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{I consistency, 1 latency

contact more replicas,
read more recent data
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read less recent data



{I consistency, 1 latency

contact more replicas,
read more recent data

J consistency, 4} latency

contact fewer replicas,
read less recent data




eventual consistency

“if no new updates are
made to the object,
eventually all accesses
will return the last
updated value™

W.Vogels, CACM 2008



How
eventual’

How long do | have to wait”?




How
consistent!

What happens if | don’t wait?




PBS

no guarantees with

roblem: eventual consistency
solution: consistency prediction

measure latencies

technique: ' . waRS model
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N replicas/key
read: wait for R replies
write: wait for W acks
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Cassandra:
R=W=|, N=3
by default

(1+1 * 3)



"In the general case, we typically

use [Cassandra’s] consistency level
of [R=W=1], which provides

maximum performance. Nice!

--D.Williams,
“HBase vs Cassandra: why we moved”
February 2010

http://rial 01 .wordpress.com/2010/02/24/hbase-vs-cassan dra-why-we-move d/
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reddit's now running on Cassandra (biog.reddit.com)

submitted 1 year ago by ketralnis
261 comments share

sorted by: best v

you are viewing a single comment's thread.
view the rest of the comments —
[-] ketralnis [S] 13 points 1 year ago

We have a memcached (not memcachedb) in front of it which gives us the atomic
operations that we need, so it can take as long as it needs to replicate behind the scenes

If we didn't, we'd use CL-ONE reads/writes for most things except the operations that

needed to be atomic, where we'd do CL-QUORUM. But most of our data doesn't need
atomic reads/writes.

http://www.reddit.com/r/programming/comments/bcghi/reddits_now_running_on_cassandra/cOm3whé
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Voldemort @ LinkedIn

“very low latency and high availability™:
R=W=|, N=3
N=3 not required, “some consistency’:

R=W=[, N=2

Alex Feinberg, personal communication
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Anecdotally, EC

“worthwhile™ for
many kinds of data

How eventual?
How consistent!?

“eventual and consistent enough”



Can we do better?



Can we do better?
Probabilistically

Bounded Staleness

can't make promises
can give expectations




PBS is:

a way to quantify
latency-consistency
trade-offs

what’s the latency cost of consistency!?
what’s the consistency cost of latency!?



PBS is:

a way to quantify
latency-consistency
trade-offs

what’s the latency cost of consistency!?
what’s the consistency cost of latency!?

an “SLA” for consistency



How eventual’

t-visibility: probability p
of consistent reads after
after t seconds

(e.g.,99.9% of reads will be consistent after 10ms)



t-visibility depends on:
|) message delays

2) background version
exchange (anti-entropy)



t-visibility depends on:

|) message delays

anti-entropy:
only decreases staleness

comes in many flavors
hard to guarantee rate

Focus on message delays



focus on

steady state

with failures:
unavailable

or sloppy
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Coordinator once per replica  Replica T

m

(A)—
wait for W = «—

ack
responses

t seconds elapse

T response is

(R) > stale

wait for R _ _— (S) —if read arrives

before write
responses response



Solving WARS: hard

Monte Carlo methods: easier



To use WARS:
gather latency data

\2'4 A R S

53.2 10.3 15.3 9.6
44.5 8.2 22.4 1 4.2
101.1 1 1.3 19.8 6.7

run simulation

Monte Carlo, sampling



How eventual’

t-visibility:. consistent
reads with probabillity p
after after t seconds

key: WARS model
need: latencies



How
consistent!

What happens if | don’t wait?




Probability of reading later older than k
versions is exponentially reduced by k

Pr(reading latest write) = 99%
Pr(reading one of last two writes) = 99.9%
Pr(reading one of last three writes) = 99.99%



. Cassandra / CASSANDRA-4261
R [patch] Support consistency-latency prediction in nodetool

Log In

Details People

Type: #) New Feature Status: 4 Patch Available Assignee:

Priority: ¥ Major Resolution: Unresolved Reporter:

Affects Version/s: 1.2 Fix Version/s: None Vote (0)

Component/s: Tools

Labels: None Dates

D inti Created:
escription Updated:

Introduction

Cassandra supports a variety of replication configurations: ReplicationFactor is set per-
ColumnFamily and ConsistencylLevel is set per-request. Setting ConsistencyLevel to
QUORUM for reads and writes ensures strong consistency, but QUORUM is often slower than
ONE, TWO, or THREE. What should users choose?

This patch provides a latency-consistency analysis within nodetool. Users can accurately
predict Cassandra's behavior in their production environments without interfering with
performance.

https://issues.apache.org/jira/browse/ CASSANDRA-426 |



https://issues.apache.org/jira/browse/CASSANDRA-4261
https://issues.apache.org/jira/browse/CASSANDRA-4261

Cassandra cluster,
injected latencies:

WARS Simulation accuracy

t-staleness RMSE: 0.28%
latency N-RMSE: 0.48%



LinkedIn @8
| 50M+ users B

built and uses Voldemort

Yammer
| 00K+ companies ye

uses Riak

production latencies
fit gaussian mixtures
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LNKD-DISK

99.9% consistent reads:
R=2,W=]|

t=13.6 ms

Latency: 12.53 ms
100% consistent reads:
R=3,W=|
Latency: [5.0] ms

Latency is combined read and write latency at 99.9th percentile



16.5%
faster

N=3

LNKD-DISK

99.9% consistent reads:
R=2,W=|

t=13.6 ms

Latency: 12.53 ms
100% consistent reads:
R=3,W=|
Latency: [5.0] ms

Latency is combined read and write latency at 99.9th percentile



LNKD-DISK

99.9% consistent reads:
16.5% R=2,W=|

faster t=13.6 ms
Latency: 12.53 ms

| 00% consistent reads:
R=3,W=]|
N=3 Latency: [5.0] ms

worthwhile?

Latency is combined read and write latency at 99.9th percentile
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LNKD-SSD

99.9% consistent reads:
R=|,W=]|

t = 1.85 ms

Latency: .32 ms
100% consistent reads:
R=3,W=|
Latency: 4.20 ms

Latency is combined read and write latency at 99.9th percentile




LNKD-SSD

99.9% consistent reads:
R=[|, W=|

O
>9.57 t = 1.85 ms
faSteI” Latency: .32 ms

| 00% consistent reads:
R=3,W=]|
N=3 Latency: 4.20 ms

Latency is combined read and write latency at 99.9th percentile
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Coordinator once per replica Replica

write

SSDs reduce
\@\ variance
___——compared to
wait for W = «— ( A ) disks!

ack
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/ . .
wait for R __——— (S) if read arrives

before write
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YMMR

99.9% consistent reads:
R=1,W=]|

t = 202.0 ms

Latency: 43.3 ms
100% consistent reads:
R=3,W=|
Latency: 230.06 ms

Latency is combined read and write latency at 99.9th percentile



YMMR

99.9% consistent reads:
R=1,W=]|

o
81.1% ¢+ =202.0 ms
faster Latency: 43.3 ms

| 00% consistent reads:
R=3,W=]|
N=3 Latency: 230.06 ms

Latency is combined read and write latency at 99.9th percentile



PBS: Probablhstlca”y Bounded Staleness About Instructions Demo Questions Moreinfo Thanks

How Eventual is Eventual Consistency?

P(Consistency)
0.950
0.900
0.850
0.800
=0, Pr=0.755
o
0.0 5.0 10.0 15.0 20.0 25.0
Time After Commit (ms)
(Plot isn't monotonically increasing? Increase the accuracy.)
You have at least a 74.8 percent chance of reading the last written version 0 ms after it commits.
You have at least a 92.2 percent chance of reading the last written version 10 ms after it commits.
You have at least a 99.96 percent chance of reading the last written version 100 ms after it commits.
Replica Configuration Tolerable Staleness: 1 version
N: @ 3 Read Latency: Median 8.43 ms, 99.9th %ile 36.97 ms O
R: OJ Write Latency: Median 8.38 ms, 99.9th %ile 38.28 ms Accuracy: 2500 iterations/point
w: 0O @
Operation Latency: Exponentially Distributed CDFs
W: Write Request to Replica A: Replica Write Ack R: Read Request to Replica S: Replica Read Response
0.80 0.80 0.80 0.80
0.60 0.60 0.60 0.60
0.40 0.40 0.40 0.40
0.20 0.20 0.20 020
0.00 0.00 0.00 0.00
0 S5 10 15 20 25 30 0 S5 10 15 20 25 30 0 S5 10 15 20 25 30 0 S5 10 15 20 25 30

Latency (ms) Latency (ms) Latency (ms) Latency (ms)
A @D 0.100 A D 0.100 A D 0.100 A @D 0.100



Workflow

|. Tracing

2. Simulation
3.Tune N,R, W

4. Profit




. Cassandra / CASSANDRA-4261
R [patch] Support consistency-latency prediction in nodetool

Log In

Details People

Type: #) New Feature Status: 4 Patch Available Assignee:

Priority: ¥ Major Resolution: Unresolved Reporter:

Affects Version/s: 1.2 Fix Version/s: None Vote (0)

Component/s: Tools

Labels: None Dates

D inti Created:
escription Updated:

Introduction

Cassandra supports a variety of replication configurations: ReplicationFactor is set per-
ColumnFamily and ConsistencylLevel is set per-request. Setting ConsistencyLevel to
QUORUM for reads and writes ensures strong consistency, but QUORUM is often slower than
ONE, TWO, or THREE. What should users choose?

This patch provides a latency-consistency analysis within nodetool. Users can accurately
predict Cassandra's behavior in their production environments without interfering with
performance.

https://issues.apache.org/jira/browse/ CASSANDRA-426 |



https://issues.apache.org/jira/browse/CASSANDRA-4261
https://issues.apache.org/jira/browse/CASSANDRA-4261

ubuntu@ip-10-46-87-156:~/cassandra-pbs$ bin/nodetool -h ec2-23-2
0-168-89.compute-1.amazonaws.com predictconsistency 3 75 1

75ms after a given write, with maximum version staleness of k=1
N=3, R=1, W=1

Probability of consistent reads: 0.716500

Average read latency: 31.170300ms (99.900th %ile 193ms)

Average write latency: 42.873798ms (99.900th %ile 192ms)

N=3, R=1, W=2

Probability of consistent reads: 0.902400

Average read latency: 30.958000ms (99.900th %ile 189ms)
Average write latency: 106.877098ms (99.900th %ile 240ms)

N=3, R=1, W=3

Probability of consistent reads: 1.000000

Average read latency: 30.104000ms (99.900th %ile 192ms)
Average write latency: 171.652298ms (99.900th %ile 341ms)

N=3, R=2, W=1

Probability of consistent reads: 0.934200

Average read latency: 84.446602ms (99.900th %ile 231ms)
Average write latency: 42.800301ms (99.900th %ile 194ms)

N=3, R=2, W=2

Probability of consistent reads: 1.000000

Average read latency: 82.663902ms (99.900th %ile 238ms)
Average write latency: 106.141296ms (99.900th %ile 236ms)



PBS

no guarantees with

roblem: eventual consistency
solution: consistency prediction

measure latencies

technique: ' . waRS model



consistency

is a metric

to measure
to predict
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strong consistency

lower latency
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latency vs. consistency trade-offs

simple modeling with WARS

model staleness in time, versions



latency vs. consistency trade-offs
simple modeling with WARS
model staleness in time, versions

eventual consistency
often fast
often consistent

PBS helps explain when and why



latency vs. consistency trade-offs
simple modeling with WARS
model staleness in time, versions

eventual consistency
often fast
often consistent

PBS helps explain when and why

pbs.cs. berkeley edu/#demo



http://bailis.org/projects/pbs
http://bailis.org/projects/pbs

VLDB 2012 early print
tinyurl.com/pbsvidb

cassandra patch
tinyurl.com/pbspatch


http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-4.pdf

Extra Slides



Related VWork



Quorum System Theory

e.g., Probabilistic Quorums
K-quorums

Deterministic Staleness

e.g., TACT/conits
FRACS



Consistency Verification
e.g., Golab et al.

(PODC I 1),
Bermbach and Tai
(M4WSOC 'l 1)






staleness requires
either:

staleness-tolerant data structures

timelines, logs
cf. commutative data structures
logical monotonicity

asynchronous compensation code

detect violations after data is returned; see paper
write code to fix any errors

cf.“Building on Quicksand”
memories, guesses, apologies



asynchronous
compensation

minimize:

(compensation cost)x(# of expected anomalies)



Read only newer data’
(monotonic reads session guarantee)

# versions client’s read rate
tolerable = ——————
staleness global write rate

(for a given key)






Treat failures as
latency

Spl kes




How | o n g
do partitions last!



what time interval?

99.9% uptimelyr
= 8.76 hours downtime/yr

8.76 consecutive hours down
= bad 8-hour rolling average



what time interval?

99.9% uptimelyr
= 8.76 hours downtime/yr

8.76 consecutive hours down
= bad 8-hour rolling average

hide in tail of distribution OR
continuously evaluate SLA, adjust




—@— LNKD-DISK
1.0 ———
0.8 W=3
L i
L 0.6
O 0.4}
0.2
102 10-1 100

—&— LNKD-SSD 4 YMMR
—v— WAN

0
Write Latency (ms)

102




—&— LNKD-SSD 4 YMMR
—&— LNKD-DISK —%¥— WAN

1.0

0.8} R=3

LL i
a 0.6

O 0.4
0.2}

10-2 10"  10° 10" 102
Write Latency (ms)

N=3  (LNKD-SSD and LNKD-DISK identical for reads)

103



Probabilistic quorum

systems
N-VV )
(7

()

Dinconsistent =



How consistent?

K-Staleness: probability

p of reading one of last k
Versions



How consistent!
/| i <( i >>
)




How consistent!
/| i <( i >>
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<K,l>-staleness:
versions and time



<K,l>-staleness:
versions and time

approximation:
exponentiate

t-staleness by k



“strong”
consistency =
reads return the last

written value or newer

(defined w.r.t. real time,
when the read started)



N = 3 replicas

RI

J

-

\_

R2

~N

J

.

R3

Write to W, read from R replicas




N = 3 replicas

RI R?2 R3

Write to W, read from R replicas

quorum system:

Iﬁ‘::ﬁi‘ng;‘i {{[m] R2)(R3) }} R=W=3 replicas I
{immM N} e e




N = 3 replicas

RI R2 R3

Write to W, read from R replicas

quorum system:

Iﬁ‘::ﬁi‘ng;‘i {{[m] R2)(R3) }} R=W=3 replicas I
{immM N} e e

‘partial quorum

R ()XY} p—

may not intersect
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concurrent writes:
deterministically choose

N\ |

(“key”’ I ) (“I(ey”’ 2)

N

[Coordinator] R=2




Yo1le Latency (ms)

15,000 RPM SAS Disk
Average 4.85

95 15

99 25

Commodity SSD
Average 0.58

95 1

99 2

Table 1: LinkedIn Voldemort single-node production latencies.



%o01le Read Latency (ms) | Write Latency (ms)
Min 1.55 1.68
50 3.75 5.73
75 4.17 6.50
95 5.2 8.48
98 6.045 10.36
99 6.59 131.73
99.9 32.89 435.83
Max 2979.85 4465.28
Mean 9.23 8.62
Std. Deyv. 83.93 26.10
Mean Rate 718.18 gets/s 45.65 puts/s

Table 2: Yammer Riak N =3, R=2, W =2 production latencies.




W=A=R=S5:
91.22%: Pareto, x,, = .235,a = 10
LNKD=55D 8.78%: Exponential, A = 1.66
N-RMSE: .55%
W:
38%: Pareto, ,,, = 1.05, = 1.51
LNKD-DISK 62%: Exponential, A = .183
N-RMSE: .26%
A =R =5 :LNKD-SSD
W:
93.9%: Pareto, x,, = 3, = 3.35
6.1%: Exponential, A = .0028
N-RMSE: 1.84%
MR A=R=S5:
98.2%: Pareto, x,,, = 1.5, = 3.8
1.8%: Exponential, A = .0217
N-RMSE: .06%

Table 3: Distribution fits for production latency distributions
from LinkedIn (LNKD-*) and Yammer (YMMR).



LNKD-SSD LNKD-DISK YMMR WAN

L. Ly t L, L., t L, L., t L, L., t
R=1,W=1 | 0.66 | 0.66 | 1.85 | 0.66 | 1099 | 455 | 5.58 10.83 | 1364.0 34 55.12 | 113.0
R=1,W=2 | 0.66 | 1.63 | 1.79 | 0.65 | 2097 | 43.3 | 5.61 427.12 | 1352.0 3.4 167.64 0
R=2,W=1 163 | 065 | 0 |163 | 109 | 13.6 | 32.6 10.73 202.0 | 1513 | 56.36 | 30.2
R=2,W=2 162 | 1.64 | 0 1.64 | 20.96 0 33.18 | 428.11 0 151.31 | 167.72 0
R=3,W=1 414 | 065 | 0 |4.12 | 10.89 0 | 219.27 | 10.79 0 153.86 | 55.19 0
R=1,W=3 | 065|409 | 0 |065 | 11265 | O 5.63 | 1870.86 0 344 | 241.55 0




