P B S @ Twitter
6.22.12

Peter Bailis @pbailis

Shivaram Venkataraman,
Mike Franklin,
Joe Hellerstein,

lon Stoica UC Berkeley

Probabilistically
Bounded
Staleness

| . Fast
2. Scalable
3. Available

solution:
replicate for

|. request capacity
2. reliability

solution:
replicate for

|. request capacity
2. reliability

solution:
replicate for

|. request capacity
2. reliability

keep replicas in sync
-

NS,

keep replicas in sync

keep replicas in sync

keep replicas in sync

keep replicas in sync

keep replicas in sync

keep replicas in sync

keep replicas in sync

keep replicas in sync

keep replicas in sync

keep replicas in sync

keep replicas in sync

slow y -

lInconsistent

keep replicas in sync

slow @&
d ¢

alternative: sync later

lInconsistent

keep replicas in sync

slow @&
d ¢

alternative: sync later

lInconsistent

keep replicas in sync

slow y -

lInconsistent

{I consistency, 1 latency

contact more replicas,
read more recent data

J consistency, 4} latency

contact fewer replicas,
read less recent data

{I consistency, 1 latency

contact more replicas,
read more recent data

J consistency, 4} latency

contact fewer replicas,
read less recent data

eventual consistency

“if no new updates are
made to the object,
eventually all accesses
will return the last
updated value™

W.Vogels, CACM 2008

How
eventual’

How long do | have to wait”?

How
consistent!

What happens if | don’t wait?

PBS

no guarantees with

roblem: eventual consistency
solution: consistency prediction

measure latencies

technique: ' . waRS model

Dynamo:

Amazon’s Highly Available Key-value Store
SOSP 2007

Apache, DataStax P o m
L o Linked

W ;““” basho “

| | .
Cassandra '.w rl a k Project Voldemort

Adobe Rackspace
IBM

Palantir

Twitter Cisco Netflix Spotify

Cassandra Reddi

Morningstar Digg Mozilla Rhapsody
Shazam Soundcloud
Gowalla
Yammer sk.com
Voldemort Aol Diale Best Buy
LinkedIn Gilt Groupe GitHub Comcast
JoyentCloud

Boeing

N = 3 replicas

4) 4) 4)

RI(“key”, D |R2(“key”,)| |R3(“key”, 1)

_

4)

Coordinator

N=3 replicas

RI("key”,

|)

-

R2 (“key”, I)

_

-

Coordinator

~N

r

R3(‘key”, I)

J

A

read(“key”)

N=3 replicas

4 4 4

R (“key”, I) R2 (“key”, I) R3(‘key”, I)

i e

read(“key”)

N |/

4)

Coordinator

read \ /

N=3 replicas

r

RI(‘key”, l)

N\

(“ke)'”, I)

-

R2 (“key”, I)

(“ke)'”, I)

_

r

R3(‘key”, I)

/

(‘(key”’ I)

N

read

R=

3

Coordinator

N=3 replicas

4 4 4

R|(‘key”, I) R2 (“key”, I) R3(‘key”, I)

_

N\ | /

(“I(e)'”, I) (“I(e)'”, I) (“I(e)'”, I)

N

Coordinator

I‘eaCI S | g
(“I(e)'”, I)

N = 3 replicas

4) 4) 4)

RI(“key”, D |R2(“key”,)| |R3(“key”, 1)

_

4)

Coordinator

N=3 replicas

RI("key”,

4 4

I) R2 (“key”, I) R3(‘key”, I)

_

4)

Coordinator

_ J

A
read(“key”)

N=3 replicas

4 4 4

R (“key”, I) R2 (“key”, I) R3(‘key”, I)

i e

read(“key”)

N |/

4)

Coordinator

read \ /

N=3 replicas

4 4 4

R (“key”, I) R2 (“key”, I) R3(‘key”, I)

\. \.

N\

(“I(e)'”, I)

N

4)

Coordinator

read \ /

N=3 replicas

r

RI(‘key”, l)

((‘I(ey” I)

-

R2 (“key”, I)

_

r

R3(‘key”, I)

(‘(key” I)

NS

read

R=

3

Coordinator

N=3 replicas

r

RI(‘key”, l)

N\

(“ke)'”, I)

-

R2 (“key”, I)

(“ke)'”, I)

_

r

R3(‘key”, I)

/

(‘(key”’ I)

N

read

R=

3

Coordinator

N=3 replicas

4 4 4

R|(‘key”, I) R2 (“key”, I) R3(‘key”, I)

_

N\ | /

(“I(e)'”, I) (“I(e)'”, I) (“I(e)'”, I)

N

Coordinator

I‘eaCI S | g
(“I(e)'”, I)

N = 3 replicas

4) 4) 4)

RI(“key”, D |R2(“key”,)| |R3(“key”, 1)

_

4)

Coordinator

read \ /

N=3 replicas

RI("key”,

4 4

I) R2 (“key”, I) R3(‘key”, I)

_

4)

Coordinator

_ J

A
read(“key”)

N=3 replicas

4 4 4

R (“key”, I) R2 (“key”, I) R3(‘key”, I)

\. \.

\ read(“key”) /

N1 Z

Coordinator Sen d
read | :

N=3 replicas

r

.

RI("key”,

-

I) R2 (“key”, I)

_

N\

((‘I(ey”’

read

)

N

-

Coordinator

~N

r

R3(‘key”, I)

N=3 replicas

4 4 4

R|(‘key”, I) R2 (“key”, I) R3(‘key”, I)
AN

(“I(e)'”, I)

N

4)

Coordinator Send
I‘eaCI > | g
(e 1) read

to all

N=3 replicas

4 4 4

R|(‘key”, I) R2 (“key”, I) R3(‘key”, I)

_

((‘I(ey” I) (‘(key” I)

NS

Coordinator Sen d
I‘eaCI > | g ren d
(“key”, 1)

R=l

to all

N=3 replicas

4 4 4

R|(‘key”, I) R2 (“key”, I) R3(‘key”, I)

_

N\ | /

(“I(e)'”, I) (“I(e)'”, I) (“I(e)'”, I)

N

Coordinator Sén d
I‘eaCI > | g ren d
(“key”, 1)

R=l o b

to all

N replicas/key
read: wait for R replies
write: wait for W acks

r

RI (“key”, I)

.

-

_

R2 (“key”, I)

[Coordinator] wW=|

R3 (“key”,

|)

4)

RI (“key”, I)

\. J

-

_

~N

R2 (“key”, 1)

[Coordinator] wW=|

A
write(“key”, 2)
!

4)

R3 (“key”, I)

r

RI (“key”,

) 4

)

R2 (“key”,

4)

R3 (“key”, I)

S

wrlte(“key” 2)

[Coordlnator] wW=|

4)

RI (“key”, 2)

\. J

ack(“key”, 2)

|

-

_

~N

R2 (“key”, 1)

[Coordinator] wW=|

R3 (“ke)'”, I)

4)

RI (“key”, 2)

\. J

ack(“key”, 2)

|

-

_

~N

R2 (“key”, 1)

[Coordinator] wW=|
|

ack(“key”, 2)

R3 (“ke)'”, I)

4)

RI (“key”, 2)

- J

-

_

~N

R2 (“key”, 1)

[Coordinator] wW=|
|

ack(“key”, 2)

4)

R3 (“key”, I)

[Coordinator] R=|

A
read(“key”)

4)

RI (“key”, 2)

-

-

~N

R2 (“key”, 1)

\\

4)

R3 (“key”, I)

J

read (“key”)

[Coordmator] wW=|
|

ack(“key”, 2)

[Coordmator] R=|

4)

RI (“key”, 2)

- J

-

_

~N

R2 (“key”, 1)

[Coordinator] wW=|
|

ack(“key”, 2)

4)

R3 (“key”, I)

(“ke)'”, I)

[Coordinator] R=|

4)

RI (“key”, 2)

- J

-

_

~N

R2 (“key”, 1)

[Coordinator] wW=|
|

ack(“key”, 2)

4)

R3 (“key”, I)

[Coordinator] R=|

(“ke)'”, I)

4)

RI (“key”, 2)

- J

-

_

~N

R2 (“key”, 1)

[Coordinator] wW=|

4)

R3 (“key”, I)

[Coordinator] R=|

(“ke)'”, I)

4)

RI (“key”, 2)

- J

-

_

\

R2 (“key”, 1)

[Coordinator] wW=|

4)

R3 (“key”, I)

[Coordinator] R=|

(“ke)'”, I)

4)

RI (“key”, 2)

- J

-

_

\

R2 (“key”, 1)

[Coordinator] wW=|

‘:,}
QT
\\\\:c,l/
N J

\

N

4)

R3 (“key”, I)

[Coordinator] R=|

4)

-

~N

RI (“key”, 2) R2 (“key”, 2)
ack(“key”, 2)

[Coordinator] wW=|

[
ack(“key”, 2)

R3 (“ke)'”, I)

[Coordinator] R=|

(“ke)'”, I)

4)

R I (“ke)'”, 2)

- J

-

_

~N

R2 (“key”, 2)

/

R3 (“ke)'”, 2)

/

ack(“key”, 2) ack(“key”,2)

[Coordinator] w=|
|

ack(“key”, 2)

[Coordinator] R=]

(“ke)'”, I)

4)

RI (“key”, 2)

- J

-

_

~N

R2 (“key”, 2)

[Coordinator] wW=|
|

ack(“key”, 2)

4)

R3 (“key”, 2)

[Coordinator] R=|

(“ke)'”, I)

4) 4) 4)

RI (“key”, 2) R2 (“key”, 2) R3 (“key”, 2)

- J -

~~

(“key”’ 2)

[Coordinator] w=| [Coordinator] R=|
|

ack(“key”, 2) (“key”, I)

4) 4) 4)

RI(“key”,2)| |R2(“key”,2)l |R3(“key”,?2)

- J -

NN

(“ke)'”, 2) (“key”’ 2)

- J

[Coordinator] w=| [Coordinator] R=|
|

ack(“key”, 2) (“key”, I)

4)

RI (“key”, 2)

- J

-

_

~N

R2 (“key”, 2)

[Coordinator] wW=|
|

ack(“key”, 2)

4)

R3 (“key”, 2)

[Coordinator] R=|

(“ke)'”, I)

£ R+W >N
. “strong”
th cn. consistency
I e o eventual
CISC.

consistency

AN . EEEEN——

strong consistency

strong consistency
lower latency

strong consistency
lower latency

r':\.t/ -
T ¥ B

strong consistency

lower latency

Cassandra:
R=W=|, N=3
by default

(1+1 * 3)

"In the general case, we typically

use [Cassandra’s] consistency level
of [R=W=1], which provides

maximum performance. Nice!

--D.Williams,
“HBase vs Cassandra: why we moved”
February 2010

http://rial 01 .wordpress.com/2010/02/24/hbase-vs-cassan dra-why-we-move d/

http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/
http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/

0] -
o
0)
ﬁredd't PROGRAMMING H comments | related other discussions (1)

reddit's now running on Cassandra (biog.reddit.com)

submitted 1 year ago by ketralnis
261 comments share

sorted by: best v

you are viewing a single comment's thread.
view the rest of the comments —
[-] ketralnis [S] 13 points 1 year ago

We have a memcached (not memcachedb) in front of it which gives us the atomic
operations that we need, so it can take as long as it needs to replicate behind the scenes

If we didn't, we'd use CL-ONE reads/writes for most things except the operations that

needed to be atomic, where we'd do CL-QUORUM. But most of our data doesn't need
atomic reads/writes.

http://www.reddit.com/r/programming/comments/bcghi/reddits_now_running_on_cassandra/cOm3whé

http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6
http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6

0 .
o
0 .
gredd't PROGRAMMING | comments | related other discussions (1)

reddit's now running on Cassandra (biog.reddit.com)

submitted 1 year ago by ketralnis
261 comments share

sorted by: best w

you are viewing a single comment's thread.
view the rest of the comments —

[-] ketralnis [S] 13 points 1 year ago

We have a memcached (not memcachedb) in front of it which gives us the atomic
operations that we need, so it can take as long as it needs to replicate behind the scenes

If we didn't, we'd use CL-ONE reads/writes for most things except the operations that

needed to be atomic, where we'd do CL-QUORUM. But most of our data doesn't need
atomic reads/writes.

http://www.reddit.com/r/programming/comments/bcghi/reddits_now_running_on_cassandra/cOm3whé

http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6
http://www.reddit.com/r/programming/comments/bcqhi/reddits_now_running_on_cassandra/c0m3wh6

NoSQL Primer

OREILLY*

source convention

open
Sunday, July 31, 11

23

Low Value Data

OREILLY*

COIl

open source convention

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

Low Value Data

OREILLY*

CQOrl

open source convention

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

ission Critical Data

LI mﬁrainlﬁj"._;imir

OREILLY*

COIl

open source convention

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

ission Critical Data

LI mﬁrainlﬁj"._;imir

OREILLY*

COIl

open source convention

Sunday, July 31, 11

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster
http://www.slideshare.net/Jkirkell/breaking-a-riak-cluster

Voldemort @ LinkedIn

“very low latency and high availability™:
R=W=|, N=3
N=3 not required, “some consistency’:

R=W=[, N=2

Alex Feinberg, personal communication

Anecdotally, EC

“worthwhile™ for
many kinds of data

Anecdotally, EC

“worthwhile™ for
many kinds of data

How eventual?
How consistent!?

Anecdotally, EC

“worthwhile™ for
many kinds of data

How eventual?
How consistent!?

“eventual and consistent enough”

Can we do better?

Can we do better?
Probabilistically

Bounded Staleness

can't make promises
can give expectations

PBS is:

a way to quantify
latency-consistency
trade-offs

what’s the latency cost of consistency!?
what’s the consistency cost of latency!?

PBS is:

a way to quantify
latency-consistency
trade-offs

what’s the latency cost of consistency!?
what’s the consistency cost of latency!?

an “SLA” for consistency

How eventual’

t-visibility: probability p
of consistent reads after
after t seconds

(e.g.,99.9% of reads will be consistent after 10ms)

t-visibility depends on:
|) message delays

2) background version
exchange (anti-entropy)

t-visibility depends on:

|) message delays

anti-entropy:
only decreases staleness

comes in many flavors
hard to guarantee rate

Focus on message delays

focus on

steady state

with failures:
unavailable

or sloppy

Coordinator once per replica Replica T
I
M
c

Coordinator once per replica Replica T

|
write m

\ e

Coordinator once per replica Replica T

|
write m

\ e
/

ack

Coordinator once per replica Replica T

|
write m

\ e

Coordinator once per replica Replica T

|
write m

\ e

t seconds elapse

\

Coordinator once per replica Replica T

|
write m

\ e

Coordinator once per replica Replica T

|
write m

\ e

response

Coordinator once per replica

write

\

responses response

Replica T

™ 3 —

Coordinator once per replica Replica T

I
write m

\ e

stale
: if read arrives
wait for R / ad arriv

before write
responses response

Coordinator once per replica Replica T

I
write m

\ e

stale
: if read arrives
wait for R / ad arriv

before write
responses response

Coordinator once per replica Replica T

m

stale
: if read arrives
wait for R / ad arriv

before write
responses response

Coordinator once per replica Replica T

m

stale
: if read arrives
wait for R / ad arriv

before write
responses response

N

2

N

2

N

write

ack

: write

ack

N=2

N=2

%sponse - response

N

2

N

%

2

write

ack

N=2

%
=W

write . .
\ ° write

N=2 ack

write . .
\ ° write

N=2 ack

write . .
\ ° write

C

.\lb'Y"‘ .

\ R’" vy }

na ’
\‘\

ack

write . .
\ ° write

S

write . .
\ ° write

S

Coordinator once per replica Replica T

m

stale
- if read arrives

before write
responses response

4)

RI (“key”, 2)

- J

-

_

\

R2 (“key”, I)

[Coordinator] wW=|
|

ack(“key”, 2)

4)

R3 (“key”, I)

[Coordinator] R=|

4)

R I (“ke)'”, 2)

-

-

_

~N

R2 (“key”, I)

[Coordinator] wW=|
|

ack(“key”, 2)

R3 (“key”, I)
(“key”, 1)

[Coordinator] R=|

[
(“ke)'”, I)
\

4)

RI (“key”, 2)

- J

R3 replied before
last write arrived!

-

_

~N

R2 (“key”, I)

write(“key”, 2)

\ 4
2
g

[Coorc;inator] wW=|
|

ack(“key”, 2)

R3 (“key”, I)
_ ‘T J

(“key”’ I)

[Coordinator] R=|

[
(“ke)'”, I)
\

Coordinator once per replica Replica T

m

stale
- if read arrives

before write
responses response

Coordinator once per replica

responses response

Replica T
|
m
e
response Is
stale

if read arrives
before write

Coordinator once per replica

(W) —,

(A)—
wait for W «—

ack
responses

t seconds elapse

l

responses response

Replica T
|
m
e
response Is
stale

if read arrives
before write

Coordinator once per replica Replica T

m

(W) —,

(A)—
wait for W = «—

ack
responses

t seconds elapse

T response is

(R) > stale

wait for R / if read arrives

before write
responses response

Coordinator once per replica Replica T

m

(A)—
wait for W = «—

ack
responses

t seconds elapse

T response is

(R) > stale

wait for R _ _— (S) —if read arrives

before write
responses response

Solving WARS: hard

Monte Carlo methods: easier

To use WARS:
gather latency data

\2'4 A R S

53.2 10.3 15.3 9.6
44.5 8.2 22.4 1 4.2
101.1 1 1.3 19.8 6.7

run simulation

Monte Carlo, sampling

How eventual’

t-visibility:. consistent
reads with probabillity p
after after t seconds

key: WARS model
need: latencies

How
consistent!

What happens if | don’t wait?

Probability of reading later older than k
versions is exponentially reduced by k

Pr(reading latest write) = 99%
Pr(reading one of last two writes) = 99.9%
Pr(reading one of last three writes) = 99.99%

. Cassandra / CASSANDRA-4261
R [patch] Support consistency-latency prediction in nodetool

Log In

Details People

Type: #) New Feature Status: 4 Patch Available Assignee:

Priority: ¥ Major Resolution: Unresolved Reporter:

Affects Version/s: 1.2 Fix Version/s: None Vote (0)

Component/s: Tools

Labels: None Dates

D inti Created:
escription Updated:

Introduction

Cassandra supports a variety of replication configurations: ReplicationFactor is set per-
ColumnFamily and ConsistencylLevel is set per-request. Setting ConsistencyLevel to
QUORUM for reads and writes ensures strong consistency, but QUORUM is often slower than
ONE, TWO, or THREE. What should users choose?

This patch provides a latency-consistency analysis within nodetool. Users can accurately
predict Cassandra's behavior in their production environments without interfering with
performance.

https://issues.apache.org/jira/browse/ CASSANDRA-426 |

https://issues.apache.org/jira/browse/CASSANDRA-4261
https://issues.apache.org/jira/browse/CASSANDRA-4261

Cassandra cluster,
injected latencies:

WARS Simulation accuracy

t-staleness RMSE: 0.28%
latency N-RMSE: 0.48%

LinkedIn @8
| 50M+ users B

built and uses Voldemort

Yammer
| 00K+ companies ye

uses Riak

production latencies
fit gaussian mixtures

A— R=1 W=1

1.0

®— R=1W=2 B R=2 W=1

LNKD-I

0.9
0.8¢
0.7
0.6}
0.5¢
0.4

P(consistency)

y

4

Z

=3

t-visibility (ms)

A— R=1 W=1 ®— R=1W=2 B R=2 W=1

1.0

0.7

P(consistency)

0.4

=3

Z

LNKD-I

0.9¢

y

0.8¢

0.6}
0.5¢

t-visibility (ms)

N

3

LNKD-DISK

99.9% consistent reads:
R=2,W=]|

t=13.6 ms

Latency: 12.53 ms
100% consistent reads:
R=3,W=|
Latency: [5.0] ms

Latency is combined read and write latency at 99.9th percentile

16.5%
faster

N=3

LNKD-DISK

99.9% consistent reads:
R=2,W=|

t=13.6 ms

Latency: 12.53 ms
100% consistent reads:
R=3,W=|
Latency: [5.0] ms

Latency is combined read and write latency at 99.9th percentile

LNKD-DISK

99.9% consistent reads:
16.5% R=2,W=|

faster t=13.6 ms
Latency: 12.53 ms

| 00% consistent reads:
R=3,W=]|
N=3 Latency: [5.0] ms

worthwhile?

Latency is combined read and write latency at 99.9th percentile

A— R=1 W=1 ®— R=1W=2 B R=2 W=1

1.000 m--—ENE—[l-S-D -

.

P(consistency)

05 1.0 15 2.0
N=3 t-visibility (ms)

P(consistency)

R=1 W=1 ®— R=1W=2
1.000.7-.=--—-—H-§|l<—[l-8-[) —
0.995| ¥ dall
0.990|
0.985|
0.980!

0.975

B R=2 W=1

097035 10 15

=% t-visibility (ms)

P(consistency)

R=1 W=1 ®— R=1W=2 B R=2 W=1
1.000.7*-’-—-—H>-|l<—[l-8-[) -

09703570 15

=% t-visibility (ms)

N

3

LNKD-SSD

99.9% consistent reads:
R=|,W=]|

t = 1.85 ms

Latency: .32 ms
100% consistent reads:
R=3,W=|
Latency: 4.20 ms

Latency is combined read and write latency at 99.9th percentile

LNKD-SSD

99.9% consistent reads:
R=[|, W=|

O
>9.57 t = 1.85 ms
faSteI” Latency: .32 ms

| 00% consistent reads:
R=3,W=]|
N=3 Latency: 4.20 ms

Latency is combined read and write latency at 99.9th percentile

Coordinator once per replica Replica

write

\@\critical factor

(A)/ in staleness
wait for W «—

ack
responses
....... e R LT L R EEP LR
t seconds elapse
\ read |
o response is

(R) I stale

/ . .
wait for R __—— (S) if read arrives

before write
responses response

1.0
0.8}
0.6
0.4
0.2

CDF

W=3

—&— LNKD-SSD —@— LNKD-DISK

102 10" 10° 10'

N=3

Write Latency (ms)

102

103

—&— LNKD-SSD —@— LNKD-DISK

0.8f W=3

0.6
0.4
0.2

CDF

102 10" 109 10" 102 10
Write Latency (ms)

N=3

1.0
0.8
0.6
0.4}
0.2}

CDF

—&— LNKD-SSD —@— LNKD-DISK

102 101 100 10"
Write Latency (ms)

N=3

102

103

Coordinator once per replica Replica

write

SSDs reduce
\@\ variance
___——compared to
wait for W = «— (A) disks!

ack
responses

——— (R) - resz:al?ze IS

/ . .
wait for R __——— (S) if read arrives

before write
responses response

P(consistency)

Z

0.98
0.96]
0.94|
0.92
0.90{

T AT
3 t-visibility (ms)

P(consistency)

L
[

0.98
0.96]
0.94;
0.92
0.90{
0.88

3

t-visibility (ms)

10°

0.98
0.96]
0.94;
0.92

P(consistency)

088 (@) o

3 t-visibility (ms)

L
[

N

3

YMMR

99.9% consistent reads:
R=1,W=]|

t = 202.0 ms

Latency: 43.3 ms
100% consistent reads:
R=3,W=|
Latency: 230.06 ms

Latency is combined read and write latency at 99.9th percentile

YMMR

99.9% consistent reads:
R=1,W=]|

o
81.1% ¢+ =202.0 ms
faster Latency: 43.3 ms

| 00% consistent reads:
R=3,W=]|
N=3 Latency: 230.06 ms

Latency is combined read and write latency at 99.9th percentile

PBS: Probablhstlca”y Bounded Staleness About Instructions Demo Questions Moreinfo Thanks

How Eventual is Eventual Consistency?

P(Consistency)
0.950
0.900
0.850
0.800
=0, Pr=0.755
o
0.0 5.0 10.0 15.0 20.0 25.0
Time After Commit (ms)
(Plot isn't monotonically increasing? Increase the accuracy.)
You have at least a 74.8 percent chance of reading the last written version 0 ms after it commits.
You have at least a 92.2 percent chance of reading the last written version 10 ms after it commits.
You have at least a 99.96 percent chance of reading the last written version 100 ms after it commits.
Replica Configuration Tolerable Staleness: 1 version
N: @ 3 Read Latency: Median 8.43 ms, 99.9th %ile 36.97 ms O
R: OJ Write Latency: Median 8.38 ms, 99.9th %ile 38.28 ms Accuracy: 2500 iterations/point
w: 0O @
Operation Latency: Exponentially Distributed CDFs
W: Write Request to Replica A: Replica Write Ack R: Read Request to Replica S: Replica Read Response
0.80 0.80 0.80 0.80
0.60 0.60 0.60 0.60
0.40 0.40 0.40 0.40
0.20 0.20 0.20 020
0.00 0.00 0.00 0.00
0 S5 10 15 20 25 30 0 S5 10 15 20 25 30 0 S5 10 15 20 25 30 0 S5 10 15 20 25 30

Latency (ms) Latency (ms) Latency (ms) Latency (ms)
A @D 0.100 A D 0.100 A D 0.100 A @D 0.100

Workflow

|. Tracing

2. Simulation
3.Tune N,R, W

4. Profit

. Cassandra / CASSANDRA-4261
R [patch] Support consistency-latency prediction in nodetool

Log In

Details People

Type: #) New Feature Status: 4 Patch Available Assignee:

Priority: ¥ Major Resolution: Unresolved Reporter:

Affects Version/s: 1.2 Fix Version/s: None Vote (0)

Component/s: Tools

Labels: None Dates

D inti Created:
escription Updated:

Introduction

Cassandra supports a variety of replication configurations: ReplicationFactor is set per-
ColumnFamily and ConsistencylLevel is set per-request. Setting ConsistencyLevel to
QUORUM for reads and writes ensures strong consistency, but QUORUM is often slower than
ONE, TWO, or THREE. What should users choose?

This patch provides a latency-consistency analysis within nodetool. Users can accurately
predict Cassandra's behavior in their production environments without interfering with
performance.

https://issues.apache.org/jira/browse/ CASSANDRA-426 |

https://issues.apache.org/jira/browse/CASSANDRA-4261
https://issues.apache.org/jira/browse/CASSANDRA-4261

ubuntu@ip-10-46-87-156:~/cassandra-pbs$ bin/nodetool -h ec2-23-2
0-168-89.compute-1.amazonaws.com predictconsistency 3 75 1

75ms after a given write, with maximum version staleness of k=1
N=3, R=1, W=1

Probability of consistent reads: 0.716500

Average read latency: 31.170300ms (99.900th %ile 193ms)

Average write latency: 42.873798ms (99.900th %ile 192ms)

N=3, R=1, W=2

Probability of consistent reads: 0.902400

Average read latency: 30.958000ms (99.900th %ile 189ms)
Average write latency: 106.877098ms (99.900th %ile 240ms)

N=3, R=1, W=3

Probability of consistent reads: 1.000000

Average read latency: 30.104000ms (99.900th %ile 192ms)
Average write latency: 171.652298ms (99.900th %ile 341ms)

N=3, R=2, W=1

Probability of consistent reads: 0.934200

Average read latency: 84.446602ms (99.900th %ile 231ms)
Average write latency: 42.800301ms (99.900th %ile 194ms)

N=3, R=2, W=2

Probability of consistent reads: 1.000000

Average read latency: 82.663902ms (99.900th %ile 238ms)
Average write latency: 106.141296ms (99.900th %ile 236ms)

PBS

no guarantees with

roblem: eventual consistency
solution: consistency prediction

measure latencies

technique: ' . waRS model

consistency

is a metric

to measure
to predict

r':\.t/ -
T ¥ B

strong consistency

lower latency

WHAT IF1 TOLD YOU

Fond |

Y {

\T'-*. .
| GAN TELL YOU WHAT Tlh’l_ﬂl(

latency vs. consistency trade-offs

simple modeling with WARS

model staleness in time, versions

latency vs. consistency trade-offs
simple modeling with WARS
model staleness in time, versions

eventual consistency
often fast
often consistent

PBS helps explain when and why

latency vs. consistency trade-offs
simple modeling with WARS
model staleness in time, versions

eventual consistency
often fast
often consistent

PBS helps explain when and why

pbs.cs. berkeley edu/#demo

http://bailis.org/projects/pbs
http://bailis.org/projects/pbs

VLDB 2012 early print
tinyurl.com/pbsvidb

cassandra patch
tinyurl.com/pbspatch

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf

Extra Slides

Related VWork

Quorum System Theory

e.g., Probabilistic Quorums
K-quorums

Deterministic Staleness

e.g., TACT/conits
FRACS

Consistency Verification
e.g., Golab et al.

(PODC I 1),
Bermbach and Tai
(M4WSOC 'l 1)

staleness requires
either:

staleness-tolerant data structures

timelines, logs
cf. commutative data structures
logical monotonicity

asynchronous compensation code

detect violations after data is returned; see paper
write code to fix any errors

cf.“Building on Quicksand”
memories, guesses, apologies

asynchronous
compensation

minimize:

(compensation cost)x(# of expected anomalies)

Read only newer data’
(monotonic reads session guarantee)

versions client’s read rate
tolerable = ——————
staleness global write rate

(for a given key)

Treat failures as
latency

Spl kes

How | o n g
do partitions last!

what time interval?

99.9% uptimelyr
= 8.76 hours downtime/yr

8.76 consecutive hours down
= bad 8-hour rolling average

what time interval?

99.9% uptimelyr
= 8.76 hours downtime/yr

8.76 consecutive hours down
= bad 8-hour rolling average

hide in tail of distribution OR
continuously evaluate SLA, adjust

—@— LNKD-DISK
1.0 ———
0.8 W=3
L i
L 0.6
O 0.4}
0.2
102 10-1 100

—&— LNKD-SSD 4 YMMR
—v— WAN

0
Write Latency (ms)

102

—&— LNKD-SSD 4 YMMR
—&— LNKD-DISK —%¥— WAN

1.0

0.8} R=3

LL i
a 0.6

O 0.4
0.2}

10-2 10" 10° 10" 102
Write Latency (ms)

N=3 (LNKD-SSD and LNKD-DISK identical for reads)

103

Probabilistic quorum

systems
N-VV)
(7

()

Dinconsistent =

How consistent?

K-Staleness: probability

p of reading one of last k
Versions

How consistent!
/| i <(i >>
)

How consistent!
/| i <(i >>
)

<K,l>-staleness:
versions and time

<K,l>-staleness:
versions and time

approximation:
exponentiate

t-staleness by k

“strong”
consistency =
reads return the last

written value or newer

(defined w.r.t. real time,
when the read started)

N = 3 replicas

RI

J

-

_

R2

~N

J

.

R3

Write to W, read from R replicas

N = 3 replicas

RI R?2 R3

Write to W, read from R replicas

quorum system:

Iﬁ‘::ﬁi‘ng;‘i {{[m] R2)(R3) }} R=W=3 replicas I
{immM N} e e

N = 3 replicas

RI R2 R3

Write to W, read from R replicas

quorum system:

Iﬁ‘::ﬁi‘ng;‘i {{[m] R2)(R3) }} R=W=3 replicas I
{immM N} e e

‘partial quorum

R ()XY} p—

may not intersect

P(consistency)
-
~

Synthetic,

Exponential Distributions

?

=ok

ARS)\:W

0.67 o 14 o— 1:0.50
0.5 —d— 1:2] 1:0.20 i
A— 1:1 e— 1:0.10
045 > 4 6 10
t-visibility (ms)

N=3,Ww=I[, R=]

W 1/4x ARS

Synthetic,

Exponential Distributions

!

P(consistency)
o o o O
(@) ~J o0 O

©
o

ARS)A:W)
& 14 e— 1:0.50
12 m— 1:0.20
A— 11 e— 1:0.10

| —— ——p—

0.40 2

N=3,W=1,R=|

4 5 ;
t-visibility (ms)

10

W 1/4x ARS

Synthetic,
Exponential Distributions

!

©
©

©
od

P(consistency)
O
~

Eek

W 10x ARS

\

ARS)\:W

?

> & 14 o— 1050

0.5 —%— 12— 1.0.20
A— 11 o— 1:0.10

" 2 4 6 8 10

N=3,W=1,R=|

t-visibility (ms)

concurrent writes:
deterministically choose

N\ |

(“key”’ I) (“I(ey”’ 2)

N

[Coordinator] R=2

Yo1le Latency (ms)

15,000 RPM SAS Disk
Average 4.85

95 15

99 25

Commodity SSD
Average 0.58

95 1

99 2

Table 1: LinkedIn Voldemort single-node production latencies.

%o01le Read Latency (ms) | Write Latency (ms)
Min 1.55 1.68
50 3.75 5.73
75 4.17 6.50
95 5.2 8.48
98 6.045 10.36
99 6.59 131.73
99.9 32.89 435.83
Max 2979.85 4465.28
Mean 9.23 8.62
Std. Deyv. 83.93 26.10
Mean Rate 718.18 gets/s 45.65 puts/s

Table 2: Yammer Riak N =3, R=2, W =2 production latencies.

W=A=R=S5:
91.22%: Pareto, x,, = .235,a = 10
LNKD=55D 8.78%: Exponential, A = 1.66
N-RMSE: .55%
W:
38%: Pareto, ,,, = 1.05, = 1.51
LNKD-DISK 62%: Exponential, A = .183
N-RMSE: .26%
A =R =5 :LNKD-SSD
W:
93.9%: Pareto, x,, = 3, = 3.35
6.1%: Exponential, A = .0028
N-RMSE: 1.84%
MR A=R=S5:
98.2%: Pareto, x,,, = 1.5, = 3.8
1.8%: Exponential, A = .0217
N-RMSE: .06%

Table 3: Distribution fits for production latency distributions
from LinkedIn (LNKD-*) and Yammer (YMMR).

LNKD-SSD LNKD-DISK YMMR WAN

L. Ly t L, L., t L, L., t L, L., t
R=1,W=1 | 0.66 | 0.66 | 1.85 | 0.66 | 1099 | 455 | 5.58 10.83 | 1364.0 34 55.12 | 113.0
R=1,W=2 | 0.66 | 1.63 | 1.79 | 0.65 | 2097 | 43.3 | 5.61 427.12 | 1352.0 3.4 167.64 0
R=2,W=1 163 | 065 | 0 |163 | 109 | 13.6 | 32.6 10.73 202.0 | 1513 | 56.36 | 30.2
R=2,W=2 162 | 1.64 | 0 1.64 | 20.96 0 33.18 | 428.11 0 151.31 | 167.72 0
R=3,W=1 414 | 065 | 0 |4.12 | 10.89 0 | 219.27 | 10.79 0 153.86 | 55.19 0
R=1,W=3 | 065|409 | 0 |065 | 11265 | O 5.63 | 1870.86 0 344 | 241.55 0

