKD-DISK YMMR WAN

LNKD-SSD LNKD-DISK YMMR WAN

10�2 10�1 100 101 102 103

0.2
0.4
0.6
0.8
1.0

C
D

F

W=1

10�2 10�1 100 101 102 103

Write Latency (ms)

0.2
0.4
0.6
0.8
1.0

W=2

(LNKD-SSD and LNKD-DISK identical for reads)N=3

Probabilistic quorum
systems

N-W
R(pinconsistent N
R(

)
)

=

81

k-staleness: probability
p of reading one of last k
versions

How consistent?

82

How consistent?
N-W

R(
N
R(

)
))(K1-

82

How consistent?

closed-form solution
static quorum choice

N-W
R(
N
R(

)
))(K1-

<k,t>-staleness:
versions and time

<k,t>-staleness:
versions and time

approximation:
exponentiate

t-staleness by k

reads return the last
written value or newer
(defined w.r.t. real time,
when the read started)

consistency
___“strong”

R1

N = 3 replicas

R2 R3

Write to W, read from R replicas

R1

N = 3 replicas

R2 R3

 R=W=3 replicas{ }}{ R1 R2 R3

 R=W=2 replicas{ }R1{ R2 } R2{ R3 } R1{ R3 }

Write to W, read from R replicas

quorum system:
guaranteed
intersection

R1

N = 3 replicas

R2 R3

 R=W=3 replicas

 R=W=1 replicas

{ }}{ R1 R2 R3

{ }R1 }{ R2 }{ R3 }{

 R=W=2 replicas{ }R1{ R2 } R2{ R3 } R1{ R3 }

Write to W, read from R replicas

quorum system:
guaranteed
intersection

partial quorum
system:

may not intersect

Synthetic,
Exponential Distributions

N=3, W=1, R=1

Synthetic,
Exponential Distributions

W 1/4x ARS

N=3, W=1, R=1

Synthetic,
Exponential Distributions

W 1/4x ARS

W 10x ARS

N=3, W=1, R=1

concurrent writes:
deterministically choose

Coordinator R=2

(“key”, 1) (“key”, 2)

