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Strong consistency
is out!
“Partitions matter, and
 so does low latency”

[cf. Abadi: PACELC]

...offer eventual
consistency instead
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eventually all replicas agree on the same value
Extremely weak consistency model:

Any value can be returned at any given time
...as long as it’s eventually the same everywhere

Provides liveness but no safety guarantees
Liveness:  something good eventually happens
Safety:  nothing bad ever happens
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Do we have to give up safety 
if we want availability?

?No! There’s a
spectrum of models.

UT Austin TR:
No model stronger
than Causal Consistency
is achievable with HA







Why Causal Consistency?

Highly available, low latency operation

Long-identified useful “session” model
Natural fit for many modern apps

[Bayou Project, 1994-98]

[UT Austin 2011 TR]
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...and no production-ready storage systems
offer highly available causal consistency.

...yet eventual consistency is often
insufficient for many applications...
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In this talk...

show how to upgrade existing
stores to provide HA causal consistency

Approach: bolt on a narrow shim layer
                to upgrade eventual consistency

Outcome:  architecturally separate safety 
                and liveness properties
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Consistency-related Safety
Mostly algorithmic
Small code base

Separation of Concerns

Shim handles:
Consistency/visibility

Liveness and Replication
Lots of engineering

Reuse existing efforts!

Underlying store handles:
Messaging/propagation
Durability/persistence
Failure-detection/handling

Guarantee same (useful) semantics across systems!
Allows portability, modularity, comparisons
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Bolt-on Architecture
Bolt-on shim layer upgrades the semantics
of an eventually consistent data store

Clients only communicate with shim

Shim communicates with one of many different 
eventually consistent stores (generic)

Treat EC store as “storage manager”
of distributed DBMS

for now, an extreme: unmodified EC store
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Strawman: use vector clocks
Representing Order

First
Tweet :0{ }:1,

:1{ }:1,Reply-to
Alex

Problem? Given missing dependency
(from vector), what key should we check?

If I have <3,1>; where is <2,1>? <1,1>?
Write to same key?
Write to different key? Which?

[e.g., Bayou, Causal Memory]
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C@3A@1

Strawman: use dependency pointers

Problem?

First
Tweet

A @ timestamp 1092,
dependencies = {}

Reply-to
Alex

B @ timestamp 1109,
dependencies={A@1092}

Representing Order

A@1→B@2→C@3

B@7

single pointers can be overwritten!

[e.g., Lazy Replication, COPS]
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Strawman: use dependency pointers

Representing Order

single pointers can be overwritten
“overwritten histories”

Strawman: use vector clocks
don’t know what items to check

Strawman: use N2 items for messaging
highly inefficient!
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Representing Order

Solution: store metadata about causal cuts

A@1→B@2→C@3
Causal cut for C@3: {B@2, A@1}

A@6→B@17→C@20
A@10→B@12

Causal cut for C@20: {B@17, A@10}
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Each shim has to check dependencies manually

EC store may overwrite “stable” cut

read(B)

SHIM

EC Store

read(B)
B@1109,
deps={A@1092}

A@1092,
deps={}

Cache this value for A!
EC store might overwrite it

with “unresolved” write
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1.) Representing Order

Two Tasks:

2.) Controlling Order
Shim performs dependency checks
for client, caches dependencies

Shim stores causal cut summary
along with every key due to
overwrites and “unreliable” delivery
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322 lines Java for CORE Safety
Custom serialization
Client-side caching
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Dataset Chain Length Message Depth Serialized Size (b)

Twitter 2 4 169

Flickr 3 5 201

Metafilter 6 18 525

TUAW 13 8 275

Median

Twitter 40 230 5407

Flickr 44 100 2447

Metafilter 170 870 19375

TUAW 62 100 2438

99th percentile

Most chains are small
Metadata often < 1KB

Power laws mean some chains are difficult



Strategy 1: Resolve dependencies at read time



Strategy 1: Resolve dependencies at read time



Strategy 1: Resolve dependencies at read time



Strategy 1: Resolve dependencies at read time

Often (but not always) within 40% of eventual
Long chains hurt throughput



Strategy 1: Resolve dependencies at read time

Often (but not always) within 40% of eventual
Long chains hurt throughput

N.B. Locality in YCSB workload greatly helps read 
performance; dependencies (or replacements) often cached
(used 100x default # keys, but still likely to have concurrent write in cache)



A thought...

Causal consistency trades visibility for safety
How far can we push this visibility?



SHIM

EC Store

What if we serve entirely from cache
and fetch new data asynchronously?



read(B)

SHIM

EC Store

What if we serve entirely from cache
and fetch new data asynchronously?



read(B)

SHIM

EC Store

B
from cache

What if we serve entirely from cache
and fetch new data asynchronously?



read(B)

SHIM

EC Store

read(B)

B
from cache

What if we serve entirely from cache
and fetch new data asynchronously?



read(B)

SHIM

EC Store

read(B)
B@1109,
deps=...

B
from cache

What if we serve entirely from cache
and fetch new data asynchronously?



read(B)

SHIM

EC Store

read(B)
B@1109,
deps=...

read(A)

B
from cache

What if we serve entirely from cache
and fetch new data asynchronously?



read(B)

SHIM

EC Store

read(B)
B@1109,
deps=...

read(A)
A@1092,
deps={}

B
from cache

What if we serve entirely from cache
and fetch new data asynchronously?



read(B)

SHIM

EC Store

read(B)
B@1109,
deps=...

read(A)
A@1092,
deps={}

B
from cache

What if we serve entirely from cache
and fetch new data asynchronously?

EC store
reads are 

async



A thought...

Causal consistency trades visibility for safety
How far can we push this visibility?

What if we serve reads entirely from cache
and fetch new data asynchronously?



A thought...

Causal consistency trades visibility for safety
How far can we push this visibility?

What if we serve reads entirely from cache
and fetch new data asynchronously?

Continuous trade-off space between dependency 
resolution depth and fast-path latency hit
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Sync Reads
Async Reads

Reading from cache is fast; linear speedup
...but not reading most recent data...
...in this case, effectively a straw-man.
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Lessons
Causal consistency is achievable without 
modifications to existing stores

works well for workloads with small causal 
histories, good temporal locality

represent and control ordering between updates
EC is “orderless” until convergence
trade-off between visibility and ordering
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and local storage requirements

Clients had to check causal dependencies 
independently, with no aid from EC store
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Rethinking the EC API

What if we eliminated overwrites?
via multi-versioning,
     conditional updates
     or immutability

No more overwritten histories
Decrease metadata
Still have to check for dependency arrivals
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Rethinking the EC API

What if the EC store notified us when 
dependencies converged (arrived everywhere)?

Wait to place writes in shared EC store until
dependencies have converged

No need for metadata
No need for additional checks
Ensure durability with client-local EC storage
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Multi-versioning or
Conditional Update Stable Callback

Reduces Metadata YES YES
No Dependency

Checks NO YES

Data Store Multi-versioning or
Conditional Update

Stable Callback

Amazon DynamoDB YES NO
Amazon S3 NO NO

Amazon SimpleDB YES NO
Amazon Dynamo YES NO

Cloudant Data Layer YES NO
Google App Engine YES NO
Apache Cassandra NO NO
Apache CouchDB YES NO

Basho Riak YES NO
LinkedIn Voldemort YES NO

MongoDB YES NO
Yahoo! PNUTS YES NO

...not (yet) common to all stores



Rethinking the EC API

Our extreme approach (unmodified EC store)
definitely impeded efficiency (but is portable)

Opportunities to better define surgical 
improvements to API for future stores/shims!
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Bolt-on Causal Consistency

Modular, “bolt-on” architecture cleanly separates 
safety and liveness

upgraded EC (all liveness) to causal consistency,
preserving HA, low latency, liveness

Challenges: overwrites, managing causal order

large design space: 
took an extreme here, but: 

room for exploration in EC API
bolt-on transactions?



(Some) Related Work
• S3 DB [SIGMOD 2008]: foundational prior work building on EC stores, 

not causally consistent, not HA (e.g., RYW implementation), AWS-
dependent (e.g., assumes queues)

• 28msec architecture [SIGMOD Record 2009]: like SIGMOD 2008, treat 
EC stores as cheap storage

• Cloudy [VLDB 2010]: layered approach to data management, 
partitioning, load balancing, messaging in middleware; larger focus: 
extensible query model, storage format, routing, etc.

• G-Store [SoCC 2010]: provide client and middleware implementation of 
entity-grouped linearizable transaction support

• Bermbach et al. middleware [IC2E 2013]: provides read-your-writes 
guarantees with caching

• Causal Consistency: Bayou [SOSP 1997], Lazy Replication [TOCS 1992], 
COPS [SOSP 2011], Eiger [NSDI 2013], ChainReaction [EuroSys 2013], 
Swift [INRIA] are all custom solutions for causal memory [Ga Tech 1993] 
(inspired by Lamport [CACM 1978])


