BOLI-ON
CAUSAL

CONSISTENCY

er Bailis AlGhd

ph M. H llerstein, Ion Stoica
UCB rkeley

SLIDES FROM
SIGMOD 2013

PAPER AT

HTTP:/ /BAILIS.ORG /PAPERS /BOLTON-SIGMOD2013.PDF

PBAILIS@CS.BERKELEY.EDU

mailto:pbailis@cs.berkeley.edu
mailto:pbailis@cs.berkeley.edu

uly 2000:

July 2000:

Conjecture

A system facing nefwork partitions
must choose between either
availability or strong consistency

July 2000:
CAP

Theorem

A system facing nefwork partitions
must choose between either
availability or strong consistency

Strong consistency
is out!

“Partitions matter, and
s0 does low latency”

[cf. Abadi: PACELC]

...offer eventual
consistency instead

Eventual Consistency

Extremely weak consistency model:
eventually all replicas agree on the same value

Eventual Consistency

Extremely weak consistency model:
eventually all replicas agree on the same value

Any value can be returned at any given time
...as long as it's eventually the same everywhere

Eventual Consistency

Extremely weak consistency model:
eventually all replicas agree on the same value

Any value can be returned at any given time
...as long as it's eventually the same everywhere

Provides liveness but no safety guarantees

Liveness: something good eventually happens
Safety: nothing bad ever happens

Do we have to give up safety
if we want availability?

Do we have to give up safety
if we want availability?

Do we have to give up safety
if we want availability?

No! There’s a

spectrum of models.

Do we have to give up safety
if we want availability?

o! There’s a
spectrum of models.

Consistency, Availability, and Convergence

Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin
The University of Texas at Austin

Abstract

We examine the limits of consistency in highly available and fault-tolerant distributed storage sys-
tems. We introduce a new property—convergence—to explore the these limits in a useful manner. Like
consistency and availability, convergence formalizes a fundamental requirement of a storage system:
writes by one correct node must eventually become observable to other connected correct nodes. Using
convergence as our driving force, we make two additional contributions. First, we close the gap between
what is known to be impossible (i.e. the consistency, availability. and partition-tolerance theorem) and
known systems that are highly-available but that provide weaker consistency such as causal. Specifically,
in an asynchronous system, we show that natural causal consistency, a strengthening of causal consis-
tency that respects the real-time ordering of operations, provides a tight bound on consistency semantics
that can be enforced without compromising availability and convergence. In an asynchronous system
with Byzantine-failures, we show that it is impossible to implement many of the recently introduced
forking-based consistency semantics without sacrificing either availability or convergence. Finally, we
show that it is not necessary to compromise availability or convergence by showing that there exist
practically useful semantics that are enforceable by available. convergent, and Byzantine-fault tolerant
systems.

1 Introduction

This paper examines the limits of consistency in highly available and fault-tolerant distributed storage sys-
tems. The tradeoffs between consistency and availability [6, 24, 38] have been widely used in guiding system
design. The consistency, availability, partition-tolerance (CAP) theorem [24] is often cited as the reason why
systems designed for high availability, such as Dynamo [19] and Cassandra [13], choose to enforce the very
weak eventual consistency [56] semantics [13, 19, 56]. Conversely, the CAP theorem has guided designers

Do we have to give up safety
if we want availability?

o! There’s a
spectrum of models.

Consistency, Availability, and Convergence

Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin
The University of Texas at Austin

Abstract

We examine the limits of consistency in highly available and fault-tolerant distributed storage sys-
tems. We introduce a new property—convergence—to explore the these limits in a useful manner. Like
consistency and availability, convergence formalizes a fundamental requirement of a storage system:
writes by one correct node must eventually become observable to other connected correct nodes. Using
convergence as our driving force, we make two additional contributions. First, we close the gap between
what is known to be impossible (i.e. the consistency, availability. and partition-tolerance theorem) and
known systems that are highly-available but that provide weaker consistency such as causal. Specifically,
in an asynchronous system, we show that natural causal consistency, a strengthening of causal consis-
tency that respects the real-time ordering of operations, provides a tight bound on consistency semantics
that can be enforced without compromising availability and convergence. In an asynchronous system
with Byzantine-failures, we show that it is impossible to implement many of the recently introduced
forking-based consistency semantics without sacrificing either availability or convergence. Finally, we
show that it is not necessary to compromise availability or convergence by showing that there exist
practically useful semantics that are enforceable by available. convergent, and Byzantine-fault tolerant
systems.

1 Introduction

This paper examines the limits of consistency in highly available and fault-tolerant distributed storage sys-
tems. The tradeoffs between consistency and availability [6, 24, 38] have been widely used in guiding system
design. The consistency, availability, partition-tolerance (CAP) theorem [24] is often cited as the reason why
systems designed for high availability, such as Dynamo [19] and Cassandra [13], choose to enforce the very
weak eventual consistency [56] semantics [13, 19, 56]. Conversely, the CAP theorem has guided designers

UT Austin TR:
No model stronger

than Causal Consistency
is achievable with HA

ai.. AT&T M-Cell = 5 QO M

Home Tweet [~

In reply to (null)

Cliff Moon
@moonpolysoft

strlen really? I thought southbay

was all about office parks and strip
malls.

3 hours ago via web

Replies

ai.. AT&T M-Cell = 5 QO M

Home Tweet [~

In reply to (null)

Cliff Moon
@moonpolysoft

strlen really? I thought southbay

was all about office parks and strip
malls.

3 hours ago via web

- ®* 2

Replies

Why Causal Consistency?

Highly available, low latency operation
(UT Ausfin 2011 TR]

Long-identified useful “session” model

Natural fit for many modern apps
[Bayou Project, 1994-98]

Dilemma!

Eventual consistency is the
lowest common denominator across systems...

Dilemma!

Eventual consistency is the
lowest common denominator across systems...

...yet eventual consistency is often
insufficient for many applications...

Dilemma!

Eventual consistency is the
lowest common denominator across systems...

...yet eventual consistency is often
insufficient for many applications...

...and no production-ready storage systems
offer highly available causal consistency.

In this talk...

show how to upgrade existing
stores to provide HA causal consistency

In this talk...

show how to upgrade existing
stores to provide HA causal consistency

Approach: bolt on a narrow shim layer
to upgrade eventual consistency

In this talk...

show how to upgrade existing
stores to provide HA causal consistency

Approach: bolt on a narrow shim layer
to upgrade eventual consistency

Outcome: architecturally separate safety
and liveness properties

Separation of Concerns

Separation of Concerns

Shim handles:
Consistency/visibility

Separation of Concerns

e —

Shim handles: Conmstency-relat.ed ngety
— Mostly algorithmic

Small code base

Consistency/visibility

Separation of Concerns

—

Shim handles: Conmstency-relat.ed §afety
— Mostly algorithmic

Small code base

Consistency/visibility

Underlying store handles:
Messaging/propagation
Durability/persistence
Failure-detection/handling

Separation of Concerns

—

Shim handles: Conmstency-relat.ed §afety
— Mostly algorithmic

Small code base

Consistency/visibility

——

Underlying store handles:
Messaging/propagation lecle-n;ess fcmcl I.erllc.ahon
- : — Lofts of engineering
DU.I‘CII:)I|IT)// pe.r3|stence . Reuse existing efforts!
Failure-detection/handling

Separation of Concerns

—

Shim handles:
Consistency/visibility

——

Underlying store handles:
Messaging/propagation
Durability/persistence

—

>—

Failure-detection/handling

Consistency-related Safety

Mostly algorithmic
Small code base

Liveness and Replication
Lots of engineering
Reuse existing efforts!

Guarantee same (useful) semantics across systems!
Allows portability, modularity, comparisons

Bolt-on Architecture

Bolt-on shim layer upgrades the semantics
of an eventucu”y consistent data store

Clients only communicate with shim

Shim communicates with one of many different
eventually consistent stores (generic)

Bolt-on Architecture

Bolt-on shim layer upgrades the semantics
of an eventucu”y consistent data store

Clients only communicate with shim

Shim communicates with one of many different
eventually consistent stores (generic)

Treat EC store as “storage manager”

of distributed DBMS

Bolt-on Architecture

Bolt-on shim layer upgrades the semantics
of an eventuc:”y consistent data store

Clients only communicate with shim

Shim communicates with one of many different
eventually consistent stores (generic)

Treat EC store as “storage manager”
of distributed DBMS

for now, an extreme: unmodified EC store

| Eventually
I Consistent
| Data Store

put(k,v')-l
r=————-

: Eventually
ConS|stent
' Data Store

get (k) n

E—

Client Machine

client

client

client

lT put (k,v,a) lT get(k)lT

Shim

local

metadata | | store

Eventually
' Consistent
| Data Store

Client Machine

client

client

client

lT put (k,v,a) lT get(k)lT

Shim

local

metadata

' Consistent
' Data Store

|-Eventually

BOLT-ON CAUSAL CONSISTENCY

Client Machine
client | | client | | client

lT put (k,v,a) lT get(k)u

Shim
metadata

local

:-Eventually

' Consistent ’
| Data Store <

ai.. AT&T M-Cell = 5 QO M

Home Tweet [~

In reply to (null)

Cliff Moon
@moonpolysoft

strlen really? I thought southbay

was all about office parks and strip
malls.

3 hours ago via web

- ®* 2

Replies

What is Causal Consistency?

What is Causal Consistency?

What is Causal Consistency?

Time

What is Causal Consistency?

First
Tweet

Time

What is Causal Consistency?

First
Tweet

What is Causal Consistency?

First
Tweet

What is Causal Consistency?

First
Tweet

Reply
. .. to p
' Alex /

What is Causal Consistency?

Reply
. .. to p
' Alex /

What is Causal Consistency?

What is Causal Consistency?

Time

What is Causal Consistency?

Reads obey:

1.) Writes Follow Reads
(“happens-before”)

2.) Program order
3.) Transitivity

[Lamport 1978]

What is Causal Consistency?

Reads obey: Here, applications
1.) Writes Follow Reads explicifly define

happens-before

for each write

(“explicit causality”)

(“happens-before”)
2.) Program order
3.) Transitivity

[Lamport 1978] [Ladin et al. 1990,

cf. Bailis et al. 2012]

What is Causal Consistency?

Reads obey: Here, applications
1.) Writes Follow Reads explicifly define

happens-before

for each write

(“explicit causality”)

(“happens-before”)
2.) Program order
3.) Transitivity

[Lamport 1978] [Ladin et al. 1990,

cf. Bailis et al. 2012]

First Reply
R T ceot to
| Alex

What is Causal Consistency?

Reads obey: Here, applications
1.) Writes Follow Reads explicifly define

happens-before

for each write

(“explicit causality”)

(“happens-before”)
2.) Program order
3.) Transitivity

[Lamport 1978] [Ladin et al. 1990,

cf. Bailis et al. 2012]

i First happens-before .Retplg
—
o
. _Tweet Aloy

’ Developers APl Health Blog Discussions Documentation Search

POST statuses/update

View What links here

Updated on Tue, 2012-11-20 08:24 API version 1.1

Updates the authenticating user's current status, also known as tweeting. To upload an image to accompany the tweet,
use POST statuses/update_with_media.

For each update attempt, the update text is compared with the authenticating user's recent tweets. Any attempt that
would result in duplication will be blocked, resulting in a 403 error. Therefore, a user cannot submit the same status twice

in arow.

in_reply_to_status_id The ID of an existing status that the update is in reply to.

optional
Note:: This parameter will be ignored unless the author of the tweet this parameter

references is mentioned within the status text. Therefore, you must include
@username, where username is the author of the referenced tweet, within the

update.

Reply
to
Alex

First happens-before
—
Tweet

https://dev.twitter.com/docs/api/l. | /post/statuses/update

https://dev.twitter.com/docs/api/1.1/post/statuses/update
https://dev.twitter.com/docs/api/1.1/post/statuses/update

L 4 Developers APl Health Blog Discussions Documentation Search

POST statuses/update

View What links here

Updated on Tue, 2012-11-20 08:24 API version 1.1

Updates the authenticating user's current status, also known as tweeting. To upload an image to accompany the tweet,
use POST statuses/update_with_media.

For each update attempt, the update text is compared with the authenticating user's recent tweets. Any attempt that
would result in duplication will be blocked, resulting in a 403 error. Therefore, a user cannot submit the same status twice

in arow.

in_reply_to_status_id The ID of an existing status that the update is in reply to.
optional

Note:: This parameter will be ignored unless the author of the tweet this parameter
references is mentioned within the status text. Therefore, you must include
happen s-before @username, where username is the author of the referenced tweet, within the

update.

Reply
to
Alex

First happens-before
—
Tweet

https://dev.twitter.com/docs/api/l. | /post/statuses/update

https://dev.twitter.com/docs/api/1.1/post/statuses/update
https://dev.twitter.com/docs/api/1.1/post/statuses/update

By First _happens-before . Retplg
| > o
| .Tweet Alex

i) First _ happens-before . Retplg
: | O
' _Tweet Alex

i First _ happens-before . Retplg
- —
| O
.Tweet Alex

i) First _ happens-before . Retplg
' E O
.Tweet Alex

i) First _ happens-before . Retplg
| E O
- .Tweet Alex

) W) First _ happens-before .Retplg
- —
™ 0
.Tweet Alex

DC2

5 & First happens-before Reply
Tweet to

W) First _ happens-before . Retplg
| E O
- .Tweet Alex

BT First _ happens-before . Retplg
- —
| O
:.Tweet Alex

BT First _ happens-before . Retplg
- —
| O
:.Tweet Alex

BT First _ happens-before . Retplg
- —
| O
:.Tweet Alex

) W) First _ happens-before . Retplg
- —
| O
i Alex

Two Tasks:

Two Tasks:

1.) Representing Order

How do we efficiently store
causal ordering in the EC system?

Two Tasks:

1.) Representing Order

How do we efficiently store
causal ordering in the EC system?

2.) Controlling Order

How do we control the visibility
of new updates to the EC system?

Two Tasks:

1.) Representing Order

How do we efficiently store
causal ordering in the EC system?

2.) Controlling Order

How do we control the visibility
of new updates to the EC system?

Representing Order

Strawman: use vector clocks

[e.g., Bayou, Causal Memory]

Representing Order

Strawman: use vector clocks

[e.g., Bayou, Causal Memory]

First

Representing Order

Strawman: use vector clocks

[e.g., Bayou, Causal Memory]

First
Tweet

Problem? Given missing dependency
(from vector), what key should we check?

Representing Order

Strawman: use vector clocks

[e.g., Bayou, Causal Memory]

First

Problem? Given missing dependency
(from vector), what key should we check?

If | have <3,1>; where is <2,1>? <1,1>?
Write to same key?

Write to different key? Which?

Representing Order

Strawman: use dependency pointers

[e.g., Lazy Replication, COPS]

Representing Order

Strawman: use dependency pointers

[e.g., Lazy Replication, COPS]

First A @ timestamp 1092,
Tweet dependencies = {}

Representing Order

Strawman: use dependency pointers

[e.g., Lazy Replication, COPS]

First A @ timestamp 1092,
Tweet dependencies = {}

Reply-to B@ timestamp 1109,
Alex dependencies={A@ 1092}

Representing Order

Strawman: use dependency pointers

[e.g., Lazy Replication, COPS]

First A @ timestamp 1092,
Tweet dependencies = {}

Reply-to B@ timestamp 1109,
Alex dependencies={A@ 1092}

Problem?

Representing Order

Strawman: use dependency pointers

[e.g., Lazy Replication, COPS]

First A @ timestamp 1092,

Tweet dependencies = {}
Reply-to B@ timestamp 1109,

Alex dependencies={A@ 1092}
Problem?

A@1—B@2—C@3

Representing Order

Strawman: use dependency pointers

[e.g., Lazy Replication, COPS]

First A @ timestamp 1092,

Tweet dependencies = {}
Reply-to B@ timestamp 1109,

Alex dependencies={A@ 1092}
Problem?
A@1—-B@2—C@3

A@1| |B@2| |C@3

Representing Order

Strawman: use dependency pointers

[e.g., Lazy Replication, COPS]

First A @ timestamp 1092,
Tweet dependencies = {}
Reply-to B@ timestamp 1109,
Alex dependencies={A@ 1092}
Problem?
A@1—-B@2—C@3
‘l' ~§‘

A@1| |B@2| |C@3

Representing Order

Strawman: use dependency pointers

[e.g., Lazy Replication, COPS]

First A @ timestamp 1092,
Tweet dependencies = {}
Reply-to B@ timestamp 1109,
Alex dependencies={A@ 1092}
Problem?
A@1—-B@2—C@3
Rl o R

Representing Order

Strawman: use dependency pointers

[e.g., Lazy Replication, COPS]

First A @ timestamp 1092,
Tweet dependencies = {}
Reply-to B@ timestamp 1109,
Alex dependencies={A@ 1092}
Problem?
A@1—-B@2—C@3
Rl o R

Representing Order

Strawman: use dependency pointers

[e.g., Lazy Replication, COPS]

First A @ timestamp 1092,
Tweet dependencies = {}
Reply-to B@ timestamp 1109,
Alex dependencies={A@ 1092}
Problem?
A@1—-B@2—C@3
‘l' ~§‘

A@1| |B@7| |C@3

Representing Order

Strawman: use dependency pointers

[e.g., Lazy Replication, COPS]

First A @ timestamp 1092,
Tweet dependencies = {}

Reply-to B@ timestamp 1109,
Alex dependencies={A@ 1092}

Problem? single pointers can be overwritten!

A@1—B@2—C@3

N
- .~

A@1| |B@7| |C@3

Representing Order

Representing Order

Strawman: use vector clocks
don’t know what items to check

Representing Order

Strawman: use vector clocks
don’t know what items to check

Strawman: use dependency pointers
single pointers can be overwritten

“overwritten histories”

Representing Order

Strawman: use vector clocks
don’t know what items to check

Strawman: use dependency pointers
single pointers can be overwritten

“overwritten histories”

Strawman: use N? items for messaging

Representing Order

Strawman: use vector clocks
don’t know what items to check

Strawman: use dependency pointers
single pointers can be overwritten

“overwritten histories”

Strawman: use N? items for messaging
highly inefficient!

Representing Order

Solution: store metadata about causal cuts

Representing Order

Solution: store metadata about causal cuts

DEFINITION 1. A causal cut is a set of writes C such that V

writesw € |J c.deps, Iw' € C such that w' .key= w.key and w' -+ w
ceC

(equivalently, either w =w', w — W, orw || w).

Representing Order

Solution: store metadata about causal cuts

DEFINITION 1. A causal cut is a set of writes C such that V

writesw € |J c.deps, Iw' € C such that w' .key= w.key and w' -+ w
ceC

(equivalently, either w =w', w — W, orw || w).

short answer: consistent cut applied to data items; not
quite the transitive closure

Representing Order

Solution: store metadata about causal cuts

short answer: consistent cut applied to data items;
not quite the transitive closure

Representing Order

Solution: store metadata about causal cuts

short answer: consistent cut applied to data items;
not quite the transitive closure

A@1—B@2—C@3
Causal cut for C@3: {B@2, A@1}

Representing Order

Solution: store metadata about causal cuts

short answer: consistent cut applied to data items;
not quite the transitive closure

A@1—B@2—C@3
Causal cut for C@3: {B@2, A@1}

A@6—B@17—C@20
A@10—B@12-
Causal cut for C@20: {B@17, A@10}

Two Tasks:

1.) Representing Order

How do we efficiently store
causal ordering in the EC system?

Two Tasks:

1.) Representing Order

Shim stores causal cut summary
along with every key due to
overwrites and “unreliable” delivery

Two Tasks:

2.) Controlling Order

How do we control the visibility
of new updates to the EC system?

Controlling Order

Controlling Order

Standard technique: reveal new writes to readers
only when dependencies have been revealed

Inductively guarantee clients read from causal cut

Controlling Order

Standard technique: reveal new writes to readers
only when dependencies have been revealed

Inductively guarantee clients read from causal cut

In bolt-on causal consistency, two challenges:

Controlling Order

Standard technique: reveal new writes to readers
only when dependencies have been revealed

Inductively guarantee clients read from causal cut

In bolt-on causal consistency, two challenges:

Each shim has to check dependencies manually

Underlying store doesn’t notify clients of new writes

Controlling Order

Standard technique: reveal new writes to readers
only when dependencies have been revealed

Inductively guarantee clients read from causal cut

In bolt-on causal consistency, two challenges:

Each shim has to check dependencies manually

Underlying store doesn’t notify clients of new writes

EC store may overwrite “stable” cut

Clients need to cache relevant cut to prevent overwrites

Controlling Order

Standard technique: reveal new writes to readers
only when dependencies have been revealed

Inductively guarantee clients read from causal cut

In bolt-on causal consistency, two challenges:

Each shim has to check dependencies manually

Underlying store doesn’t notify clients of new writes

EC store may overwrite “stable” cut

Clients need to cache relevant cut to prevent overwrites

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

Each shim has to check dependencies manually

Each shim has to check dependencies manually

SHiM

Each shim has to check dependencies manually

SHIM

EC STORE

Each shim has to check dependencies manually

read(B) 8\

-~
/

SHIM

EC STORE

Each shim has to check dependencies manually

read(B) 8!

-
'
+
&

read(B) SHIM

EC STORE

Each shim has to check dependencies manually

read(B)
read(® SHIM

B@ 1109,
deps={A@1092}

|

EC STORE

Each shim has to check dependencies manually

read(B)
regd(B) read(A) SH IM

B@ 1109,
deps={A@1092}

|

EC STORE

Each shim has to check dependencies manually

read(B)
regd(B) read(A) SH IM

B@1109, A@ 1092,
deps- {A@ 1092} deps= {}

| .
EC STORE

Each shim has to check dependencies manually

read(B) A B@ 1109
regd(B) read(A) SH IM

B@1109, A@ 1092,
deps- {A@ 1092} deps= {}

| .
EC STORE

EC store may overwrite “stable” cut

read(B) !
B@® 1109
regd(B) read(A) SH IM

B@1109, A@ 1092,
deps- {A@ 1092} deps= {}

| .
EC STORE

EC store may overwrite “stable” cut

read(B)
read(5) GHIM

B@1109, A@ 1092,
deps- {A@ 1092} deps= {}

| |
EC STORE

EC store may overwrite “stable” cut

read(B) Cache this value for Al

EC store might overwrite it
with “unresolved” write

reg\d(B) SH IM

B@ 1109, A@ 1092,
deps- {A@1092} deps= {}

] |
EC STORE

Two Tasks:

1.) Representing Order

Shim stores causal cut summary
along with every key due to
overwrites and “unreliable” delivery

2.) Controlling Order

How do we control the visibility
of new updates to the EC system?

Two Tasks:

1.) Representing Order

Shim stores causal cut summary
along with every key due to
overwrites and “unreliable” delivery

2.) Controlling Order

Shim performs dependency checks
for client, caches dependencies

UPGRADED
CASSANDRA
10

CAUSAL
CONSISTENCY

UPGRADED
322 LINES JAVA FOR CORE SAFETY — CASSANDRA

CUSTOM SERIALIZATION
CLIENT-SIDE CACHING 10

Client Machine CAUSAL
client | [client | [client | CONS'STENCY

lT put(k,v,a) lT get(k)lT
Shi
redaa] |2 5

put (k,v') [get (k)

MEDIAN

DATASET CHAIN LENGTH

TWITTER /
FLICKR 3

METAFIL TER 0

TUAW 13

MEDIAN

DATASET CHAIN LENGTH

TWITTER /

FLICKR

3
METAFIL TER)
TUAW [

MEDIAN

DATASET | CHAINLENGTH
TWITTER /
FLICKR 3
METAFIL TER)
TUAW [
99TH PERGENTILE
WITTER 4
FLICKR 4.
METAFIL TER 1/0
TUAW 0/

MEDIAN

DATASET | CHAINLENGTH
TWITTER /
FLICKR 3
METAFIL TER)
TUAW [
99TH PERGENTILE
WITTER 4
FLICKR 4.
METAFIL TER 1/0
TUAW 0/

MEDIAN

DATASET | CHAINLENGTH | MESSAGE DEPTH
TWITTER / {
FLICKR 3 0
METAFIL TER) [
TUAW [0
99TH PERGENTILE
WITTER 4
FLICKR 4
METAFIL TER 1/0
TUAW 0/

MEDIAN

DATASET | CHAINLENGTH | MESSAGE DEPTH
TWITTER / {
FLICKR 3 0
METAFIL TER) ¢
TUAW [0
99TH PERGENTILE
WITTER 4
FLICKR 4
METAFIL TER 1/0
TUAW 0/

MEDIAN

DATASET | CHAINLENGTH | MESSAGE DEPTH

TWITTER / {
FLICKR 3 0
METAFIL TER) ¢
TUAW [0
99TH PERGENTILE

WITTER 4 230

FLICKR 4 100

METAFIL TER 1/0 6/(
TUAW 0/ 100

MEDIAN

DATASET | CHAINLENGTH | MESSAGE DEPTH

TWITTER / {
FLICKR 3 0
METAFIL TER) ¢
TUAW [0
99TH PERGENTILE

WITTER 4 230

FLICKR 4 100

METAFIL TER 1/0 6/(
TUAW 0/ 100

MEDIAN

DATASET | CHAINLENGTH | MESSAGEDEPTH | SERIALIZED SIZE (B)
TWITTER / 4 o9
FLICKR 3 0 2l
METAFIL TER) ¢ 0/0
TUAW [0 //0
99TH PERGENTILE
WITTER 4 230
FLICKR 4 100
METAFIL TER 1/0 6/(
TUAW 0/ 100

MEDIAN

DATASET | CHAINLENGTH | MESSAGEDEPTH | SERIALIZED SIZE (B)
TWITTER / 4 o9
FLICKR 3 0 2l
METAFIL TER) ¢ 0/0
TUAW [0 //0
99TH PERGENTILE
WITTER 4 230
FLICKR 4 100
METAFIL TER 1/0 6/(
TUAW 0/ 100

MEDIAN

DATASET | CHAINLENGTH | MESSAGEDEPTH | SERIALIZED SIZE (B)
TWITTER / . 169
FLICKR 3 0 2l
METAFILTER 0 8 oYk
TUAW 13 8 2/
99TH PERGENTILE
WITTER A 230 40/
HLICKR 4. 100 Xy,
METAFILTER 1/0 5/ 19375
TUAW 0/ 100 2433

MEDIAN

DATASET | CHAINLENGTH | MESSAGEDEPTH | SERIALIZED SIZE (B)
TWITTER / . 169
FLICKR 3 0 2l
METAFILTER 0 8 oYk
TUAW 13 8 2/
99TH PERGENTILE
WITTER A 230 40/
HLICKR 4. 100 Xy,
METAFILTER 1/0 5/ 19375
TUAW 0/ 100 2433

Most chains are small
Metadata often < 1KB
Power laws mean some chains are difficult

Strategy 1: Resolve dependencies at read time

Strategy 1: Resolve dependencies at read time

-+ - Flickr =¥ = Metafilter =—#&— TUAW
—fF— Twitter =—=— Eventual

Strategy 1: Resolve dependencies at read time

-4 = Flickr = = Metafilter —#&— TUAW
—B— Twitter =—©— Eventual

0 5 10 15 20 25

Average Latency (ms)

Throughput (Kops/s)

Strategy 1: Resolve dependencies at read time

=4 = Flickr =¥ - Metafilter =—#&— TUAW
—— Twitter =—©— Eventual

M)
E
>
=
Q9
©
-
)
(@)
& i
0 3 1 O 15 20 25
Throughput (Kops/s)

Often (but not always) within 40% of eventual
Long chains hurt throughput

Strategy 1: Resolve dependencies at read time

-4 = Flickr =¥ = Metafilter —#&— TUAW
—B— Twitter =—©— Eventual

»

E

>

s

9

Q]

-

)

(@)

& ;

j% O C _v:-—-z!:L"‘

0 S 10 15 20 25
Throughput (Kops/s)

Often (but not always) within 40% of eventual
Long chains hurt throughput

N.B. Locality in YCSB workload greatly helps read

performance; dependencies (or replacements) often cached
(used 100x default # keys, but still likely to have concurrent write in cache)

A thought...

Causal consistency trades visibility for safety

How far can we push this visibility?

What if we serve entirely from cache
and fetch new data asynchronously?

SHIM

EC STORE

What if we serve entirely from cache
and fetch new data asynchronously?

read(B)

SHIM

EC STORE

What if we serve entirely from cache
and fetch new data asynchronously?

read(B) 4
B
from cache

SHIM

EC STORE

What if we serve entirely from cache
and fetch new data asynchronously?

read(B) 4
B
from cache

read(B) SH IM

EC STORE

What if we serve entirely from cache
and fetch new data asynchronously?

read(B) 4
B
from cache

read(B) SH IM

B@ 1109,
deps-...

|

EC STORE

What if we serve entirely from cache
and fetch new data asynchronously?

read(B) 4
B
from cache

read(B) read(A) SH IM

B@ 1109,
deps-...

|

EC STORE

What if we serve entirely from cache
and fetch new data asynchronously?

read(B) 4
B
from cache

read(B) read(A) SH IM

B@ 1109, A@ 1092,
deps-.... deps= {}

]
EC STORE

What if we serve entirely from cache
and fetch new data asynchronously?

read(B) i
B

EC store
reads are
async

from cache

read(B) read(A)

B@ 1109,
deps-...

L

SHIM

A@1092,
deps={}

|
EC STORE

A thought...

Causal consistency trades visibility for safety

How far can we push this visibility?

What if we serve reads entirely from cache
and fetch new data asynchronously?

A thought...

Causal consistency trades visibility for safety

How far can we push this visibility?

What if we serve reads entirely from cache
and fetch new data asynchronously?

Continuous trade-off space between dependency
resolution depth and fast-path latency hit

Strategy 2: Fetch dependencies asynchronously

Strategy 2: Fetch dependencies asynchronously

-4 = Flickr = = Metafilter —#&— TUAW
—B— Twitter =—©— Eventual

Average Latency (ms)

0 5 10 15 20 25 30 35 40
Throughput (Kops/s)

Strategy 2: Fetch dependencies asynchronously

-4 = Flickr = = Metafilter —#&— TUAW
—B— Twitter =—©— Eventual

Average Latency (ms)

0 5 10 15 20 25 30 35 40
Throughput (Kops/s)

Throughput exceeds eventual configuration
Still causally consistent, more stale reads

— — —
o o o
o (o)) (o))

Throughput (ops/s)

—
o
w

== Async Reads
© Sync Reads

0 20 40 60 80 100
Proportion Reads (%)

== Async Reads
© Sync Reads

0 20 40 60 80 100
Proportion Reads (%)

Reading from cache is fast; linear speedup

)
—a
o

(o))

%
E_ =+ Async Reads
° 05 © SyncReads
S .

Q

S 104}

S .

O

I

= 108

0 20 40 60 80 100
Proportion Reads (%)

Reading from cache is fast; linear speedup
...but not reading most recent data...
..in this case, effectively a straw-man.

Lessons

Causal consistency is achievable without
modifications to existing stores

represent and control ordering between updates
EC is “orderless” until convergence

trade-off between visibility and ordering

Lessons

Causal consistency is achievable without
modifications to existing stores

represent and control ordering between updates
EC is “orderless” until convergence

trade-off between visibility and ordering

works well for workloads with small causal
histories, good temporal locality

Rethinking the EC API

Uncontrolled overwrites increased metadata
and local storage requirements

Clients had to check causal dependencies
independently, with no aid from EC store

Rethinking the EC API

What if we eliminated overwrites?

via multi-versioning,
conditional updates
or immutability

Rethinking the EC API

What if we eliminated overwrites?

via multi-versioning,
conditional updates
or immutability

No more overwritten histories
Decrease metadata
Still have to check for dependency arrivals

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

put(. after! converges)

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

il converges)

pul(& ofter

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

il converges)

pul(& ofter!

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

Wait to place writes in shared EC store until
dependencies have converged

No need for metadata
No need for additional checks
Ensure durability with client-local EC storage

Reduces Metadata

No Dependency
Checks

Multi-versioning or
Conditional Update

Reduces Metadata

YES

No Dependency
Checks

NO

Multi-versioning or
Conditional Update

Stable Callback

Reduces Metadata

YES

YES

No Dependency
Checks

NO

YES

Multi-versioning or
Conditional Update

Stable Callback

Reduces Metadata YES YES
No Dependency NO YES
Checks
...not (yet) common to all stores
Data Store Multi-versioning or Stable Callback
Conditional Update
Amazon DynamoDB YES NO
Amazon S3 NO NO
Amazon SimpleDB YES NO
Amazon Dynamo YES NO
Cloudant Data Layer YES NO
Google App Engine YES NO
Apache Cassandra NO NO
Apache CouchDB YES NO
Basho Riak YES NO
LinkedIn Voldemort YES NO
MongoDB YES NO
Yahoo! PNUTS YES NO

Rethinking the EC API

Our extreme approach (unmodified EC store)
definitely impeded efficiency (but is portable)

Opportunities to better define surgical
improvements to API for future stores/shims!

Bolt-on Causal Consistency

Modular, “bolt-on” architecture cleanly separates
safety and liveness

upgraded EC (all liveness) to causal consistency,
preserving HA, low latency, liveness

Challenges: overwrites, managing causal order

Bolt-on Causal Consistency

Modular, “bolt-on” architecture cleanly separates
safety and liveness

upgraded EC (all liveness) to causal consistency,
preserving HA, low latency, liveness

Challenges: overwrites, managing causal order

large design space:

took an extreme here, but:
room for exploration in EC AP
bolt-on transactions?

(Some) Related Work

S3 DB [SIGMOD 2008]: foundational prior work building on EC stores,

not causally consistent, not HA (e.g., RYW implementation), AWS-
dependent (e.g., assumes queues)

28msec architecture [SIGMOD Record 2009]: like SIGMOD 2008, treat

EC stores as cheap storage

Cloudy [VLDB 2010]: layered approach to data management,
partitioning, load balancing, messaging in middleware; larger focus:
extensible query model, storage format, routing, etc.

G-Store [SoCC 2010]: provide client and middleware implementation of
entity-grouped linearizable transaction support

Bermbach et al. middleware [IC2E 2013]: provides read-your-writes
guarantees with caching

Causal Consistency: Bayou [SOSP 1997], Lazy Replication [TOCS 1992],
COPS [SOSP 2011], Eiger [NSDI 2013], ChainReaction [EuroSys 2013],

Swift [INRIA] are all custom solutions for causal memory [Ga Tech 1993]

(inspired by Lamport [CACM 1978])

