
Causal
Consistency
Peter Bailis, Ali Ghodsi,
Joseph M. Hellerstein, Ion Stoica
UC Berkeley

Bolt on

Slides from
Sigmod 2013
paper at
http://bailis.org/papers/bolton-sigmod2013.pdf

pbailis@cs.berkeley.edu

mailto:pbailis@cs.berkeley.edu
mailto:pbailis@cs.berkeley.edu

July 2000:

CAP
Conjecture

July 2000:

CAP
Conjecture

A system facing network partitions
must choose between either
availability or strong consistency

July 2000:

CAP
Conjecture

A system facing network partitions
must choose between either
availability or strong consistency

Theorem

NoSQL

NoSQL

NoSQL

NoSQL

NoSQL

NoSQL

Strong consistency
is out!
“Partitions matter, and
 so does low latency”

[cf. Abadi: PACELC]

...offer eventual
consistency instead

Eventual Consistency

eventually all replicas agree on the same value
Extremely weak consistency model:

Eventual Consistency

eventually all replicas agree on the same value
Extremely weak consistency model:

Any value can be returned at any given time
...as long as it’s eventually the same everywhere

Eventual Consistency

eventually all replicas agree on the same value
Extremely weak consistency model:

Any value can be returned at any given time
...as long as it’s eventually the same everywhere

Provides liveness but no safety guarantees
Liveness: something good eventually happens
Safety: nothing bad ever happens

Do we have to give up safety
if we want availability?

Do we have to give up safety
if we want availability?

?

Do we have to give up safety
if we want availability?

?No! There’s a
spectrum of models.

Do we have to give up safety
if we want availability?

?No! There’s a
spectrum of models.

Do we have to give up safety
if we want availability?

?No! There’s a
spectrum of models.

UT Austin TR:
No model stronger
than Causal Consistency
is achievable with HA

Why Causal Consistency?

Highly available, low latency operation

Long-identified useful “session” model
Natural fit for many modern apps

[Bayou Project, 1994-98]

[UT Austin 2011 TR]

Dilemma!
Eventual consistency is the
lowest common denominator across systems...

Dilemma!
Eventual consistency is the
lowest common denominator across systems...

...yet eventual consistency is often
insufficient for many applications...

Dilemma!
Eventual consistency is the
lowest common denominator across systems...

...and no production-ready storage systems
offer highly available causal consistency.

...yet eventual consistency is often
insufficient for many applications...

In this talk...

show how to upgrade existing
stores to provide HA causal consistency

In this talk...

show how to upgrade existing
stores to provide HA causal consistency

Approach: bolt on a narrow shim layer
 to upgrade eventual consistency

In this talk...

show how to upgrade existing
stores to provide HA causal consistency

Approach: bolt on a narrow shim layer
 to upgrade eventual consistency

Outcome: architecturally separate safety
 and liveness properties

Separation of Concerns

Separation of Concerns

Shim handles:
Consistency/visibility

Consistency-related Safety
Mostly algorithmic
Small code base

Separation of Concerns

Shim handles:
Consistency/visibility

Consistency-related Safety
Mostly algorithmic
Small code base

Separation of Concerns

Shim handles:
Consistency/visibility

Underlying store handles:
Messaging/propagation
Durability/persistence
Failure-detection/handling

Consistency-related Safety
Mostly algorithmic
Small code base

Separation of Concerns

Shim handles:
Consistency/visibility

Liveness and Replication
Lots of engineering

Reuse existing efforts!

Underlying store handles:
Messaging/propagation
Durability/persistence
Failure-detection/handling

Consistency-related Safety
Mostly algorithmic
Small code base

Separation of Concerns

Shim handles:
Consistency/visibility

Liveness and Replication
Lots of engineering

Reuse existing efforts!

Underlying store handles:
Messaging/propagation
Durability/persistence
Failure-detection/handling

Guarantee same (useful) semantics across systems!
Allows portability, modularity, comparisons

Bolt-on Architecture
Bolt-on shim layer upgrades the semantics
of an eventually consistent data store

Clients only communicate with shim

Shim communicates with one of many different
eventually consistent stores (generic)

Bolt-on Architecture
Bolt-on shim layer upgrades the semantics
of an eventually consistent data store

Clients only communicate with shim

Shim communicates with one of many different
eventually consistent stores (generic)

Treat EC store as “storage manager”
of distributed DBMS

Bolt-on Architecture
Bolt-on shim layer upgrades the semantics
of an eventually consistent data store

Clients only communicate with shim

Shim communicates with one of many different
eventually consistent stores (generic)

Treat EC store as “storage manager”
of distributed DBMS

for now, an extreme: unmodified EC store

Bolt-on causal consistency

What is Causal Consistency?

What is Causal Consistency?

What is Causal Consistency?

Time

What is Causal Consistency?

Time

First
Tweet

What is Causal Consistency?

Time

First
Tweet

What is Causal Consistency?

Time

First
Tweet

Reply
to

Alex

What is Causal Consistency?

Time

First
Tweet

Reply
to

Alex

What is Causal Consistency?

Time

First
Tweet

Reply
to

Alex

What is Causal Consistency?

Time

First
Tweet

Reply
to

Alex

What is Causal Consistency?

Time

First
Tweet

Reply
to

Alex

What is Causal Consistency?

Reads obey:

1.) Writes Follow Reads
 (“happens-before”)
2.) Program order
3.) Transitivity

[Lamport 1978]

What is Causal Consistency?

Reads obey:

1.) Writes Follow Reads
 (“happens-before”)
2.) Program order
3.) Transitivity

[Lamport 1978]

Here, applications
explicitly define
happens-before
for each write
(“explicit causality”)

[Ladin et al. 1990,
cf. Bailis et al. 2012]

What is Causal Consistency?

Reads obey:

1.) Writes Follow Reads
 (“happens-before”)
2.) Program order
3.) Transitivity

[Lamport 1978]

Here, applications
explicitly define
happens-before
for each write
(“explicit causality”)

[Ladin et al. 1990,
cf. Bailis et al. 2012]

First
Tweet

Reply
to

Alex

What is Causal Consistency?

Reads obey:

1.) Writes Follow Reads
 (“happens-before”)
2.) Program order
3.) Transitivity

[Lamport 1978]

Here, applications
explicitly define
happens-before
for each write
(“explicit causality”)

[Ladin et al. 1990,
cf. Bailis et al. 2012]

First
Tweet

Reply
to

Alex

happens-before

First
Tweet

Reply
to

Alex

happens-before

https://dev.twitter.com/docs/api/1.1/post/statuses/update

https://dev.twitter.com/docs/api/1.1/post/statuses/update
https://dev.twitter.com/docs/api/1.1/post/statuses/update

First
Tweet

Reply
to

Alex

happens-before

happens-before

https://dev.twitter.com/docs/api/1.1/post/statuses/update

https://dev.twitter.com/docs/api/1.1/post/statuses/update
https://dev.twitter.com/docs/api/1.1/post/statuses/update

DC1 DC2

First
Tweet

Reply
to

Alex

happens-before

DC1 DC2

First
Tweet

Reply
to

Alex

happens-before

DC1 DC2

First
Tweet

Reply
to

Alex

happens-before

DC1 DC2

First
Tweet

Reply
to

Alex

happens-before

DC1 DC2

First
Tweet

Reply
to

Alex

happens-before

DC1 DC2

First
Tweet

Reply
to

Alex

happens-before

DC1 DC2

First
Tweet

Reply
to

Alex

happens-before

DC1 DC2

First
Tweet

Reply
to

Alex

happens-before

DC1 DC2

First
Tweet

Reply
to

Alex

happens-before

DC1 DC2

First
Tweet

Reply
to

Alex

happens-before

DC1 DC2

First
Tweet

Reply
to

Alex

happens-before

DC1 DC2

First
Tweet

Reply
to

Alex

happens-before

DC1 DC2

1.) Representing Order

Two Tasks:

How do we efficiently store
causal ordering in the EC system?

2.) Controlling Order
How do we control the visibility
of new updates to the EC system?

1.) Representing Order

Two Tasks:

How do we efficiently store
causal ordering in the EC system?

2.) Controlling Order
How do we control the visibility
of new updates to the EC system?

1.) Representing Order

Two Tasks:

How do we efficiently store
causal ordering in the EC system?

2.) Controlling Order
How do we control the visibility
of new updates to the EC system?

1.) Representing Order

Two Tasks:

How do we efficiently store
causal ordering in the EC system?

2.) Controlling Order
How do we control the visibility
of new updates to the EC system?

Strawman: use vector clocks
Representing Order

[e.g., Bayou, Causal Memory]

Strawman: use vector clocks
Representing Order

First
Tweet :0{ }:1,

:1{ }:1,Reply-to
Alex

[e.g., Bayou, Causal Memory]

Strawman: use vector clocks
Representing Order

First
Tweet :0{ }:1,

:1{ }:1,Reply-to
Alex

Problem? Given missing dependency
(from vector), what key should we check?

[e.g., Bayou, Causal Memory]

Strawman: use vector clocks
Representing Order

First
Tweet :0{ }:1,

:1{ }:1,Reply-to
Alex

Problem? Given missing dependency
(from vector), what key should we check?

If I have <3,1>; where is <2,1>? <1,1>?
Write to same key?
Write to different key? Which?

[e.g., Bayou, Causal Memory]

Strawman: use dependency pointers
Representing Order

[e.g., Lazy Replication, COPS]

Strawman: use dependency pointers

First
Tweet

A @ timestamp 1092,
dependencies = {}

Representing Order

[e.g., Lazy Replication, COPS]

Strawman: use dependency pointers

First
Tweet

A @ timestamp 1092,
dependencies = {}

Reply-to
Alex

B @ timestamp 1109,
dependencies={A@1092}

Representing Order

[e.g., Lazy Replication, COPS]

Strawman: use dependency pointers

Problem?

First
Tweet

A @ timestamp 1092,
dependencies = {}

Reply-to
Alex

B @ timestamp 1109,
dependencies={A@1092}

Representing Order

[e.g., Lazy Replication, COPS]

Strawman: use dependency pointers

Problem?

First
Tweet

A @ timestamp 1092,
dependencies = {}

Reply-to
Alex

B @ timestamp 1109,
dependencies={A@1092}

Representing Order

A@1→B@2→C@3

[e.g., Lazy Replication, COPS]

C@3A@1

Strawman: use dependency pointers

Problem?

First
Tweet

A @ timestamp 1092,
dependencies = {}

Reply-to
Alex

B @ timestamp 1109,
dependencies={A@1092}

Representing Order

A@1→B@2→C@3

B@2

[e.g., Lazy Replication, COPS]

C@3A@1

Strawman: use dependency pointers

Problem?

First
Tweet

A @ timestamp 1092,
dependencies = {}

Reply-to
Alex

B @ timestamp 1109,
dependencies={A@1092}

Representing Order

A@1→B@2→C@3

B@2

[e.g., Lazy Replication, COPS]

C@3A@1

Strawman: use dependency pointers

Problem?

First
Tweet

A @ timestamp 1092,
dependencies = {}

Reply-to
Alex

B @ timestamp 1109,
dependencies={A@1092}

Representing Order

A@1→B@2→C@3

B@2

[e.g., Lazy Replication, COPS]

C@3A@1

Strawman: use dependency pointers

Problem?

First
Tweet

A @ timestamp 1092,
dependencies = {}

Reply-to
Alex

B @ timestamp 1109,
dependencies={A@1092}

Representing Order

A@1→B@2→C@3

B@7

[e.g., Lazy Replication, COPS]

C@3A@1

Strawman: use dependency pointers

Problem?

First
Tweet

A @ timestamp 1092,
dependencies = {}

Reply-to
Alex

B @ timestamp 1109,
dependencies={A@1092}

Representing Order

A@1→B@2→C@3

B@7

[e.g., Lazy Replication, COPS]

C@3A@1

Strawman: use dependency pointers

Problem?

First
Tweet

A @ timestamp 1092,
dependencies = {}

Reply-to
Alex

B @ timestamp 1109,
dependencies={A@1092}

Representing Order

A@1→B@2→C@3

B@7

single pointers can be overwritten!

[e.g., Lazy Replication, COPS]

Representing Order

Representing Order

Strawman: use vector clocks
don’t know what items to check

Strawman: use dependency pointers

Representing Order

single pointers can be overwritten
“overwritten histories”

Strawman: use vector clocks
don’t know what items to check

Strawman: use dependency pointers

Representing Order

single pointers can be overwritten
“overwritten histories”

Strawman: use vector clocks
don’t know what items to check

Strawman: use N2 items for messaging

Strawman: use dependency pointers

Representing Order

single pointers can be overwritten
“overwritten histories”

Strawman: use vector clocks
don’t know what items to check

Strawman: use N2 items for messaging
highly inefficient!

Representing Order

Solution: store metadata about causal cuts

Representing Order

Solution: store metadata about causal cuts

Representing Order

Solution: store metadata about causal cuts

short answer: consistent cut applied to data items; not
quite the transitive closure

short answer: consistent cut applied to data items;
not quite the transitive closure

Representing Order

Solution: store metadata about causal cuts

short answer: consistent cut applied to data items;
not quite the transitive closure

Representing Order

Solution: store metadata about causal cuts

A@1→B@2→C@3
Causal cut for C@3: {B@2, A@1}

short answer: consistent cut applied to data items;
not quite the transitive closure

Representing Order

Solution: store metadata about causal cuts

A@1→B@2→C@3
Causal cut for C@3: {B@2, A@1}

A@6→B@17→C@20
A@10→B@12

Causal cut for C@20: {B@17, A@10}

Two Tasks:

1.) Representing Order
How do we efficiently store
causal ordering in the EC system?

2.) Controlling Order
How do we control the visibility
of new updates to the EC system?

Two Tasks:

1.) Representing Order

2.) Controlling Order
How do we control the visibility
of new updates to the EC system?

Shim stores causal cut summary
along with every key due to
overwrites and “unreliable” delivery

Two Tasks:

1.) Representing Order

2.) Controlling Order
How do we control the visibility
of new updates to the EC system?

Shim stores causal cut summary
along with every key due to
overwrites and “unreliable” delivery

Controlling Order

Controlling Order
Standard technique: reveal new writes to readers
only when dependencies have been revealed

Inductively guarantee clients read from causal cut

Controlling Order
Standard technique: reveal new writes to readers
only when dependencies have been revealed

Inductively guarantee clients read from causal cut

In bolt-on causal consistency, two challenges:

Controlling Order
Standard technique: reveal new writes to readers
only when dependencies have been revealed

Inductively guarantee clients read from causal cut

In bolt-on causal consistency, two challenges:

Each shim has to check dependencies manually
Underlying store doesn’t notify clients of new writes

Controlling Order
Standard technique: reveal new writes to readers
only when dependencies have been revealed

Inductively guarantee clients read from causal cut

In bolt-on causal consistency, two challenges:

Each shim has to check dependencies manually
Underlying store doesn’t notify clients of new writes

EC store may overwrite “stable” cut
Clients need to cache relevant cut to prevent overwrites

Controlling Order
Standard technique: reveal new writes to readers
only when dependencies have been revealed

Inductively guarantee clients read from causal cut

In bolt-on causal consistency, two challenges:

Each shim has to check dependencies manually
Underlying store doesn’t notify clients of new writes

EC store may overwrite “stable” cut
Clients need to cache relevant cut to prevent overwrites

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

SHIM

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

SHIM

EC Store

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

read(B)

SHIM

EC Store

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

read(B)

SHIM

EC Store

read(B)

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

read(B)

SHIM

EC Store

read(B)
B@1109,
deps={A@1092}

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

read(B)

SHIM

EC Store

read(B)
B@1109,
deps={A@1092}

read(A)

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

read(B)

SHIM

EC Store

read(B)
B@1109,
deps={A@1092}

read(A)
A@1092,
deps={}

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

read(B)

SHIM

EC Store

read(B)
B@1109,
deps={A@1092}

read(A)
A@1092,
deps={}

B@1109

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

read(B)

SHIM

EC Store

read(B)
B@1109,
deps={A@1092}

read(A)
A@1092,
deps={}

B@1109

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

read(B)

SHIM

EC Store

read(B)
B@1109,
deps={A@1092}

A@1092,
deps={}

Each shim has to check dependencies manually

EC store may overwrite “stable” cut

read(B)

SHIM

EC Store

read(B)
B@1109,
deps={A@1092}

A@1092,
deps={}

Cache this value for A!
EC store might overwrite it

with “unresolved” write

1.) Representing Order

Two Tasks:

2.) Controlling Order
How do we control the visibility
of new updates to the EC system?

Shim stores causal cut summary
along with every key due to
overwrites and “unreliable” delivery

1.) Representing Order

Two Tasks:

2.) Controlling Order
Shim performs dependency checks
for client, caches dependencies

Shim stores causal cut summary
along with every key due to
overwrites and “unreliable” delivery

UpgradeD
CASSANDRA

to
Causal

consistency

UpgradeD
CASSANDRA

to
Causal

consistency

322 lines Java for CORE Safety
Custom serialization
Client-side caching

Dataset Chain Length Message Depth Serialized Size (b)

Twitter 2 4 169

Flickr 3 5 201

Metafilter 6 18 525

TUAW 13 8 275

Median

Dataset Chain Length Message Depth Serialized Size (b)

Twitter 2 4 169

Flickr 3 5 201

Metafilter 6 18 525

TUAW 13 8 275

Median

Dataset Chain Length Message Depth Serialized Size (b)

Twitter 2 4 169

Flickr 3 5 201

Metafilter 6 18 525

TUAW 13 8 275

Median

Twitter 40 230 5407

Flickr 44 100 2447

Metafilter 170 870 19375

TUAW 62 100 2438

99th percentile

Dataset Chain Length Message Depth Serialized Size (b)

Twitter 2 4 169

Flickr 3 5 201

Metafilter 6 18 525

TUAW 13 8 275

Median

Twitter 40 230 5407

Flickr 44 100 2447

Metafilter 170 870 19375

TUAW 62 100 2438

99th percentile

Dataset Chain Length Message Depth Serialized Size (b)

Twitter 2 4 169

Flickr 3 5 201

Metafilter 6 18 525

TUAW 13 8 275

Median

Twitter 40 230 5407

Flickr 44 100 2447

Metafilter 170 870 19375

TUAW 62 100 2438

99th percentile

Dataset Chain Length Message Depth Serialized Size (b)

Twitter 2 4 169

Flickr 3 5 201

Metafilter 6 18 525

TUAW 13 8 275

Median

Twitter 40 230 5407

Flickr 44 100 2447

Metafilter 170 870 19375

TUAW 62 100 2438

99th percentile

Dataset Chain Length Message Depth Serialized Size (b)

Twitter 2 4 169

Flickr 3 5 201

Metafilter 6 18 525

TUAW 13 8 275

Median

Twitter 40 230 5407

Flickr 44 100 2447

Metafilter 170 870 19375

TUAW 62 100 2438

99th percentile

Dataset Chain Length Message Depth Serialized Size (b)

Twitter 2 4 169

Flickr 3 5 201

Metafilter 6 18 525

TUAW 13 8 275

Median

Twitter 40 230 5407

Flickr 44 100 2447

Metafilter 170 870 19375

TUAW 62 100 2438

99th percentile

Dataset Chain Length Message Depth Serialized Size (b)

Twitter 2 4 169

Flickr 3 5 201

Metafilter 6 18 525

TUAW 13 8 275

Median

Twitter 40 230 5407

Flickr 44 100 2447

Metafilter 170 870 19375

TUAW 62 100 2438

99th percentile

Dataset Chain Length Message Depth Serialized Size (b)

Twitter 2 4 169

Flickr 3 5 201

Metafilter 6 18 525

TUAW 13 8 275

Median

Twitter 40 230 5407

Flickr 44 100 2447

Metafilter 170 870 19375

TUAW 62 100 2438

99th percentile

Dataset Chain Length Message Depth Serialized Size (b)

Twitter 2 4 169

Flickr 3 5 201

Metafilter 6 18 525

TUAW 13 8 275

Median

Twitter 40 230 5407

Flickr 44 100 2447

Metafilter 170 870 19375

TUAW 62 100 2438

99th percentile

Dataset Chain Length Message Depth Serialized Size (b)

Twitter 2 4 169

Flickr 3 5 201

Metafilter 6 18 525

TUAW 13 8 275

Median

Twitter 40 230 5407

Flickr 44 100 2447

Metafilter 170 870 19375

TUAW 62 100 2438

99th percentile

Dataset Chain Length Message Depth Serialized Size (b)

Twitter 2 4 169

Flickr 3 5 201

Metafilter 6 18 525

TUAW 13 8 275

Median

Twitter 40 230 5407

Flickr 44 100 2447

Metafilter 170 870 19375

TUAW 62 100 2438

99th percentile

Most chains are small
Metadata often < 1KB

Power laws mean some chains are difficult

Strategy 1: Resolve dependencies at read time

Strategy 1: Resolve dependencies at read time

Strategy 1: Resolve dependencies at read time

Strategy 1: Resolve dependencies at read time

Often (but not always) within 40% of eventual
Long chains hurt throughput

Strategy 1: Resolve dependencies at read time

Often (but not always) within 40% of eventual
Long chains hurt throughput

N.B. Locality in YCSB workload greatly helps read
performance; dependencies (or replacements) often cached
(used 100x default # keys, but still likely to have concurrent write in cache)

A thought...

Causal consistency trades visibility for safety
How far can we push this visibility?

SHIM

EC Store

What if we serve entirely from cache
and fetch new data asynchronously?

read(B)

SHIM

EC Store

What if we serve entirely from cache
and fetch new data asynchronously?

read(B)

SHIM

EC Store

B
from cache

What if we serve entirely from cache
and fetch new data asynchronously?

read(B)

SHIM

EC Store

read(B)

B
from cache

What if we serve entirely from cache
and fetch new data asynchronously?

read(B)

SHIM

EC Store

read(B)
B@1109,
deps=...

B
from cache

What if we serve entirely from cache
and fetch new data asynchronously?

read(B)

SHIM

EC Store

read(B)
B@1109,
deps=...

read(A)

B
from cache

What if we serve entirely from cache
and fetch new data asynchronously?

read(B)

SHIM

EC Store

read(B)
B@1109,
deps=...

read(A)
A@1092,
deps={}

B
from cache

What if we serve entirely from cache
and fetch new data asynchronously?

read(B)

SHIM

EC Store

read(B)
B@1109,
deps=...

read(A)
A@1092,
deps={}

B
from cache

What if we serve entirely from cache
and fetch new data asynchronously?

EC store
reads are

async

A thought...

Causal consistency trades visibility for safety
How far can we push this visibility?

What if we serve reads entirely from cache
and fetch new data asynchronously?

A thought...

Causal consistency trades visibility for safety
How far can we push this visibility?

What if we serve reads entirely from cache
and fetch new data asynchronously?

Continuous trade-off space between dependency
resolution depth and fast-path latency hit

Strategy 2: Fetch dependencies asynchronously

Strategy 2: Fetch dependencies asynchronously

Throughput exceeds eventual configuration
Still causally consistent, more stale reads

Strategy 2: Fetch dependencies asynchronously

Sync Reads
Async Reads

Sync Reads
Async Reads

Reading from cache is fast; linear speedup

Sync Reads
Async Reads

Reading from cache is fast; linear speedup
...but not reading most recent data...
...in this case, effectively a straw-man.

Lessons
Causal consistency is achievable without
modifications to existing stores

represent and control ordering between updates
EC is “orderless” until convergence
trade-off between visibility and ordering

Lessons
Causal consistency is achievable without
modifications to existing stores

works well for workloads with small causal
histories, good temporal locality

represent and control ordering between updates
EC is “orderless” until convergence
trade-off between visibility and ordering

Rethinking the EC API

Uncontrolled overwrites increased metadata
and local storage requirements

Clients had to check causal dependencies
independently, with no aid from EC store

Rethinking the EC API

What if we eliminated overwrites?
via multi-versioning,
 conditional updates
 or immutability

Rethinking the EC API

What if we eliminated overwrites?
via multi-versioning,
 conditional updates
 or immutability

No more overwritten histories
Decrease metadata
Still have to check for dependency arrivals

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

put(after converges)

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

put(after converges)

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

put(after converges)

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

put(after converges)

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

put(after converges)

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

put(after converges)

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

put(after converges)

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

put(after converges)

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

put(after converges)

Rethinking the EC API

What if the EC store notified us when
dependencies converged (arrived everywhere)?

Wait to place writes in shared EC store until
dependencies have converged

No need for metadata
No need for additional checks
Ensure durability with client-local EC storage

Multi-versioning or
Conditional Update Stable Callback

Reduces Metadata YES YES
No Dependency

Checks NO YES

Multi-versioning or
Conditional Update Stable Callback

Reduces Metadata YES YES
No Dependency

Checks NO YES

Multi-versioning or
Conditional Update Stable Callback

Reduces Metadata YES YES
No Dependency

Checks NO YES

Multi-versioning or
Conditional Update Stable Callback

Reduces Metadata YES YES
No Dependency

Checks NO YES

Data Store Multi-versioning or
Conditional Update

Stable Callback

Amazon DynamoDB YES NO
Amazon S3 NO NO

Amazon SimpleDB YES NO
Amazon Dynamo YES NO

Cloudant Data Layer YES NO
Google App Engine YES NO
Apache Cassandra NO NO
Apache CouchDB YES NO

Basho Riak YES NO
LinkedIn Voldemort YES NO

MongoDB YES NO
Yahoo! PNUTS YES NO

...not (yet) common to all stores

Rethinking the EC API

Our extreme approach (unmodified EC store)
definitely impeded efficiency (but is portable)

Opportunities to better define surgical
improvements to API for future stores/shims!

Bolt-on Causal Consistency

Modular, “bolt-on” architecture cleanly separates
safety and liveness

upgraded EC (all liveness) to causal consistency,
preserving HA, low latency, liveness

Challenges: overwrites, managing causal order

Bolt-on Causal Consistency

Modular, “bolt-on” architecture cleanly separates
safety and liveness

upgraded EC (all liveness) to causal consistency,
preserving HA, low latency, liveness

Challenges: overwrites, managing causal order

large design space:
took an extreme here, but:

room for exploration in EC API
bolt-on transactions?

(Some) Related Work
• S3 DB [SIGMOD 2008]: foundational prior work building on EC stores,

not causally consistent, not HA (e.g., RYW implementation), AWS-
dependent (e.g., assumes queues)

• 28msec architecture [SIGMOD Record 2009]: like SIGMOD 2008, treat
EC stores as cheap storage

• Cloudy [VLDB 2010]: layered approach to data management,
partitioning, load balancing, messaging in middleware; larger focus:
extensible query model, storage format, routing, etc.

• G-Store [SoCC 2010]: provide client and middleware implementation of
entity-grouped linearizable transaction support

• Bermbach et al. middleware [IC2E 2013]: provides read-your-writes
guarantees with caching

• Causal Consistency: Bayou [SOSP 1997], Lazy Replication [TOCS 1992],
COPS [SOSP 2011], Eiger [NSDI 2013], ChainReaction [EuroSys 2013],
Swift [INRIA] are all custom solutions for causal memory [Ga Tech 1993]
(inspired by Lamport [CACM 1978])

