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1. Fast
2. Scalable
3. Available
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eventual consistency
“if no new updates are 

made to the object, 
eventually all accesses 

will return the last 
updated value”

W. Vogels, CACM 2008



How
How long do I have to wait?

eventual?



consistent?
How

What happens if I don’t wait?



solution:

problem:  

technique:

no guarantees with 
eventual consistency

consistency prediction

measure latencies
  use WARS model

PBS



Dynamo:
Amazon’s Highly Available Key-value Store

SOSP 2007

Apache, DataStax

Project Voldemort
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N replicas/key
read: wait for R replies
write: wait for W acks
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“strong”
consistency

else:

R+W > Nif:

eventual
consistency

then:
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strong consistency
lower latency



Cassandra:
R=W=1, N=3

by default

(1+1 ≯ 3)



http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/

"In the general case, we typically 
use [Cassandra’s] consistency level 
of [R=W=1], which provides 

maximum performance. Nice!"
	

 --D. Williams, 
	

 “HBase vs Cassandra: why we moved”
	

 February 2010

http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/
http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/
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Consistency or Bust: Breaking a Riak Cluster

NoSQL Primer

Sunday, July 31, 11

23
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Voldemort @ LinkedIn

N=3 not required, “some consistency”:

R=W=1, N=2
Alex Feinberg, personal communication

“very low latency and high availability”:

R=W=1, N=3
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Anecdotally, EC
“worthwhile” for 

many kinds of data

How eventual?
How consistent?

“eventual and consistent enough”



Can we do better?



Probabilistically 
Bounded Staleness

can’t make promises
can give expectations

Can we do better?
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PBS is:
a way to quantify 
latency-consistency 
trade-offs

what’s the latency cost of consistency?
what’s the consistency cost of latency?

an “SLA” for consistency



t-visibility: probability p 
of consistent reads after 
after t seconds

(e.g., 99.9% of reads will be consistent after 10ms)

How eventual?
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 2) background version 	
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 1) message delays
	

 	

 2) background version 	

	

 	

     
	

 	

 	

  exchange (anti-entropy)

anti-entropy:
only decreases staleness
comes in many flavors
hard to guarantee rate

Focus on message delays



focus on

with failures:

 steady state

unavailable
or sloppy
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R3 replied before
last write arrived!
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Solving WARS: hard
Monte Carlo methods: easier



To use WARS: 

W
53.2
44.5
101.1

...

A
10.3
8.2
11.3
...

R
15.3
22.4
19.8
...

S
9.6
14.2
6.7
...

run simulation
Monte Carlo, sampling

gather latency data



How eventual?

key: WARS model
need: latencies

t-visibility: consistent 
reads with probability p 
after after t seconds



consistent?
What happens if I don’t wait?

How



Probability of reading later older than k 
versions is exponentially reduced by k

Pr(reading latest write) = 99%
Pr(reading one of last two writes) = 99.9%   

Pr(reading one of last three writes) = 99.99%



https://issues.apache.org/jira/browse/CASSANDRA-4261

https://issues.apache.org/jira/browse/CASSANDRA-4261
https://issues.apache.org/jira/browse/CASSANDRA-4261


Cassandra cluster, 
injected latencies:

t-staleness RMSE: 0.28%
latency N-RMSE: 0.48%

WARS Simulation accuracy



Yammer
100K+ companies

uses Riak

LinkedIn 
150M+ users

built and uses Voldemort

production latencies
fit gaussian mixtures
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Latency is combined read and write latency at 99.9th percentile
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Latency: 15.01 ms

LNKD-DISK

N=3

16.5% 
faster
worthwhile?
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99.9% consistent reads:
R=1, W=1

t = 1.85 ms
Latency: 1.32 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 4.20 ms

LNKD-SSD

N=3

59.5% 
faster



Coordinator Replica
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(A)

(W)

response
(S)

(R)

wait for W 
responses

t seconds elapse

wait for R 
responses

response is 
stale

if read arrives 
before write

once per replica

critical factor 
in staleness

read
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response is 
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if read arrives 
before write
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SSDs reduce
variance

compared to
disks!

read
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99.9% consistent reads:
R=1, W=1

t = 202.0 ms
Latency: 43.3 ms

Latency is combined read and write latency at 99.9th percentile

100% consistent reads:
R=3, W=1

Latency: 230.06 ms

YMMR

N=3

81.1% 
faster





1. Tracing
2. Simulation
3. Tune N, R, W
4. Profit

Workflow



https://issues.apache.org/jira/browse/CASSANDRA-4261

https://issues.apache.org/jira/browse/CASSANDRA-4261
https://issues.apache.org/jira/browse/CASSANDRA-4261




solution:

problem:  

technique:

no guarantees with 
eventual consistency

consistency prediction

measure latencies
  use WARS model

PBS



consistency

to measure
 is a metric

to predict



R+W

strong consistency
lower latency



R+W



latency vs. consistency trade-offs

simple modeling with WARS

model staleness in time, versionsPBS



latency vs. consistency trade-offs

simple modeling with WARS

model staleness in time, versionsPBS
eventual consistency

often fast
often consistent

PBS helps explain when and why



latency vs. consistency trade-offs

simple modeling with WARS

model staleness in time, versions

pbs.cs.berkeley.edu/#demo

PBS
eventual consistency

often fast
often consistent

PBS helps explain when and why

@pbailis

http://bailis.org/projects/pbs
http://bailis.org/projects/pbs


cassandra patch

VLDB 2012 early print
tinyurl.com/pbsvldb

tinyurl.com/pbspatch

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf


Extra Slides



Related Work



Quorum System Theory
e.g., Probabilistic Quorums

k-quorums

Deterministic Staleness
e.g., TACT/conits

FRACS



Consistency Verification
e.g., Golab et al.

(PODC ’11),
Bermbach and Tai
(M4WSOC ’11)



PBS 
and 
apps



staleness requires 
either:

staleness-tolerant data structures
timelines, logs

cf. commutative data structures
    logical monotonicity

asynchronous compensation code
detect violations after data is returned; see paper

cf. “Building on Quicksand”
     memories, guesses, apologies

write code to fix any errors



minimize:
(compensation cost)×(# of expected anomalies)

asynchronous
compensation



Read only newer data?

client’s read rate
global write rate

(monotonic reads session guarantee)

# versions 
tolerable
staleness

=

(for a given key)



Failure?



 latency 
spikes

Treat failures as



How l o n g
do partitions last?



what time interval?
99.9% uptime/yr 
⇒ 8.76 hours downtime/yr

8.76 consecutive hours down
⇒ bad 8-hour rolling average



what time interval?
99.9% uptime/yr 
⇒ 8.76 hours downtime/yr

8.76 consecutive hours down
⇒ bad 8-hour rolling average

hide in tail of distribution OR
continuously evaluate SLA, adjust
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LNKD-SSD LNKD-DISK YMMR WAN

N=3
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R=3

LNKD-SSD LNKD-DISK YMMR WAN

LNKD-SSD LNKD-DISK YMMR WANLNKD-SSD LNKD-DISK YMMR WAN

LNKD-SSD LNKD-DISK YMMR WAN
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0.2
0.4
0.6
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C
D
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W=1

10�2 10�1 100 101 102 103

Write Latency (ms)

0.2
0.4
0.6
0.8
1.0

W=2

(LNKD-SSD and LNKD-DISK identical for reads)N=3



Probabilistic quorum 
systems

N-W
R(pinconsistent N
R(

)
)

=
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k-staleness: probability 
p of reading one of last k 
versions

How consistent?



82

How consistent?
N-W

R(
N
R(

)
))( K1-
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How consistent?

closed-form solution
static quorum choice

N-W
R(
N
R(

)
))( K1-



<k,t>-staleness:
versions and time



<k,t>-staleness:
versions and time

approximation: 
exponentiate 

t-staleness by k



reads return the last 
written value or newer
(defined w.r.t. real time,
when the read started)

consistency
___“strong”



R1

N = 3 replicas

R2 R3

Write to W, read from R replicas



R1

N = 3 replicas

R2 R3

 R=W=3 replicas{ }}{ R1 R2 R3

 R=W=2 replicas{ }R1{ R2 } R2{ R3 } R1{ R3 }

Write to W, read from R replicas

quorum system:
guaranteed
intersection



R1

N = 3 replicas

R2 R3

 R=W=3 replicas

 R=W=1 replicas

{ }}{ R1 R2 R3

{ }R1 }{ R2 }{ R3 }{

 R=W=2 replicas{ }R1{ R2 } R2{ R3 } R1{ R3 }

Write to W, read from R replicas

quorum system:
guaranteed
intersection

partial quorum 
system:

may not intersect



Synthetic,
Exponential Distributions

N=3, W=1, R=1



Synthetic,
Exponential Distributions

W 1/4x ARS

N=3, W=1, R=1



Synthetic,
Exponential Distributions

W 1/4x ARS

W 10x ARS

N=3, W=1, R=1



concurrent writes:
deterministically choose

Coordinator R=2

(“key”, 1) (“key”, 2)










