
Sketching Linear Classifiers over Data Streams
Kai Sheng Tai, Vatsal Sharan, Peter Bailis, Gregory Valiant

Stanford University

ABSTRACT
We introduce a new sub-linear space sketch—the Weight-Median

Sketch—for learning compressed linear classifiers over data streams

while supporting the efficient recovery of large-magnitude weights

in the model. This enables memory-limited execution of several

statistical analyses over streams, including online feature selec-

tion, streaming data explanation, relative deltoid detection, and

streaming estimation of pointwise mutual information. Unlike re-

lated sketches that capture the most frequently-occurring features

(or items) in a data stream, the Weight-Median Sketch captures

the features that are most discriminative of one stream (or class)

compared to another. The Weight-Median Sketch adopts the core

data structure used in the Count-Sketch, but, instead of sketching

counts, it captures sketched gradient updates to the model param-

eters. We provide a theoretical analysis that establishes recovery

guarantees for batch and online learning, and demonstrate empiri-

cal improvements in memory-accuracy trade-offs over alternative

memory-budgeted methods, including count-based sketches and

feature hashing.

ACM Reference Format:
Kai Sheng Tai, Vatsal Sharan, Peter Bailis, Gregory Valiant. 2018. Sketching

Linear Classifiers over Data Streams. In SIGMOD’18: 2018 International
Conference on Management of Data, June 10–15, 2018, Houston, TX, USA.
ACM,NewYork, NY, USA, 17 pages. https://doi.org/10.1145/3183713.3196930

1 INTRODUCTION
With the rapid growth of streaming data volumes, memory-efficient

sketches are an increasingly-important tool in analytics tasks such

as finding frequent items [11, 16, 42, 53], estimating quantiles [27,

46], and approximating the number of distinct items [25]. Sketching

algorithms trade off between space utilization and approximation

accuracy, and are therefore well suited to settings where mem-

ory is scarce or where highly-accurate estimation is not essential.

For example, sketches are used in measuring traffic statistics on

resource-constrained network switch hardware [76] and in pro-

cessing approximate aggregate queries in sensor networks [13].

Moreover, even in commodity server environments where memory

is more plentiful, sketches are useful as a lightweight means to per-

form approximate analyses like identifying frequent search queries

or URLs within a broader stream processing pipeline [6].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00

https://doi.org/10.1145/3183713.3196930

(xt ,yt) ∇L̂t

“foo” 2.5

“bar” -1.9

“baz” 1.8

streaming

data

gradient

estimates

sketched

classifier

estimates of

largest weights

update

query

Figure 1: Overview of our approach, where online updates
are applied to a sketched (i.e., compressed) classifier from
which estimates of the largest weights can be retrieved.

Machine learning is applicable in many of the same resource-

constrained deployment scenarios as existing sketching algorithms.

With the widespread adoption of mobile devices, wearable elec-

tronics, and smart home appliances, there is increasing interest in

memory-constrained learning, where statistical models on these

devices are updated on-the-fly in response to locally-observed data

[37, 45, 50, 64]. These online updates allow ML-enabled systems

to adapt to individual users or local environments. For example,

language models on mobile devices can be personalized in order to

improve the accuracy of speech recognition systems [50], mobile

facial recognition systems can be updated based on user supervi-

sion [37], packet filters on network routers can be incrementally

improved [19, 69], and human activity classifiers can be tailored to

individual motion patterns for more accurate classification [45, 77].

Online learning in memory-constrained environments is partic-

ularly challenging in high-dimensional feature spaces. For example,

consider a spam classifier on text data that is continually updated

as new messages are observed and labeled as spam or not spam.

The memory cost of retaining n-gram features grows rapidly as

new token combinations are observed in the stream. In an experi-

ment involving an ∼80M token newswire dataset [12], we recorded

∼47M unique word pairs that co-occur within 5-word spans of text.

Disregarding the space required to store strings, maintaining inte-

ger vocabulary indexes and 32-bit floating point weights for each

of these features would require approximately 560MB of memory.

Thus, the memory footprint of classifiers over high-dimensional

streaming data can quickly exceed the memory constraints of many

deployment environments. Moreover, it is not sufficient to simply

apply existing sketches for identifying frequently-occurring fea-

tures, since the features that occur most often are not necessarily

the most discriminative.

In this work, we develop a new sketching algorithm that targets

ML applications in these memory-constrained settings. Building

on prior work on sketching for identifying frequent items, we

introduce theWeight-Median Sketch (WM-Sketch) for learning com-

pressed linear classifiers over data streams. Figure 1 illustrates the

high-level approach: we first allocate a fixed chunk of memory as

the sketch data structure, and as new examples are observed in the

stream, the weights stored in this structure are updated via gradi-

ent descent on a given loss function. In contrast to previous work

that employs the “hashing trick” to reduce the memory footprint

https://doi.org/10.1145/3183713.3196930
https://doi.org/10.1145/3183713.3196930

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tai et al.

of a classifier [62, 71], the WM-Sketch supports the approximate

recovery of the most heavily-weighted features in the classifier:

at any time, we can efficiently return a list of the top-K features

along with estimates of their weights in an uncompressed classifier

trained over the same sequence of examples.

The ability to retrieve heavily-weighted features from the WM-

Sketch confers several benefits. First, the sketch provides a classifier

with low memory footprint that retains a degree of model inter-
pretability. This is often practically important as understanding

which features are most influential in making predictions is rele-

vant to feature selection [78], model debugging, issues of fairness

in ML systems [14], and human perceptions of model trustworthi-

ness [57]. Second, the ability to retrieve heavily-weighted features

enables the execution of a range of analytics workloads that can

be formulated as classification problems over streaming data. In

this paper, we demonstrate the effectiveness of the WM-Sketch

in three such applications: (i) streaming data explanation [3, 52],

(ii) detecting large relative differences between data streams (i.e.,

detecting relative deltoids) [17] and (iii) streaming identification of

highly-correlated pairs of features via pointwise mutual informa-

tion [23]. The WM-Sketch is able to perform these analyses while

using far less memory than uncompressed classifiers.

The key intuition behind theWM-Sketch is that by randomly pro-

jecting the gradient updates to a linear classifier, we can incremen-

tally maintain a compressed version of the true, high-dimensional

model. By choosing this random projection appropriately, we can

support efficient approximate recovery of the model weights. In par-

ticular, the WM-Sketch maintains a Count-Sketch projection [11]

of the weight vector of the linear classifier. However, unlike Heavy

Hitters sketches that simply increment or decrement counters, the

WM-Sketch updates its state using online gradient descent [30].

Since these updates themselves depend on the current weight es-

timates, a careful analysis is needed to ensure that the estimated

weights do not diverge from the true (uncompressed) model param-

eters over the course of multiple online updates.

We analyze the WM-Sketch both theoretically and empirically.

Theoretically, we provide guarantees on the approximation error

of these weight estimates, showing that it is possible to accurately

recover large-magnitude weights using space sub-linear in the fea-

ture dimension. We describe an optimized variant, the Active-Set

Weight-Median Sketch (AWM-Sketch) that outperforms alterna-

tive memory-constrained algorithms in experiments on benchmark

datasets. For example, on the standard Reuters RCV1 binary classi-

fication benchmark, the AWM-Sketch recovers the most heavily-

weighted features in the model with 4× better approximation error

than a frequent-features baseline using the Space Saving algorithm

[53] and 10× better than a naïve weight truncation baseline, while

using the same amount of memory. Moreover, we demonstrate that

the additional interpretability of the AWM-Sketch does not come at

the cost of reduced classification accuracy: empirically, the AWM-

Sketch in fact improves on the classification accuracy of feature

hashing, which does not support weight recovery.

To summarize, we make the following contributions in this work:

• We introduce the Weight-Median Sketch, a new sketch for

learning linear classifiers over data streams that supports

approximate retrieval of the most heavily-weighted features.

• We provide a theoretical analysis that provides guarantees

on the accuracy of the WM-Sketch estimates. In particular,

we show that for feature dimension d and with success prob-

ability 1− δ , we can learn a compressed model of dimension

O
(
ϵ−4

log
3(d/δ)

)
that supports approximate recovery of the

optimal weight vector w∗, where the absolute error of each
weight is bounded above by ϵ ∥w∗∥1.
• We empirically demonstrate that the optimized AWM-Sketch

outperforms several alternativemethods in terms ofmemory-

accuracy trade-offs across a range of real-world datasets.

2 RELATEDWORK
Heavy Hitters in Data Streams. Given a sequence of items, the

heavy hitters problem is to return the set of all items whose fre-

quency exceeds a specified fraction of the total number of items.

Algorithms for finding frequent items include counter-based ap-

proaches [21, 38, 48, 53], quantile algorithms [27, 63], and sketch-

based methods [11, 16]. Mirylenka et al. [55] develop streaming

algorithms for finding conditional heavy hitters, i.e. items that are

frequent in the context of a separate “parent” item. Our proposed

sketch builds on the Count-Sketch [11], which was originally in-

troduced for identifying frequent items. In Sec. 4, we show how

frequency estimation can in fact be related to the problem of esti-

mating classifier weights.

CharacterizingChanges inData Streams. Cormode andMuthukr-

ishnan [17] propose a Count-Min-based algorithm for identifying

items whose frequencies change significantly, while Schweller et al.

[59] propose the use of reversible hashes to avoid storing key infor-

mation. In order to explain anomalous traffic flows, Brauckhoff et al.

[7] use histogram-based detectors and association rules to detect

large absolute differences. In our network monitoring application

(Sec. 8), we focus instead on detecting large relative differences, a
problem which has previously been found to be challenging [17].

Resource-Constrained and On-Device Learning. In contrast

to federated learning, where the goal is to learn a global model

on distributed data [39] or to enforce global regularization on a

collection of local models [64], our focus is on memory-constrained

learning on a single device without communication over a network.

Gupta et al. [28] and Kumar et al. [40] perform inference with

small-space classifiers on IoT devices, whereas we focus on online

learning. Unlike budget kernel methods that aim the reduce the

number of stored examplars [18, 20], our methods instead reduce

the dimensionality of feature vectors. Our work also differs from

model compression or distillation [2, 8, 32], which aims to imitate a

large, expensive model using a smaller one with lower memory and

computation costs—in our setting, the full uncompressed model is

never instantiated and the compressed model is learned directly.

Sparsity-Inducing Regularization. ℓ1-regularization is a stan-

dard technique for encouraging parameter sparsity in online learn-

ing [22, 41, 73]. In practice, it is difficult to a priori select an ℓ1-
regularization strength in order to satisfy a given sparsity budget.

Here, we propose a different approach: we first fix a memory bud-

get and then use the allocated space to approximate a classifier,

with the property that our approximation will be better for sparse

parameter vectors with small ℓ1-norm.

Sketching Linear Classifiers over Data Streams SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Learning Compressed Classifiers. Feature hashing [62, 71] is

a technique where the classifier is trained on features that have

been hashed to a fixed-size table. This approach lowers memory

usage by reducing the dimension of the feature space, but at the

cost of model interpretability. Our sketch is closely related to this

approach—we show that an appropriate choice of random pro-

jection enables the recovery of model weights. Calderbank et al.

[9] describe compressed learning, where a classifier is trained on

compressively-measured data. The authors focus on classification

performance in the compressed domain and do not consider the

problem of recovering weights in the original space.

3 BACKGROUND
In Section 3.1, we review the relevant material on random pro-

jections for dimensionality reduction. In Section 3.2, we describe

online learning, which models learning on streaming data.

Conventions and Notation. The notation wi denotes the ith
element of the vector w. The notation [n] denotes the set {1, . . . ,n}.
We write p-norms as ∥w∥p , where the p-norm of w ∈ Rd is defined

as ∥w∥p B
(∑d

i=1
|wi |

p
)

1/p
. The infinity-norm ∥w∥∞ is defined as

∥w∥∞ B maxi |wi |.

3.1 Dimensionality Reduction via
Random Projection

Count-Sketch. The Count-Sketch [11] is a linear projection of a

vector x ∈ Rd that supports efficient approximate recovery of the

entries of x. The sketch of x can be built incrementally as entries

are observed in a stream—for example, x can be a vector of counts

that is updated as new items are observed.

For a given size k and depth s , the Count-Sketch algorithm main-

tains a collection of s hash tables, each with width k/s (Figure 2).
Each index i ∈ [d] is assigned a random bucket hj (i) in table j along
with a random sign σj (i). Increments to the ith entry are multi-

plied by σj (i) and then added to the corresponding buckets hj (i).
The estimator for the ith coordinate is the median of the values

in the assigned buckets multiplied by the corresponding sign flips.

Charikar et al. [11] showed the following recovery guarantee for

this procedure:

Lemma 1. [11] Let xcs be the Count-Sketch estimate of the vector
x. For any vector x, with probability 1 − δ , a Count-Sketch matrix
with width Θ(1/ϵ2) and depth Θ(log(d/δ)) satisfies

∥x − xcs∥∞ ≤ ϵ ∥x∥
2
.

In other words, point estimates of each entry of the vector x can

be computed from its compressed form xcs. This enables accurate

recovery of high-magnitude entries that comprise a large fraction

of the norm ∥x∥2.

Johnson-Lindenstrauss (JL) property. A random projectionma-

trix is said to have the Johnson-Lindenstrauss (JL) property [34] if

it preserves the norm of a vector with high probability:

Definition 1. A random matrix R ∈ Rk×d has the JL property

with error ϵ and failure probability δ if for any given x ∈ Rd , we

Figure 2: An illustration of the Count-Sketch of size k with
depth s and width k/s. Each feature hashes to s locations,
multiplied by a random ±1 sign.

have with probability 1 − δ :���∥Rx∥2 − ∥x∥2
��� ≤ ϵ ∥x∥2.

The JL property holds for dense matrices with independent

Gaussian or Bernoulli entries [1], and recent work has shown that

it applies to certain sparse matrices as well [36]. Intuitively, JL ma-

trices preserve the geometry of a set of points, and we leverage this

key fact to ensure that we can still recover the original solution

after projecting to low dimension.

3.2 Online Learning
The online learning framework deals with learning on a stream

of examples, where the model is updated over a series of rounds

t = 1, 2, . . . ,T . In each round, we update the model weights wt
via the following process: (1) receive an input example (xt ,yt), (2)
incur loss Lt (wt) B ℓ(wt , xt ,yt), where ℓ is a given loss function,

and (3) update weights wt to wt+1. There are numerous algorithms

for updating the model weights (e.g., [22, 31, 73]). In our algorithm,

we use online gradient descent (OGD) [30; Chp. 3], which uses the

following update rule:

wt+1 = wt − ηt∇Lt (wt),

where ηt > 0 is the learning rate at step t . OGD enjoys the advan-

tages of simplicity and minimal space requirements: we only need

to maintain a representation of the weight vector wt and a global

scalar learning rate.

4 PROBLEM STATEMENT
We focus on online learning for binary classification with linear

models. We observe a stream of examples (xt ,yt), where each

xt ∈ Rd is a feature vector and each yt ∈ {−1,+1} is a binary

label. A linear classifier parameterized by weights w ∈ Rd makes

predictions ŷ by returning +1 for all inputs with non-negative inner

product with w, and −1 otherwise: ŷ = sign

(
wT x

)
. The goal of

learning is to select weights w that minimize the total loss

∑
t Lt (w)

on the observed data. In the following, we refer to w interchange-

ably as the weights and as the classifier.
Suppose we have observed T examples in the stream, and con-

sider the classifier w∗ that minimizes the loss over thoseT examples.

It may not be possible to precisely represent each entry
1
of the vec-

tor w∗ within a memory budget that is much less than the cost

1
For example, representing each nonzero entry as a single-precision floating point

number.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tai et al.

of representing a general vector in Rd . In particular, w∗ may be

a dense vector. Thus, it may not be possible to represent w∗ in a

memory-constrained setting, and in practical applications this is

particularly problematic when the dimension d is large.

For a fixed memory budget B, our goal is to obtain a summary

z that uses space at most B from which we are able to estimate

the value of each entry of the optimal classifier w∗. We formalize

this problem as the Weight Estimation Problem, which we make

precise in the following section. In addition to supporting weight

estimation, a secondary goal is to be able to use the summary z to
perform classification on data points x via some inference function

f , i.e. ŷ = f (z, x). We would like to classify data points using the

summary without too much additional error compared to w∗.

4.1 The Weight Estimation Problem
In this section, we formalize the problem of estimating the weights

of the optimal classifier w∗ from a compact summary. To facilitate

the presentation of this problem and to build intuition, we highlight

the connection between our goal of weight estimation and previous

work on the approximate recovery of frequency estimates from

compressed count vectors. To this end, we formalize a general

problem setup that subsumes both the approximate recovery of

frequencies and the approximate recovery of weights in linear

classifiers as special cases.

The ϵ-approximate frequency estimation problem can be defined

as follows:

Definition 2. [15] (ϵ-Approximate Frequency Estimation) Given

a sequence of T items, each drawn from the set [d], let vi denote
the count of the number of times item i is seen over the stream.

The ϵ-approximate frequency estimation problem is to return, for

any i ∈ [d], a value v̂i such that |v̂i −vi | ≤ ϵT .

The frequency estimation problem commonly appears in the

context of finding heavy hitters—i.e., items whose frequencies ex-

ceed a given threshold ϕT . Given an algorithm that solves the

ϵ-approximate frequency estimation problem, we can then find all

heavy hitters (possibly with false positives) by returning all items

with estimated frequency above (ϕ − ϵ)T .
We now define an analogous setup for online convex optimiza-

tion problems that formalizes our goal of weight recovery from

summarized classifiers:

Definition 3. ((ϵ,p)-Approximate Weight Estimation for Convex

Functions) Given a sequence of T convex functions Lt : X → R

over a convex domain X ⊆ Rd , let w∗ B arg minw
∑T
t=1

Lt (w).
The (ϵ,p)-approximate weight estimation problem is to return, for

any i ∈ [d], a value ŵi such that |ŵi − (w∗)i | ≤ ϵ ∥w∗∥p .

Note that frequency estimation (Definition 2) can be viewed as a

special case of this problem. Set Lt (w) = −wT xt , where (xt)i = 1

if item i is observed at time t and 0 otherwise (assume that only

one item is observed at each t), define x1:T B
∑T
t=1

xt , and let

X = {w : ∥w∥2 ≤ ∥x1:T ∥2}. Then w∗ = x1:T , and we note that

∥w∗∥1 = T . Thus, the frequency estimation problem is an instance

of the (ϵ, 1)-approximate weight estimation problem.

Weight Estimation for Linear Classifiers. We now specialize

to the case of online learning for linear classifiers. Define the losses

Lt as:

Lt (w) = ℓ
(
ytwT xt

)
+
λ

2

∥w∥2
2
, (1)

where ℓ is a convex, differentiable function, (xt ,yt) is the exam-

ple observed at time t , and λ > 0 controls the strength of ℓ2-

regularization. The choice of ℓ defines the linear classificationmodel

to be used. For example, the logistic loss ℓ(τ) = log(1 + exp(−τ))
defines logistic regression, and smoothed versions of the hinge loss

ℓ(τ) = max{0, 1 − τ } define close relatives of linear support vector
machines.

To summarize, for each time step, we wish to maintain a compact
summary zt that allows us to estimate each weight in the optimal

classifier w∗ over all the examples seen so far in the stream. In the

following sections, we describe a method for maintaining such a

summary and provide theoretical guarantees on the accuracy of

the recovered weights.

5 FINDING HEAVILY-WEIGHTED FEATURES
In this section, we describe our proposed method, the Weight-

Median Sketch (WM-Sketch), along with a simple variant, the

Active-Set Weight-Median Sketch (AWM-Sketch), that empirically

improves on the basic WM-Sketch in both classification and recov-

ery accuracy.

5.1 Weight-Median Sketch
The main data structure in the WM-Sketch is identical to that used

in the Count-Sketch. The sketch is parameterized by size k , depth
s , and width k/s . We initialize the sketch with a size-k array set

to zero. For a given depth s , we view this array as being arranged

in s rows, each of width k/s (assume that k is a multiple of s). We

denote this array as z, and equivalently view it as a vector in Rk .
The high-level idea is that each row of the sketch is a compressed

version of the model weight vector w ∈ Rd , where each index

i ∈ [d] is mapped to some assigned bucket j ∈ [k/s]. Since k/s ≪ d ,
there will be many collisions between these weights; therefore, we

maintain s rows—each with different assignments of features to

buckets—in order to disambiguate weights.

Hashing Features to Buckets. In order to avoid explicitly storing
the mapping from features to buckets, which would require space

linear in d , we implement the mapping using hash functions as in

the Count-Sketch. For each row j ∈ [s], we maintain a pair of hash

functions, hj : [d] → [k/s] and σj : [d] → {−1,+1}. Let the matrix

A ∈ {−1,+1}k×d denote the Count-Sketch projection implicitly

represented by the hash functions hj and σj , and let R be a scaled

version of this projection, R = 1√
s
A. We use the projection R to

compress feature vectors and update the sketch.

Updates. We update the sketch by performing gradient descent

updates directly on the compressed classifier z. We compute gradi-

ents on a “compressed” version L̂t of the regularized loss Lt defined
in Eq. 1:

L̂t (z) = ℓ
(
yt zT Rxt

)
+
λ

2

∥z∥2
2
.

This yields the following update to z:

∆̂t B −ηt∇L̂t (z) = −ηt
(
yt∇ℓ(yt zT Rxt)Rxt + λz

)
.

Sketching Linear Classifiers over Data Streams SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Algorithm 1:Weight-Median (WM) Sketch

input: size k , depth s , loss function ℓ, ℓ2-regularization
parameter λ, learning rate schedule ηt

initialization
z← s × k/s array of zeroes

Sample R, a Count-Sketch matrix scaled by
1√
s

t ← 0

function Update(x, y)
τ ← zT Rx ▷ Prediction for x

z← (1 − ληt)z − ηty∇ℓ (yτ)Rx
t ← t + 1

function Query(i)
return output of Count-Sketch retrieval on

√
sz

To build intuition, it is helpful to compare this update to the

Count-Sketch update rule [11]. In the frequent items setting, the

input xt is a one-hot encoding for the item seen in that time step.

The update to the Count-Sketch state zcs is the following:

∆̃cs

t = Axt ,

where A is defined identically as above. Ignoring the regularization

term, our update rule is simply the Count-Sketch update scaled

by the constant −ηtyt s
−1/2∇ℓ(yt zT Rxt). However, an important

detail to note is that the Count-Sketch update is independent of the
sketch state zcs, whereas the WM-Sketch update does depend on

z. This cyclical dependency between the state and state updates is

the main challenge in our analysis of the WM-Sketch.

Queries. To obtain an estimate ŵi of the ith weight, we return

the median of the values {
√
sσj (i)zj,hj (i) : j ∈ [s]}. Save for the

√
s

factor, this is identical to the query procedure for the Count-Sketch.

We summarize the update and query procedures for the WM-

Sketch in Algorithm 1. In the next section, we show how the sketch

size k and depth s parameters can be chosen to satisfy an ϵ approx-

imation guarantee with failure probability δ over the randomness

in the sketch matrix.

Efficient Regularization. A naïve implementation of ℓ2 regular-

ization on z that scales each entry in z by (1−ηtλ) in each iteration

incurs an update cost of O(k + s · nnz(x)). This masks the com-

putational gains that can be realized when x is sparse. Here, we

use a standard trick [60]: we maintain a global scale parameter

α that scales the sketch values z. Initially, α = 1 and we update

α ← (1 − ηtλ)α to implement weight decay over the entire fea-

ture vector. Our weight estimates are therefore additionally scaled

by α : ŵi = median

{√
sασj (i)zj,hj (i) : j ∈ [s]

}
. This optimization

reduces the cost of each sketch update from O(k + s · nnz(x)) to
O(s · nnz(x)).

5.2 Active-Set Weight-Median Sketch
We now describe a simple, heuristic extension to the WM-Sketch

that significantly improves the recovery accuracy of the sketch in

practice. We refer to this variant as the Active-Set Weight-Median

Sketch (AWM-Sketch).

To efficiently track the top elements across sketch updates, we

can use a min-heap ordered by the absolute value of the esti-

mated weights. This technique is also used alongside heavy-hitters

Algorithm 2: Active-Set Weight-Median (AWM) Sketch

initialization
S ← {} ▷ Empty heap

z← s × k/s array of zeroes

Sample R, a Count-Sketch matrix scaled by
1√
s

t ← 0

function Update(x, y)
xs ← {xi : i ∈ S} ▷ Features in heap

xwm ← {xi : i < S} ▷ Features in sketch

τ ←
∑
i ∈S S[i] · xi + zT Rxwm ▷ Prediction for x

S ← (1 − ληt)S − ηty∇ℓ(yτ)xs ▷ Heap update

z← (1 − ληt)z ▷ Apply regularization

for i < S do
▷ Either update i in sketch or move to heap

w̃ ← Query(i) − ηtyxi∇ℓ(yτ)
imin ← arg minj (|S[j]|)

if |w̃ | > |S[imin]| then
Remove imin from S
Add i to S with weight w̃
Update imin in sketch with S[imin] − Query(imin)

else
Update i in sketch with ηtyxi∇ℓ(yτ)

t ← t + 1

sketches to identify the most frequent items in the stream [11]. In

the basic WM-Sketch, the heap merely functions as a mechanism

to passively maintain the heaviest weights. This baseline scheme

can be improved by noting that weights that are already stored in

the heap need not be tracked in the sketch; instead, the sketch can

be updated lazily only when the weight is evicted from the heap.

This heuristic has previously been used in the context of improving

count estimates derived from a Count-Min Sketch [58]. The intu-

ition here is the following: since we are already maintaining a heap

of heavy items, we can utilize this structure to reduce error in the

sketch as a result of collisions with heavy items.

The heap can be thought of as an “active set” of high-magnitude

weights, while the sketch estimates the contribution of the tail of the

weight vector. Since the weights in the heap are represented exactly,

this active set heuristic should intuitively yield better estimates of

the heavily-weighted features in the model.

As a general note, similar coarse-to-fine approximation schemes

have been proposed in other online learning settings. A similar

scheme for memory-constrained sparse linear regression was ana-

lyzed by Steinhardt and Duchi [66]. Their algorithm similarly uses

a Count-Sketch for approximating weights, but in a different setting

(K-sparse linear regression) and with a different update policy for

the active set.

6 THEORETICAL ANALYSIS
We derive bounds on the recovery error achieved by theWM-Sketch

for given settings of the size k and depth s . The main challenge in

our analysis is that the updates to the sketch depend on gradient

estimates which in turn depend on the state of the sketch. This

reflexive dependence makes it difficult to straightforwardly trans-

plant the standard analysis for the Count-Sketch to our setting.

Instead, we turn to ideas drawn from norm-preserving random

projections and online convex optimization.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tai et al.

In this section, we begin with an analysis of recovery error in

the batch setting, where we are given access to a fixed dataset of

size T consisting of the first T examples observed in the stream

and are allowed multiple passes over the data. Subsequently, we

use this result to show guarantees in a restricted online case where

we are only allowed a single pass through the data, but with the

assumption that the order of the data is not chosen adversarially.

6.1 Batch Setting
To begin, we briefly outline the main ideas in our analysis. With

high probability, we can sample a random projection to dimension

k ≪ d that satisfies the JL norm preservation property (Definition 1).

We use this property to show that for any fixed dataset of size T ,
optimizing a projected version of the objective yields a solution

that is close to the projection of the minimizer of the original, high-

dimensional objective. Since our specific construction of the JL

projection is also a Count-Sketch projection, we can make use of

existing error bounds for Count-Sketch estimates to bound the error

of our recovered weight estimates.

Let R ∈ Rk×d denote the scaled Count-Sketch matrix defined in

Sec. 5.1. This is the hashing-based sparse JL projection proposed by

Kane and Nelson [36]. We consider the following pair of objectives

defined over the batch of T observed examples (xt ,yt)—the first
defines the problem in the original space and the second defines

the corresponding problem where the learner observes sketched

examples (Rxt ,yt):

L(w) =
1

T

T∑
t=1

ℓ
(
ytwT xt

)
+
λ

2

∥w∥2
2
,

L̂(z) =
1

T

T∑
t=1

ℓ
(
yt zT Rxt

)
+
λ

2

∥z∥2
2
,

with parameters w ∈ Rd and z ∈ Rk .
Suppose we optimized these objectives to obtain solutions w∗ =

arg minw L(w) and z∗ = arg minz L̂(z). How then does w∗ relate
to z∗ given our choice of sketching matrix R and regularization

parameter λ? Intuitively, if we stored all the data observed up to

time T and optimized z over this dataset, we should hope that the

optimal solution z∗ is close to Rw∗, the sketch of w∗, in order to

have any chance of recovering the largest weights of w∗. We show

that in this batch setting, ∥z∗ − Rw∗∥2 is indeed small; we then

use this property to show element-wise error guarantees for the

Count-Sketch recovery process.

We now state our main result for recovery error in the batch

setting:

Theorem 1. Let the loss function ℓ be β-strongly smooth2 (w.r.t.
∥ · ∥2) and maxt ∥xt ∥1 = γ . For fixed constants C1,C2 > 0, let:

k =
(
C1/ϵ

4

)
log

3(d/δ)max

{
1, β2γ 4/λ2

}
,

s =
(
C2/ϵ

2

)
log

2(d/δ)max

{
1, βγ 2/λ

}
.

2
A function f : X → R is β -strongly smooth w.r.t. a norm ∥ · ∥ if f is everywhere

differentiable and if for all x, y we have:

f (y) ≤ f (x) + (y − x)T ∇f (x) +
β
2

∥y − x∥2 .

Let w∗ be the minimizer of the original objective function L(w) and
west be the estimate of w∗ returned by performing Count-Sketch
recovery on the minimizer z∗ of the projected objective function L̂(z).
Then with probability 1 − δ over the choice of R,

∥w∗ −west∥∞ ≤ ϵ ∥w∗∥1.

We note that for standard loss functions such as the logistic loss

and the smoothed hinge loss, we have smoothness parameter β = 1.

Moreover, we can assume that input vectors are normalized so that

∥xt ∥1 = 1, and that typically λ < 1. Given these parameter choices,

we can obtain simpler expressions for the sketch size k and sketch

depth s:

k = O
(
ϵ−4λ−2

log
3(d/δ)

)
,

s = O
(
ϵ−2λ−1

log
2(d/δ)

)
.

We defer the full proof of the theorem to Appendix B.1. We now

highlight some salient properties of this recovery result:

Sub-linear Dimensionality Dependence. Theorem 1 implies

that we can achieve error bounded by ϵ ∥w∗∥1 with a sketch of size

only polylogarithmic in the feature dimension d—this implies that

memory-efficient learning and recovery is possible in the large-d
regime that we are interested in. Importantly, the sketch size k is

independent of the number of observed examples T—this is crucial
since our applications involve learning over data streams of possibly

unbounded length.

Update Time. Recall that the WM-Sketch can be updated in time

O(s · nnz(x)) for a given input vector x. Thus, the sketch supports

an update time of O(ϵ−2λ−1
log

2(d/δ) · nnz(x)) in each iteration.

ℓ2-Regularization. k and s scale inversely with the strength of

ℓ2 regularization: this is intuitive because additional regularization

will shrink both w∗ and z∗ towards zero. We observe this inverse re-

lationship between recovery error and ℓ2 regularization in practice

(see Figure 3).

Input Sparsity. The recovery error depends on the maximum ℓ1-

normγ of the data points xt , and the bound is most optimistic when

γ is small. Across all of the applications we consider in Sections 7

and 8, the data points are sparse with small ℓ1-norm, and hence the

bound is meaningful across a number of real-world settings.

Weight Sparsity. The per-parameter recovery error in Theorem 1

is bounded above by a multiple of the ℓ1-norm of the optimal

weights w∗ for the uncompressed problem. This supports the in-

tuition that sparse solutions with small ℓ1-norm should be more

easily recovered. In practice, we can augment the objective with

an additional ∥w∥1 (resp. ∥z∥1) term to induce sparsity; this corre-

sponds to elastic net-style composite ℓ1/ℓ2 regularization on the

parameters of the model [81].

Comparison with Frequency Estimation. We can compare our

guarantees for weight estimation in linear classifiers with existing

guarantees for frequency estimation. The Count-Sketch requires

Θ(ϵ−2
log(d/δ)) space and Θ(log(d/δ)) update time to obtain fre-

quency estimates vcs with error ∥v − vcs∥∞ ≤ ϵ ∥v∥2, where v
is the true frequency vector (Lemma 1). The Count-Min Sketch

uses Θ
(
ϵ−1

log(d/δ)
)
space and Θ(log(d/δ)) update time to obtain

frequency estimates vcm with error ∥v − vcm∥∞ ≤ ϵ ∥v∥1 [16].

Sketching Linear Classifiers over Data Streams SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Thus, our analysis yields guarantees of a similar form to bounds

for frequency estimation in this more general framework, but with

somewhat worse polynomial dependence on 1/ϵ and log(d/δ), and
additional 1/ϵ dependence in the update time.

6.2 Online Setting
We now provide guarantees for WM-Sketch in the online setting.

We make two small modifications to WM-Sketch for the conve-

nience of analysis. First, we assume that the iterate zt is projected
onto a ℓ2 ball of radius D at every step. Second, we also assume

that we perform the final Count-Sketch recovery on the average

z̄ = 1

T
∑T
i=1

zt of the weight vectors, instead of on the current iter-

ate zt . While using this averaged sketch is useful for the analysis,

maintaining a duplicate data structure in practice for the purpose

of accumulating the average would double the space cost of our

method. Therefore, in our implementation of the WM-Sketch, we

simply maintain the current iterate zt . As we show in the next

section this approach achieves good performance on real-world

datasets, in particular when combined with the active set heuristic.

Our guarantee holds in expectation over uniformly random per-

mutations of {(x1,y1), . . . , (xT ,yT)}. In other words, we achieve

low recovery error on average over all orderings in which the T
data points could have been presented. We believe this condition

is necessary to avoid worst-case adversarial orderings of the data

points—since the WM-Sketch update at any time step depends on

the state of the sketch itself, adversarial orderings can potentially

lead to high error accumulation.

Theorem 2. Let the loss function ℓ be β-strongly smooth (w.r.t.
∥ · ∥2), and have its derivative bounded by H . Assume ∥xt ∥2 ≤
1,maxt ∥xt ∥1 = γ , ∥w∗∥2 ≤ D2 and ∥w∗∥1 ≤ D1. Let G be a
bound on the ℓ2 norm of the gradient at any time step t , in our case
G ≤ H (1 + ϵγ) + λD. For fixed constants C1,C2,C3 > 0, let:

k =
(
C1/ϵ

4

)
log

3(d/δ)max

{
1, β2γ 4/λ2

}
,

s =
(
C2/ϵ

2

)
log

2(d/δ)max

{
1, βγ 2/λ

}
,

T ≥ (C3/ϵ
4)ζ log

2(d/δ)max{1, βγ 2/λ},

where ζ = (1/λ2)(D2/∥w∗∥1)
2(G + (1 + ϵγ)H)2. Let w∗ be the mini-

mizer of the original objective function L(w) and wwm be the estimate
w∗ returned by the WM-Sketch algorithm with averaging and projec-
tion on the ℓ2 ball with radius D = (D2 +ϵD1). Then with probability
1 − δ over the choice of R,

E[∥w∗ −wwm∥∞] ≤ ϵ ∥w∗∥1,

where the expectation is taken with respect to uniformly sampling a
permutation in which the samples are received.

Theorem 2 shows that in this restricted online setting, we achieve

a bound with the same scaling of the sketch parameters k and s
as the batch setting (Theorem 1). Again, we defer the full proof to

Appendix B.2.

Intuitively, it seems reasonable to expect that we would need an

“average case” ordering of the stream in order to obtain a similar

recovery guarantee to the batch setting. An adversarial, worst-case

Dataset # Examples # Features Space (MB)

Reuters RCV1 6.77 × 10
5

4.72 × 10
4

0.4

Malicious URLs 2.40 × 10
6

3.23 × 10
6

25.8

KDD Cup Algebra 8.41 × 10
6

2.02 × 10
7

161.8

Senate/House Spend. 4.08 × 10
7

5.14 × 10
5

4.2

Packet Trace 1.86 × 10
7

1.26 × 10
5

1.0

Newswire 2.06 × 10
9

4.69 × 10
7

375.2

Table 1: Summary of benchmark datasets with the space cost
of representing full weight vectors and feature identifiers
using 32-bit values. The first set of three consists of standard
binary classification datasets used in Sec. 7; the second set
consists of datasets specific to the applications in Sec. 8.

ordering of the examples could be one where all the negatively-

labeled examples are first presented, followed by all the positively-

labeled examples. In such a setting, it appears implausible that a

single-pass online algorithm should be able to accurately estimate

the weights obtained by a batch algorithm that is allowed multiple

passes over the data.

7 EMPIRICAL EVALUATION
In this section, we evaluate the Weight-Median Sketch on three

standard binary classification datasets. Our goal here is to com-

pare the WM-Sketch and AWM-Sketch against alternative limited-

memory methods in terms of (1) recovery error in the estimated

top-K weights, (2) classification error rate, and (3) runtime perfor-

mance. In the next section, we explore specific applications of the

WM-Sketch in stream processing tasks.

7.1 Datasets and Experimental Setup
We evaluated our proposed sketches on several standard benchmark

datasets as well as in the context of specific streaming applications.

Table 1 lists summary statistics for these datasets.

Classification Datasets. We evaluate the recovery error on ℓ2-

regularized online logistic regression trained on three standard

binary classification datasets: Reuters RCV1 [44], malicious URL

identification [47], and the Algebra dataset from the KDDCup 2010

large-scale data mining competition [65, 75]. We use the standard

training split for each dataset except for the RCV1 dataset, where we

use the larger “test” split as is common in experimental evaluations

using this dataset [26].

For each dataset, we make a single pass through the set of ex-

amples. Across all our experiments, we use an initial learning rate

η0 = 0.1 and λ ∈ {10
−3, 10

−4, 10
−5, 10

−6}. We used the following

set of space constraints: 2KB, 4KB, 8KB, 16KB and 32KB. For each

setting of the space budget and for each method, we evaluate a

range of configurations compatible with that space constraint; for

example, for evaluating the WM-Sketch, this corresponds to vary-

ing the space allocated to the heap and the sketch, as well as trading

off between the sketch depth s and the width k/s . For each setting,

we run 10 independent trials with distinct random seeds; our plots

show medians and the range between the worst and best run.

Memory CostModel. In our experiments, we control for memory

usage and configure each method to satisfy the given space con-

straints using the following cost model: we charge 4B of memory

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tai et al.

WM-Sketch AWM-Sketch

Budget (KB) |S | width depth |S | width depth

2 128 128 2 128 256 1

4 256 256 2 256 512 1

8 128 128 14 512 1024 1

16 128 128 30 1024 2048 1

32 128 256 31 2048 4096 1

Table 2: Sketch configurations with minimal ℓ2 recovery er-
ror on RCV1 dataset (|S | denotes heap capacity).

utilization for each feature identifier, feature weight, and auxiliary

weight (e.g., random keys in Algorithm 4 or counts in the Space

Saving baseline) used. For example, a simple truncation instance

(Algorithm 3 in the Appendix) with 128 entries uses 128 identifiers

and 128 weights, corresponding to a memory cost of 1024B.

7.2 Baseline Methods
Here, we describe the baseline algorithms that we use in our evalu-

ation.

Simple Truncation. Given a budget of K weights, a natural base-

line method is to simply truncate w after each update to the K
entries with highest absolute value, setting all other entries to zero.

The simple truncation baseline is similar to the truncated Percep-

tron algorithm proposed by Hoi et al. [33]. We give a pseudocode

description in Appendix C.

Probabilistic Truncation. A problem with the simple truncation

method is that it may end up “stuck” with a bad set of weights: a

“good” index that would have been included in the top-K set by the

unconstrained classifier may fail to be included in the feature set

under Algorithm 3 if its gradient updates are insufficiently large

relative to the smallest weight in the set; this results in the weight

being repeatedly zeroed-out in each iteration. To remedy this prob-

lem, we can instead adopt a randomized approach where indices

are accepted into the K-sparse set with probability proportional to

the magnitude of their weights. Therefore, even if some feature has

small but nonzero weight after an update, there is still a positive

probability that it is accepted into the feature set. This “probabilistic

truncation” algorithm is inspired by weighted reservoir sampling

[24]. We give the pseudocode in Appendix C.

Count-Min Frequent Features. The Count-Min sketch [16] is a

commonly-used method for finding frequent items in data streams.

This baseline uses a Count-Min sketch to identify the K most

frequently-occurring features; the weights for these frequent fea-

tures are maintained, while the remaining weights are set to 0.

Space Saving Frequent Features. This method is identical to the

previous approach except for the use of the Space Saving algorithm

[53] in place of the Count-Min sketch for frequent item estima-

tion. The Space Saving algorithm has previously been found to

outperform Count-Min in insertion-only settings such as ours [15].

Feature Hashing. In feature hashing, input vectors are mapped to

lower dimension by adding each input feature, multiplied by a ran-

dom sign, to a randomly-assigned index in the compressed vector

[62, 71]. This basic scheme is essentially equivalent to computing a

Count-Sketch of depth 1 on the input. As with the WM-Sketch, the

0 50 100
K

1.00

1.01

1.02

1.03

Re
lE

rr

RCV1

0 50 100
K

1.00

1.05

1.10

1.15

1.20

URL

= 1E-3
= 1E-4
= 1E-5
= 1E-6

Figure 3: Relative ℓ2 error of top-K AWM-Sketch estimates
with varying regularization parameter λ on RCV1 and URL
datasets under 8KB memory budget.

model weights are learned in this compressed space; however, due

to hash collisions, it is in general not possible to recover accurate

estimates of model weights from the compressed weight vector

in feature hashing. While multiple hashing is suggested by Wein-

berger et al. [71], the proposed method does not support efficient

weight recovery.

7.3 Recovery Error Comparison
We measure the accuracy to which our methods are able to recover

the top-K weights in the model using the following relative ℓ2 error

metric:

RelErr(wK ,w∗) = ∥wK −w∗∥2 / ∥wK
∗ −w∗∥2,

where wK
is the K-sparse vector representing the top-K weights

returned by a given method, w∗ is the weight vector obtained by the
uncompressed model, and wK

∗ is the K-sparse vector representing
the true top-K weights in w∗. The relative error metric is there-

fore bounded below by 1 and quantifies the relative suboptimality

of the estimated top-K weights. The best configurations for the

WM- and AWM-Sketch on RCV1 are listed in Table 2; the optimal

configurations for the remaining datasets are similar.

We compare our methods across datasets (Fig. 4) and across

memory constraints on a single dataset (Fig. 5). For clarity, we

omit the Count-Min Frequent Features baseline since we found

that the Space Saving baseline achieved consistently better per-

formance. We found that the AWM-Sketch consistently achieved

lower recovery error than alternative methods on our benchmark

datasets. The Space Saving baseline is competitive on RCV1 but

underperforms the simple Probabilistic Truncation baseline on URL:
this demonstrates that tracking frequent features can be effective if

frequently-occurring features are also highly discriminative, but

this property does not hold across all datasets. Standard feature

hashing achieves poor recovery error since colliding features can-

not be disambiguated.

In Fig. 3, we compare recovery error on RCV1 across different

settings of λ. Higher ℓ2-regularization results in less recovery error

since both the true weights and the sketched weights are closer

to 0; however, λ settings that are too high can result in increased

classification error.

7.4 Classification Error Rate
We evaluated the classification performance of our models by mea-

suring their online error rate [5]: for each observed pair (xt ,yt), we
record whether the prediction ŷt (made without observing yt) is
correct before updating the model. The error rate is defined as the

Sketching Linear Classifiers over Data Streams SIGMOD’18, June 10–15, 2018, Houston, TX, USA

0 20 40 60 80 100 120
K

1.00

1.05

1.10

1.15

1.20

1.25

Re
lE

rr

RCV1 (= 10 6)

0 20 40 60 80 100 120
K

1.00

1.05

1.10

1.15

1.20

1.25
URL (= 10 5)

0 20 40 60 80 100 120
K

1.000

1.005

1.010

1.015

1.020

KDDA (= 10 5)

Trun
PTrun
SS
Hash
WM
AWM

Figure 4: Relative ℓ2 error of estimated top-K weights vs. true top-K weights for ℓ2-regularized logistic regression under 8KB
memory budget. Shaded area indicates range of errors observed over 10 trials. The AWM-Sketch achieves lower recovery error
across all three datasets.

0 25 50 75 100 125
K

1.0

1.1

1.2

1.3

Re
lE

rr

2KB

0 25 50 75 100 125
K

4KB

0 25 50 75 100 125
K

8KB

0 25 50 75 100 125
K

16KB

Trun
PTrun
SS
Hash
WM
AWM

Figure 5: Relative ℓ2 error of estimated top-K weights on RCV1 dataset under different memory budgets (λ = 10
−6). Shaded

area indicates range of errors observed over 10 trials. The recovery quality of the AWM-Sketch quickly improves with more
allocated space.

2KB 4KB 8KB 16KB 32KB

0.04

0.06

0.08

0.10

0.12

er
ro

r r
at

e

RCV1

2KB 4KB 8KB 16KB 32KB

0.015

0.020

0.025

0.030

0.035
URL

2KB 4KB 8KB 16KB 32KB

0.130

0.135

0.140

0.145
KDDA

Trun
PTrun
SS
Hash
WM
AWM
LR

Figure 6: Online classification error rateswith ℓ2-regularized logistic regressionunder differentmemory budgets (Trun = Simple
Truncation, PTrun = Probabilistic Truncation, SS = Space Saving Frequent, Hash = Feature Hashing, LR = Logistic Regression
without memory constraints). The AWM-Sketch consistently achieves better classification accuracy than methods that track
frequent features.

cumulative number of mistakes made divided by the number of iter-

ations. Our results here are summarized in Fig. 6. For each dataset,

we used the value of λ that achieved the lowest error rate across

all our memory-limited methods. For each method and budget, we

chose the configuration that achieved the lowest error rate. For the

WM-Sketch, this corresponded to a width of 2
7
or 2

8
with depth scal-

ing proportionally with the memory budget; for the AWM-Sketch,

the configuration that uniformly performed best allocated half the

space to the active set and the remainder to a depth-1 sketch.

We found that across all tested memory constraints, the AWM-

Sketch consistently achieved lower error rate than heavy-hitter-

based methods. Surprisingly, the AWM-Sketch outperformed fea-

ture hashing by a small but consistent margin: 0.5–3.7% on RCV1,
0.1–0.4% on URL, and 0.2–0.5% on KDDA, with larger gains seen at

smaller memory budgets. This suggests that the AWM-Sketch ben-

efits from the precise representation of the largest, most-influential

weights in the model, and that these gains are sufficient to off-

set the increased collision rate due to the smaller hash table. The

Space Saving baseline exhibited inconsistent performance across

the three datasets, demonstrating that tracking the most frequent

features is an unreliable heuristic: features that occur frequently

are not necessarily the most predictive. We note that higher values

of the regularization parameter λ correspond to greater penaliza-

tion of rarely-occurring features; therefore, we would expect the

Space Saving baseline to better approximate the performance of

the unconstrained classifier as λ increases.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tai et al.

2KB 4KB 8KB 16KB 32KB

5

10

15

no
rm

al
ize

d
ru

nt
im

e

2KB 4KB 8KB 16KB 32KB
2

3

4

5

6

Trun
PTrun
SS
Hash
WM
AWM

Figure 7: Normalized runtime of each method vs. memory-
unconstrained logistic regression on RCV1 using configura-
tions that minimize recovery error (see Table 2). The right
panel is a zoomed-in view of the left panel.

7.5 Runtime Performance
We evaluated runtime performance relative to a memory uncon-

strained logistic regression model using the same configurations

as those chosen to minimize ℓ2 recovery error (Table 2). In all our

timing experiments, we ran our implementations of the baseline

methods, the WM-Sketch, and the AWM-Sketch on Intel Xeon

E5-2690 v4 processor with 35MB cache using a single core. The

memory-unconstrained logistic regression weights were stored us-

ing a 32-bit floating point array of size equal to the dimensionality

of the feature space, with the highest-weighted features tracked

using a heap of size K = 128; reads and writes to the weight vector

therefore required single array accesses. The remaining methods

tracked heavy weights alongside 32-bit feature identifiers using a

heap sized according to the corresponding configuration.

In our experiments, the fastest method was feature hashing, with

about a 2× overhead over the baseline. This overhead was due to the

additional hashing step needed for each read and write to a feature

index. The AWM-Sketch incurred an additional 2× overhead over

feature hashing due to more frequent heap maintenance operations.

8 APPLICATIONS
We now show that a variety of tasks in stream processing can be

framed as memory-constrained classification. The unifying theme

between these applications is that classification is a useful abstrac-

tion whenever the use case calls for discriminating between streams

or between subpopulations of a stream. These distinct classes can

be identified by partitioning a single stream into quantiles (Sec. 8.1),

comparing separate streams (Sec. 8.2), or even by generating syn-
thetic examples to be distinguished from real samples (Sec. 8.3).

8.1 Streaming Explanation
In data analysis workflows, it is often necessary to identify charac-

teristic attributes that are particularly indicative of a given subset

of data [52]. For example, in order to diagnose the cause of anoma-

lous readings in a sensor network, it is helpful to identify common

features of the outlier points such as geographical location or time

of day. This use case has motivated the development of methods for

finding common properties of outliers found in aggregation queries

[72] and in data streams [3].

This task can be framed as a classification problem: assign pos-

itive labels to the outliers and negative labels to the inliers, then

train a classifier to discriminate between the two classes. The iden-

tification of characteristic attributes is then reduced to the problem

of identifying heavily-weighted features in the trained model. In

0 1 2 3 4 5
0.0

0.1

0.2

0.3

fra
ct

io
n

Heavy-Hitters: Positive

0 1 2 3 4 5
0.0

0.1

0.2

0.3
Heavy-Hitters: Both

0 1 2 3 4 5
relative risk

0.0

0.1

0.2

0.3

fra
ct

io
n

Logistic Reg.: Exact

0 1 2 3 4 5
relative risk

0.0

0.1

0.2

0.3
Logistic Reg.: AWM

Figure 8: Distribution of relative risks among top-2048 fea-
tures retrieved by each method. Top Row: Heavy-Hitters.
Bottom Row: Classifier-based methods.

5.0 2.5 0.0 2.5 5.0
LR weight

0

2

4

re
la

tiv
e

ris
k

5.0 2.5 0.0 2.5 5.0
AWM weight

0

2

4

Figure 9: Correlation between top-2048 feature weights and
relative risk. Left: Memory-unconstrained logistic regres-
sion (Pearson correlation 0.95). Right: AWM-Sketch (Pear-
son correlation 0.91).

order to identify indicative conjunctions of attributes, we can sim-

ply augment the feature space to include arbitrary combinations of

singleton features.

The relative risk or risk ratio rx = p(y = 1 | x = 1)/p(y = 1 | x =
0) is a statistical measure of the relative occurrence of the positive

label y = 1 when the feature x is active versus when it is inactive.

In the context of stream processing, the relative risk has been used

to quantify the degree to which a particular attribute or attribute

combination is indicative of a data point being an outlier relative

to the overall population [3]. Here, we are interested in compar-

ing our classifier-based approach to identifying high-risk features

against the approach used in MacroBase [3], an existing system for

explaining outliers over streams, that identifies candidate attributes

using a variant of the Space Saving heavy-hitters algorithm.

Experimental Setup. We used a publicly-available dataset of

itemized disbursements by candidates in U.S. House and Senate

races from 2010–2016.
3
The outlier points were set to be the set

of disbursements in the top-20% by dollar amount. For each row

of the data, we generated a sequence of 1-sparse feature vectors
4

corresponding to the observed attributes. We set a space budget of

32KB for the AWM-Sketch.

3
FEC candidate disbursements data: http://classic.fec.gov/data/

CandidateDisbursement.do

4
We can also generate a single feature vector per row (with sparsity greater than 1),

but the learned weights would then correlate more weakly with the relative risk. This

is due to the effect of correlations between features.

http://classic.fec.gov/data/CandidateDisbursement.do
http://classic.fec.gov/data/CandidateDisbursement.do

Sketching Linear Classifiers over Data Streams SIGMOD’18, June 10–15, 2018, Houston, TX, USA

5.0 5.5 6.0 6.5 7.0 7.5 8.0
log(ratio)

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

LR
Trun
PTrun
CM
CMx8
AWM

Figure 10: Recall of IP addresses with relative occurrence ra-
tio above the given threshold with 32KB of space. LR denotes
recall by fullmemory-unconstrained logistic regressor. CMx8
denotes Count-Min baseline with 8×memory usage.

Results. Our results are summarized in Figs. 8 and 9. The former

empirically demonstrates that the heuristic of filtering features on

the basis of frequency can be suboptimal for a fixed memory budget.

This is due to features that are frequent in both the inlier and outlier

classes: it is wasteful to maintain counts for these items since they

have low relative risk. In Fig. 8, the top row shows the distribu-

tion of relative risks among the most frequent items within the

positive class (left) and across both classes (right). In contrast, our

classifier-based approaches use the allocated space more efficiently

by identifying features at the extremes of the relative risk scale.

In Fig. 9, we show that the learned classifier weights are strongly

correlated with the relative risk values estimated from true counts.

Indeed, logistic regression weights can be interpreted in terms of

log odds ratios, a related quantity to relative risk. These results

show that the AWM-Sketch is a superior filter compared to heavy

hitters approaches for identifying high-risk features.

8.2 Network Monitoring
IP network monitoring is one of the primary application domains

for sketches and other small-space summary methods [4, 70, 76].

Here, we focus on the problem of finding packet-level features

(for instance, source/destination IP addresses and prefixes, port

numbers, network protocols, and header or payload characteristics)

that differ significantly in relative frequency between a pair of

network links.

This problem of identifying significant relative differences—also

known as relative deltoids—was studied by Cormode and Muthukr-

ishnan [17]. Concretely, the problem is to estimate—for each item

i—ratios ϕ(i) = n1(i)/n2(i) (where n1,n2 denote occurrence counts

in each stream) and to identify those items i for which this ratio,

or its reciprocal, is large. Here, we are interested in identifying dif-

ferences between traffic streams that are observed concurrently; in
contrast, the empirical evaluation in [17] focused on comparisons

between different time periods.

Experimental Setup. Weused a subset of an anonymized, publicly-

available passive traffic trace dataset recorded at a peering link for a

large ISP [68]. The positive class was the stream of outbound source

IP addresses and the negative class was the stream of inbound desti-

nation IP addresses. We compared against several baseline methods,

including ratio estimation using a pair of Count-Min sketches (as

in [17]). For each method we retrieved the top-2048 features (i.e.,

IP addresses in this case) and computed the recall against the set of

features above the given ratio threshold, where the reference ratios

were computed using exact counts.

Pair PMI Est. Pair PMI

prime minister 6.339 7.609 , the 0.044

los angeles 7.197 7.047 the , -0.082

http / 6.734 7.001 the of 0.611

human rights 6.079 6.721 the . 0.057

Table 3: Left: Top recovered pairs with PMI computed from
true counts and PMI estimated frommodel weights (216 bins,
1.4MB total memory). Right: Most common pairs in corpus.

10 15 20
log2(width)

0.0

0.5

1.0

1.5

2.0

m
ed

ia
n

fre
qu

en
cy

1e 5

10 15 20
log2(width)

1

2

3

4

5

m
ed

ia
n

PM
I

= 1E-6
= 1E-7
= 1E-8

Figure 11: Median frequencies and exact PMIs of retrieved
pairs with AWM-Sketch estimation. Lower λ and higher bin
counts favor less frequent pairs.

Results. We found that the AWM-Sketch performed comparably

to the memory-unconstrained logistic regression baseline on this

benchmark. We significantly outperformed the paired Count-Min

baseline by a factor of over 4× in recall while using the same mem-

ory budget, as well as a paired CM baseline that was allocated 8x

the memory budget. These results indicate that linear classifiers

can be used effectively to identify relative deltoids over pairs of

data streams.

8.3 Streaming Pointwise Mutual Information
Pointwise mutual information (PMI), a measure of the statistical

correlation between a pair of events, is defined as:

PMI(x ,y) = log

p(x ,y)

p(x)p(y)
.

Intuitively, positive values of the PMI indicate events that are posi-

tively correlated, negative values indicate events that are negatively

correlated, and a PMI of 0 indicates uncorrelated events.

In natural language processing, PMI is a frequently-used mea-

sure of word association [67]. Traditionally, the PMI is estimated

using empirical counts of unigrams and bigrams obtained from a

text corpus. The key problem with this approach is that the number

of bigrams in standard natural language corpora can grow very

large; for example, we found ∼47M unique co-occurring pairs of

tokens in a small subset of a standard newswire corpus. This combi-

natorial growth in the feature dimension is further amplified when

considering higher-order generalizations of PMI.

More generally, streaming PMI estimation can be used to detect

pairs of events whose occurrences are strongly correlated. For ex-

ample, we can consider a streaming log monitoring use case where

correlated events are potentially indicative of cascading failures

or trigger events resulting in exceptional behavior in the system.

Therefore, we expect that the techniques developed here should be

useful beyond standard NLP applications.

Sparse Online PMI Estimation. Streaming PMI estimation using

approximate counting has previously been studied [23]; however,

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tai et al.

this approach has the drawback that memory usage still scales

linearly with the number of observed bigrams. Here, we explore

streaming PMI estimation from a different perspective: we pose a

binary classification problem over the space of bigrams with the

property that the model weights asymptotically converge to an

estimate of the PMI.
5

The classification problem is set up as follows: in each itera-

tion t , with probability 0.5 sample a bigram (u,v) from the bi-

gram distribution p(u,v) and set yt = +1; with probability 0.5

sample (u,v) from the unigram product distribution p(u)p(v) and
set yt = −1. The input xt is the 1-sparse vector where the in-

dex corresponding to (u,v) is set to 1. We train a logistic regres-

sion model to discriminate between the true and synthetic sam-

ples. If λ = 0, the model asymptotically converges to the distri-

bution p̂(y = 1 | (u,v)) = f (wuv) = p(u,v)/(p(u,v) + p(u)p(v))
for all pairs (u,v), where f is the logistic function. It follows that

wuv = log(p(u,v)/p(u)p(v)), which is exactly the PMI of (u,v).
If λ > 0, we obtain an estimate that is biased, but with reduced

variance in the estimates for rare bigrams.

Experimental Setup. We train on a subset of a standard newswire

corpus [12]; the subset contains 77.7M tokens, 605K unique uni-

grams and 47M unique bigrams over a sliding window of size 6. In

our implementation, we approximate sampling from the unigram

distribution by sampling from a reservoir sample of tokens [35, 49].

We estimated weights using the AWM-Sketch with heap size 1024

and depth 1; the reservoir size was fixed at 4000. We make a sin-

gle pass through the dataset and generate 5 negative samples for

every true sample. Strings were first hashed to 32-bit values using

MurmurHash3;6 these identifiers were hashed again to obtain sketch
bucket indices.

Results. For width settings up to 2
16
, our implementation’s total

memory usage was at most 1.4MB. In this regime, memory usage

was dominated by the storage of strings in the heap and the un-

igram reservoir. For comparison, the standard approach to PMI

estimation requires 188MB of space to store exact 32-bit counts for

all bigrams, excluding the space required for storing strings or the

token indices corresponding to each count. In Table 3, we show sam-

ple pairs retrieved by our method; the PMI values estimated from

exact counts are well-estimated by the classifier weights. In Fig. 11,

we show that at small widths, the high collision rate results in the

retrieval of noisy, low-PMI pairs; as the width increases, we retrieve

higher-PMI pairs which typically occur with lower frequency. Fur-

ther, regularization helps discard low-frequency pairs but can result

in the model missing out on high-PMI but less-frequent pairs.

9 DISCUSSION
Active Set vs. Multiple Hashing. In the basic WM-Sketch, multi-

ple hashing is needed in order to disambiguate features that collide

in a heavy bucket; we should expect that features with truly high

weight should correspond to large values in the majority of buckets

that they hash to. The active set approach uses a different mech-

anism for disambiguation. Suppose that all the features that hash

5
This classification formulation is used in the popular word2vec skip-gram method

for learning word embeddings [54]; the connection to PMI approximation was first

observed by Levy et al. [43].

6
https://github.com/aappleby/smhasher/wiki/MurmurHash3

to a heavy bucket are added to the active set; we should expect

that the weights for those features that were erroneously added

will eventually decay (due to ℓ2-regularization) to the point that

they are evicted from the active set. Simultaneously, the truly high-

weight features are retained in the active set. The AWM-Sketch can

therefore be interpreted as a variant of feature hashing where the

highest-weighted features are not hashed.

Per-Feature Learning Rates. In previous work on online learn-

ing applications, practitioners have found that the per-feature learn-

ing rates can significantly improve classification performance [51].

An open question is whether variable learning rate across features

is worth the associated memory cost in the streaming setting.

Multiclass Classification. The WM-Sketch be extended to the

multiclass setting using the following simple extension. GivenM
output classes, maintainM copies of the WM-Sketch. In order to

predict the output, we evaluate the output on each copy and return

the maximum. For large M , for instance in language modeling

applications, this procedure can be computationally expensive since

update time scales linearly with M . In this regime, we can apply

noise contrastive estimation [29]—a standard reduction to binary

classification—to learn the model parameters.

10 CONCLUSIONS
In this paper, we introduced the Weight-Median Sketch for the

problem of identifying heavily-weighted features in linear clas-

sifiers over streaming data. We showed theoretical guarantees

for our method, drawing on techniques from online learning and

norm-preserving random projections. In our empirical evaluation,

we showed that the active set extension to the basic WM-Sketch

achieves superior weight recovery and competitive classification

error compared to baseline methods across several standard binary

classification benchmarks. Finally, we explored promising applica-

tions of our methods by framing existing stream processing tasks as

classification problems. We believe this machine learning perspec-

tive on sketch-based stream processing may prove to be a fruitful

direction for future research in advanced streaming analytics.

ACKNOWLEDGMENTS
We thank Daniel Kang, Sahaana Suri, Pratiksha Thaker, and the

anonymous reviewers for their feedback on earlier drafts of this

work. This research was supported in part by affiliate members

and other supporters of the Stanford DAWN project—Google, Intel,

Microsoft, Teradata, and VMware—as well as DARPA under No.

FA8750-17-2-0095 (D3M) and industrial gifts and support from Toy-

ota Research Institute, Juniper Networks, Keysight Technologies,

Hitachi, Facebook, Northrop Grumman, and NetApp. Gregory and

Vatsal’s contributions were supported by ONR Award N00014-17-1-

2562, NSF Award CCF-1704417, and a Sloan Research Fellowship.

REFERENCES
[1] Dimitris Achlioptas. 2003. Database-friendly random projections: Johnson-

Lindenstrauss with binary coins. Journal of computer and System Sciences 66, 4
(2003), 671–687.

[2] Jimmy Ba and Rich Caruana. 2014. Do deep nets really need to be deep?. In

Advances in neural information processing systems. 2654–2662.
[3] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and

Sahaana Suri. 2017. Macrobase: Prioritizing attention in fast data. In Proceedings
of the 2017 ACM International Conference on Management of Data. ACM, 541–556.

https://github.com/aappleby/smhasher/wiki/MurmurHash3

Sketching Linear Classifiers over Data Streams SIGMOD’18, June 10–15, 2018, Houston, TX, USA

[4] Nagender Bandi, Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi.

2007. Fast data stream algorithms using associative memories. In Proceedings of
the 2007 ACM SIGMOD international conference on Management of data. ACM,

247–256.

[5] Avrim Blum, Adam Kalai, and John Langford. 1999. Beating the hold-out: Bounds

for k-fold and progressive cross-validation. In Proceedings of the twelfth annual
conference on Computational learning theory. ACM, 203–208.

[6] Oscar Boykin, Sam Ritchie, Ian O’Connell, and Jimmy Lin. 2014. Summingbird: A

framework for integrating batch and onlinemapreduce computations. Proceedings
of the VLDB Endowment 7, 13 (2014), 1441–1451.

[7] Daniela Brauckhoff, Xenofontas Dimitropoulos, Arno Wagner, and Kavè Salama-

tian. 2012. Anomaly extraction in backbone networks using association rules.

IEEE/ACM Transactions on Networking (TON) 20, 6 (2012), 1788–1799.
[8] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model

compression. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 535–541.

[9] Robert Calderbank, Sina Jafarpour, and Robert Schapire. [n. d.]. Compressed

Learning: Universal Sparse Dimensionality Reduction and Learning in the Mea-

surement Domain. ([n. d.]).

[10] J Lawrence Carter andMark NWegman. 1977. Universal classes of hash functions.

In Proceedings of the ninth annual ACM symposium on Theory of computing. ACM,

106–112.

[11] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent

items in data streams. Automata, languages and programming (2002), 784–784.

[12] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp

Koehn, and Tony Robinson. 2013. One billion word benchmark for measuring

progress in statistical language modeling. arXiv preprint arXiv:1312.3005 (2013).
[13] Jeffrey Considine, Feifei Li, George Kollios, and John Byers. 2004. Approximate ag-

gregation techniques for sensor databases. In Data Engineering, 2004. Proceedings.
20th International Conference on. IEEE, 449–460.

[14] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq.

2017. Algorithmic decision making and the cost of fairness. arXiv preprint
arXiv:1701.08230 (2017).

[15] Graham Cormode and Marios Hadjieleftheriou. 2008. Finding frequent items in

data streams. Proceedings of the VLDB Endowment 1, 2 (2008), 1530–1541.
[16] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream

summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[17] Graham Cormode and S Muthukrishnan. 2005. What’s new: Finding significant

differences in network data streams. IEEE/ACM Transactions on Networking (TON)
13, 6 (2005), 1219–1232.

[18] Koby Crammer, Jaz Kandola, and Yoram Singer. 2004. Online classification on a

budget. In Advances in neural information processing systems. 225–232.
[19] Alberto Dainotti, Antonio Pescape, and Kimberly C Claffy. 2012. Issues and

future directions in traffic classification. IEEE network 26, 1 (2012).

[20] Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer. 2006. The Forgetron: A

kernel-based perceptron on a fixed budget. In Advances in neural information
processing systems. 259–266.

[21] Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. 2002. Frequency

estimation of internet packet streams with limited space. In European Symposium
on Algorithms. Springer, 348–360.

[22] John Duchi and Yoram Singer. 2009. Efficient online and batch learning using

forward backward splitting. Journal of Machine Learning Research 10, Dec (2009),

2899–2934.

[23] Benjamin V Durme and Ashwin Lall. 2009. Streaming pointwise mutual informa-

tion. In Advances in Neural Information Processing Systems. 1892–1900.
[24] Pavlos S Efraimidis and Paul G Spirakis. 2006. Weighted random sampling with

a reservoir. Inform. Process. Lett. 97, 5 (2006), 181–185.
[25] Philippe Flajolet. 1985. Approximate counting: a detailed analysis. BIT Numerical

Mathematics 25, 1 (1985), 113–134.
[26] Daniel Golovin, D Sculley, Brendan McMahan, and Michael Young. 2013. Large-

scale learning with less ram via randomization. In Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML-13). 325–333.

[27] Michael Greenwald and Sanjeev Khanna. 2001. Space-efficient online computa-

tion of quantile summaries. In ACM SIGMOD Record, Vol. 30. ACM, 58–66.

[28] Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhar-

gavi Paranjape, Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik

Varma, and Prateek Jain. 2017. ProtoNN: Compressed and Accurate kNN for

Resource-scarce Devices. In International Conference on Machine Learning. 1331–
1340.

[29] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation:

A new estimation principle for unnormalized statistical models. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics.
297–304.

[30] Elad Hazan et al. 2016. Introduction to online convex optimization. Foundations
and Trends® in Optimization 2, 3-4 (2016), 157–325.

[31] Elad Hazan, Amit Agarwal, and Satyen Kale. 2007. Logarithmic regret algorithms

for online convex optimization. Machine Learning 69, 2 (2007), 169–192.

[32] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in

a neural network. arXiv preprint arXiv:1503.02531 (2015).
[33] Steven CH Hoi, Jialei Wang, Peilin Zhao, and Rong Jin. 2012. Online feature

selection formining big data. In Proceedings of the 1st international workshop on big
data, streams and heterogeneous source mining: Algorithms, systems, programming
models and applications. ACM, 93–100.

[34] William B Johnson and Joram Lindenstrauss. 1984. Extensions of Lipschitz

mappings into a Hilbert space. Contemporary mathematics 26, 189-206 (1984), 1.
[35] Nobuhiro Kaji and Hayato Kobayashi. 2017. Incremental skip-gram model with

negative sampling. arXiv preprint arXiv:1704.03956 (2017).
[36] Daniel M Kane and Jelani Nelson. 2014. Sparser Johnson-Lindenstrauss trans-

forms. Journal of the ACM (JACM) 61, 1 (2014), 4.
[37] Ashish Kapoor, Simon Baker, Sumit Basu, and Eric Horvitz. 2012. Memory

constrained face recognition. In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on. IEEE, 2539–2546.

[38] Richard M Karp, Scott Shenker, and Christos H Papadimitriou. 2003. A simple

algorithm for finding frequent elements in streams and bags. ACM Transactions
on Database Systems (TODS) 28, 1 (2003), 51–55.

[39] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. 2015. Federated op-

timization: Distributed optimization beyond the datacenter. arXiv preprint
arXiv:1511.03575 (2015).

[40] Ashish Kumar, Saurabh Goyal, and Manik Varma. 2017. Resource-efficient Ma-

chine Learning in 2 KB RAM for the Internet of Things. In International Conference
on Machine Learning. 1935–1944.

[41] John Langford, Lihong Li, and Tong Zhang. 2009. Sparse online learning via

truncated gradient. Journal of Machine Learning Research 10, Mar (2009), 777–801.

[42] Kasper Green Larsen, Jelani Nelson, Huy L Nguyên, and Mikkel Thorup. 2016.

Heavy hitters via cluster-preserving clustering. In Foundations of Computer Sci-
ence (FOCS), 2016 IEEE 57th Annual Symposium on. IEEE, 61–70.

[43] Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix

factorization. In Advances in neural information processing systems. 2177–2185.
[44] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. 2004. RCV1: A new

benchmark collection for text categorization research. Journal of machine learning
research 5, Apr (2004), 361–397.

[45] Brent Longstaff, Sasank Reddy, and Deborah Estrin. 2010. Improving activ-

ity classification for health applications on mobile devices using active and

semi-supervised learning. In International Conference on Pervasive Computing
Technologies for Healthcare (PervasiveHealth). IEEE.

[46] Ge Luo, LuWang, Ke Yi, and Graham Cormode. 2016. Quantiles over data streams:

experimental comparisons, new analyses, and further improvements. The VLDB
Journal 25, 4 (2016), 449–472.

[47] JustinMa, Lawrence K Saul, Stefan Savage, and GeoffreyMVoelker. 2009. Identify-

ing suspicious URLs: an application of large-scale online learning. In Proceedings
of the 26th annual international conference on machine learning. ACM, 681–688.

[48] Gurmeet SinghManku and RajeevMotwani. 2002. Approximate frequency counts

over data streams. In Proceedings of the 28th international conference on Very Large
Data Bases. VLDB Endowment, 346–357.

[49] Chandler May, Kevin Duh, Benjamin Van Durme, and Ashwin Lall. 2017.

Streaming Word Embeddings with the Space-Saving Algorithm. arXiv preprint
arXiv:1704.07463 (2017).

[50] Ian McGraw, Rohit Prabhavalkar, Raziel Alvarez, Montse Gonzalez Arenas, Kan-

ishka Rao, David Rybach, Ouais Alsharif, Haşim Sak, Alexander Gruenstein,

Françoise Beaufays, et al. 2016. Personalized speech recognition on mobile de-

vices. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International
Conference on. IEEE, 5955–5959.

[51] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,

Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. 2013.

Ad click prediction: a view from the trenches. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,

1222–1230.

[52] Alexandra Meliou, Sudeepa Roy, and Dan Suciu. 2014. Causality and explanations

in databases. In VLDB.
[53] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient compu-

tation of frequent and top-k elements in data streams. In International Conference
on Database Theory. Springer, 398–412.

[54] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[55] Katsiaryna Mirylenka, Graham Cormode, Themis Palpanas, and Divesh Srivas-

tava. 2015. Conditional heavy hitters: detecting interesting correlations in data

streams. The VLDB Journal 24, 3 (2015), 395–414.
[56] Mihai P?traşcu andMikkel Thorup. 2012. The power of simple tabulation hashing.

Journal of the ACM (JACM) 59, 3 (2012), 14.
[57] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i

trust you?: Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 1135–1144.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tai et al.

[58] Pratanu Roy, Arijit Khan, and Gustavo Alonso. 2016. Augmented sketch: Faster

and more accurate stream processing. In Proceedings of the 2016 International
Conference on Management of Data. ACM, 1449–1463.

[59] Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. 2004. Reversible

sketches for efficient and accurate change detection over network data streams.

In Proceedings of the 4th ACM SIGCOMM conference on Internet measurement.
ACM, 207–212.

[60] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. 2011. Pe-

gasos: Primal estimated sub-gradient solver for svm. Mathematical programming
127, 1 (2011), 3–30.

[61] Ohad Shamir. 2016. Without-Replacement Sampling for Stochastic Gra-

dient Methods. In Advances in Neural Information Processing Systems
29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Gar-

nett (Eds.). Curran Associates, Inc., 46–54. http://papers.nips.cc/paper/

6245-without-replacement-sampling-for-stochastic-gradient-methods.pdf

[62] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alexander L Strehl,

Alex J Smola, and SVN Vishwanathan. 2009. Hash kernels. In International
Conference on Artificial Intelligence and Statistics. 496–503.

[63] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash

Suri. 2004. Medians and beyond: new aggregation techniques for sensor networks.

In Proceedings of the 2nd international conference on Embedded networked sensor
systems. ACM, 239–249.

[64] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. 2017.

Federated Multi-Task Learning. In Advances in Neural Information Processing
Systems. 4427–4437.

[65] J. Stamper, A. Niculescu-Mizil, S. Ritter, G.J. Gordon, and K.R.

Koedinger. 2010. Algebra I 2008-2009. Challenge data set from KDD

Cup 2010 Educational Data Mining Challenge. (2010). Find it at

http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp.

[66] Jacob Steinhardt and John Duchi. 2015. Minimax rates for memory-bounded

sparse linear regression. In Conference on Learning Theory. 1564–1587.
[67] Peter D Turney and Patrick Pantel. 2010. From frequency to meaning: Vector

space models of semantics. Journal of artificial intelligence research 37 (2010),

141–188.

[68] CAIDA UCSD. 2008. The CAIDA UCSD Anonymized

Passive OC48 Internet Traces Dataset. (2008).

http://www.caida.org/data/passive/passive_oc48_dataset.xml.

[69] Balajee Vamanan, Gwendolyn Voskuilen, and TN Vijaykumar. 2010. EffiCuts:

optimizing packet classification for memory and throughput. In ACM SIGCOMM
Computer Communication Review, Vol. 40. ACM, 207–218.

[70] Shoba Venkataraman, Dawn Song, Phillip B Gibbons, and Avrim Blum. 2005.

New streaming algorithms for fast detection of superspreaders. Department of
Electrical and Computing Engineering (2005), 6.

[71] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh

Attenberg. 2009. Feature hashing for large scale multitask learning. In Proceedings
of the 26th Annual International Conference on Machine Learning. ACM, 1113–

1120.

[72] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining away outliers in

aggregate queries. Proceedings of the VLDB Endowment 6, 8 (2013), 553–564.
[73] Lin Xiao. 2010. Dual averaging methods for regularized stochastic learning

and online optimization. Journal of Machine Learning Research 11, Oct (2010),

2543–2596.

[74] Tianbao Yang, Lijun Zhang, Rong Jin, and Shenghuo Zhu. 2015. Theory of dual-

sparse regularized randomized reduction. In International Conference on Machine
Learning. 305–314.

[75] Hsiang-Fu Yu, Hung-Yi Lo, Hsun-Ping Hsieh, Jing-Kai Lou, Todd G McKenzie,

Jung-Wei Chou, Po-Han Chung, Chia-Hua Ho, Chun-Fu Chang, Yin-Hsuan Wei,

et al. 2010. Feature engineering and classifier ensemble for KDD cup 2010. In

KDD Cup.
[76] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Measure-

ment with OpenSketch.. In NSDI, Vol. 13. 29–42.
[77] Tong Yu, Yong Zhuang, Ole J Mengshoel, and Osman Yagan. 2016. Hybridizing

personal and impersonal machine learning models for activity recognition on

mobile devices.

[78] Ce Zhang, Arun Kumar, and Christopher Ré. 2016. Materialization optimizations

for feature selection workloads. ACM Transactions on Database Systems (TODS)
41, 1 (2016), 2.

[79] Lijun Zhang, MehrdadMahdavi, Rong Jin, Tianbao Yang, and Shenghuo Zhu. 2014.

Random projections for classification: A recovery approach. IEEE Transactions
on Information Theory 60, 11 (2014), 7300–7316.

[80] Martin Zinkevich. 2003. Online convex programming and generalized infini-

tesimal gradient ascent. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03). 928–936.

[81] Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the

elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
67, 2 (2005), 301–320.

A k-INDEPENDENCE OF HASH FUNCTIONS
Our analysis of the WM-Sketch requires hash functions that are

O(log(d/δ))-wise independent. While hash functions satisfying this

level of independence can be constructed using polynomial hashing

[10], hashing each input value would require time O(log(d/δ)),
which can be costly when the dimension d is large. Instead of

satisfying the full independence requirement, our implementation

simply uses fast, 3-wise independent tabulation hashing [56]. In

our experiments, we did not observe any significant degradation in

performance from this choice of hash function.

B PROOFS
B.1 Proof of Theorem 1
We will use the duals of L(w) and L̂(z) to show that z∗ is close to
Rw∗, following the analysis of Zhang et al. [79] and Yang et al.

[74]. Define x̃i = yixi , i.e. the ith data point xi times its label. Let

X̃ ∈ Rd×T be the matrix of data points such that the ith column is

x̃i . LetG = X̃T X̃ be the Gram matrix corresponding to the original

data points. Forming the Lagrangian andminimizing with respect to

the primal variables gives us the following dual objective function

in terms of the dual variable α ∈ RT ,

J (α) =
1

T

∑
i
ℓ∗(αi) +

1

2λT 2
αTGα ,

where ℓ∗(αi) is the Fenchel conjugate of ℓ(zi). Note that if α∗ is
the minimizer of J (α), then the minimizer w∗ of L(w) is given by

w∗ = − 1

λT X̃α∗.

We similarly define G = X̃T RT RX̃ as the Gram matrix corre-

sponding to the projected data points. We can write down the dual

L̂(α) of the projected primal objective function Ĵ (w) in terms of the

dual variable α̂ as follows:

Ĵ (α̂) =
1

T

∑
i
ℓ∗(α̂i) +

1

2λT 2
α̂T Ĝα̂ .

As before, if α̂∗ is the minimizer of Ĵ (α̂), then the minimizer z∗ of
L̂(z) is given by ŵ∗ = − 1

λT RX̃α̂∗.
We will first express the distance between z∗ and Rw∗ in terms

of the distance between the dual variables. We can write:

∥z∗ − Rw∗∥22 =
1

λ2T 2
∥RX̃α̂∗ − RX̃α∗∥

2

2

=
1

λ2T 2
(α̂∗ − α∗)

T Ĝ(α̂∗ − α∗). (2)

Hence, our goal will be to upper bound (α̂∗−α∗)
T Ĝ(α̂∗−α∗). Define

∆ = 1

λT (Ĝ −G)α∗. We will show that (α̂∗ − α∗)
T Ĝ(α̂∗ − α∗) can be

upper bounded in terms of ∆ as follows.

Lemma 2.

1

λ2T 2
(α̂∗ − α∗)

T Ĝ(α̂∗ − α∗) ≤
2β

λ
∥∆∥2∞

Due to space constraints, we omit the proof of Lemma 2 here,

deferring it to the full version of the paper. The proof relies on the

convexity and strong-smoothness of the loss function ℓ.

We now bound ∥∆∥∞. The result relies on the JL property of the

projection matrix R (recall Definition 1). If R is a JL matrix with

error ϵ and failure probability δ/d2
, then it is straightforward to

http://papers.nips.cc/paper/6245-without-replacement-sampling-for-stochastic-gradient-methods.pdf
http://papers.nips.cc/paper/6245-without-replacement-sampling-for-stochastic-gradient-methods.pdf

Sketching Linear Classifiers over Data Streams SIGMOD’18, June 10–15, 2018, Houston, TX, USA

verify that with failure probability δ , for all coordinate basis vectors
{e1, . . . , ed },

∥Rei ∥2 = 1 ± ϵ, ∀ i, |⟨Rei ,Rej ⟩| ≤ ϵ, ∀ i , j . (3)

Using this projection, we show the following bound on ∥∆∥∞:

Lemma 3. If R satisfies condition 3, then:

∥∆∥∞ ≤ 2γϵ ∥w∗∥1,

where γ = maxi ∥xi ∥1.

Proof. We first rewrite ∆ as follows,

∆ =
1

λT
(X̃T RT RX̃ − X̃T X̃)α∗ =

1

λT
X̃T (RT R − I)X̃α∗

= X̃T (I − RT R)w∗,

using the relation that w∗ = − 1

λT X̃α∗. Therefore,

∥∆∥∞ ≤ max

i
|xTi (I − R

T R)w∗ | = max

i
|xTi w∗ − (Rxi)T (Rw∗)|.

We now claim that if condition 3 is satisfied, then for any two

vectors v1 and v2,

|vT
1

v2 − (Rv1)
T (Rv2)| ≤ 2ϵ ∥v1∥1 ∥v2∥1 . (4)

The proof follows from simple algebra, and is omitted from this

version for lack of space. Using this relation, it follows that,

∥∆∥∞ ≤ max

i
|xTi w∗ − (Rxi)T (Rw∗)| ≤ 2ϵγ ∥w∗∥1.

□

We will now combine Lemma 2 and 3. By Eq. 2 and Lemma 2,

∥z∗ − Rw∗∥22 ≤
2β

λ
∥∆∥2∞.

If R is a JL matrix with error ϵ and failure probability δ/d2
, then by

Lemma 3, with failure probability δ ,

∥z∗ − Rw∗∥2 ≤ 4γϵ

√
β

λ
∥w∗∥1. (5)

By Kane and Nelson [36], the random projection matrix R satisfies

the JL property with error θ and failure probability δ ′/d2
for k ≥

C log(d/δ ′)/θ2
, whereC is a fixed constant. Using Eq. 5, with failure

probability δ ′,

∥z∗ − Rw∗∥2 ≤ 4γθ

√
β

λ
∥w∗∥1. (6)

Recall that

√
sR is a Count-Sketchmatrix with widthC1/θ and depth

s = C2 log(d/δ ′)/θ , where C1 and C2 are fixed constants. Let wproj

be the projection of w∗ with the Count-Sketch matrix R̃, hence
wproj =

√
sRw∗. Let zproj =

√
sz∗. By Eq. 6, with failure probability

δ ′,

zproj −wproj

2
≤

√
16βγ 2θ log(d/δ ′)

λ
∥w∗∥1.

Let wcs be the Count-Sketch estimate of w∗ derived from wproj,

and west be the Count-Sketch estimate of w∗ derived from zproj.

Recall that the Count-Sketch estimate of a vector is the median of

the estimates of all the locations to which the vector hashes. As the

difference between the median of any two vectors is at most the

ℓ∞-norm of their difference,

∥west −wcs∥∞ ≤

zproj −wproj

∞
.

Therefore with failure probability δ ′,

∥west −wcs∥∞ ≤

zproj −wproj

∞
≤

zproj −wproj

2

≤

√
16βγ 2θ log(d/δ ′)

λ
∥w∗∥1. (7)

We now use Lemma 1 to bound the error for Count-Sketch recovery.

Using Lemma 1 for the matrix

√
sR, with failure probability δ ′,

∥w∗ −wcs∥∞ ≤
√
θ ∥w∗∥2.

Now using the triangle inequality and Eq. 7, with failure probability

2δ ′ (due to a union bound),

∥w∗ −west∥∞ ≤ ∥w∗ −west∥∞ + ∥west −wcs∥∞

≤
√
θ ∥w∗∥2 +

√
16βγ 2θ log(d/δ ′)

λ
∥w∗∥1

≤

(
√
θ +

√
16βγ 2θ log(d/δ ′)

λ

)
∥w∗∥1.

Therefore choosing θ = min{1, λ/(16βγ 2
log(d/δ ′))}ϵ2/4, with fail-

ure probability 2δ ′,

∥w∗ −west∥∞ ≤ ϵ ∥w∗∥1.

Choosing δ ′ = δ/2, we have that for fixed constants C1,C2,

k = (C1/ϵ
4) log

3(d/δ)max{1, β2γ 4/λ2},

s = (C2/ϵ
2) log

2(d/δ)max{1, βγ 2/λ},

∥w∗ −west∥∞ ≤ ϵ ∥w∗∥1, with probability 1 − δ .

B.2 Proof of Theorem 2
Let ft (z) be the loss function corresponding to the data point chosen
in the t th time step:

ft (z) = ℓ
(
yt zT Rxt

)
+
λ

2

∥z∥2
2
. (8)

Let zt be the weight vector at the tth time step for online updates

on the projected problem. Let z̄ = 1

T
∑T
i=1

ẑi be the average of the
weight vectors for all the T time steps. We claim that z̄ is close to
z∗, the optimizer of L̂(z), using Corollary 1 of Shamir [61]. In order

to apply the result we first need to define a few parameters of the

function L̂(z). Note that L̂(z) is λ-strongly convex (since L̂(z)− λ
2
∥z∥2

2

is convex). Moreover, since the derivative of ℓ is bounded above

by H , ℓ is H -Lipschitz. We assume ∥Rxi ∥2 ≤ B, ∥z∗∥2 ≤ D and

maxt ∥∇ft (w)∥2 ≤ G. We will bound B,D and G in the end. We

now apply Corollary 1 of Shamir [61], with the notation adapted

for our setting.

Lemma 4. [61] Consider any loss function L̂(z) =
∑T
i=1

ft (z),
where ft (z) is defined in Eq. 8. For any H -Lipchitz ℓi , ∥Rxi ∥2 ≤ B,
∥zt ∥2 ≤ D, and some fixed constant C , over the randomness in the
order in which the samples are received:

E
[

1

T

T∑
t=1

L̂(zt) − L̂(z∗)
]
≤

C(RT /
√
T + BDH)
√
T

,

where RT is the regret of online gradient descent with respect to the
batch optimizer z∗, defined as RT =

∑T
t=1
[ft (ẑ) − ft (z∗)].

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tai et al.

By standard regret bounds on online gradient descent (see Zinke-

vich [80]), RT ≤ GD
√
T . Therefore,

E
[

1

T

T∑
t=1

L̂(zt) − L̂(z∗)
]
≤

CD(G + BH)
√
T

.

Note that by Jensen’s inequality,

E[L̂(z)] ≤ E
[

1

T

T∑
t=1

L̂(zt)
]

=⇒ E
[
L̂(z̄) − L̂(z∗)

]
≤

CD(G + BH)
√
T

. (9)

We will now bound the expected distance between z̄ and z∗ using
Eq. 9 and the strong convexity of L̂(w). As L̂(w) is λ-strongly convex
and ∇L̂(z∗) = 0, we can write:

L̂(z∗) + (λ/2)∥z̄ − z∗∥22 ≤ L̂(z̄)

=⇒ ∥z̄ − z∗∥22 ≤ (λ/2)[L̂(z̄) − L̂(z∗)]

=⇒ E
[
∥z̄ − z∗∥22

]
≤ (2/λ)

[
E[L̂(z̄)] − L̂(z∗)

]
.

Using Eq. 9 and then Jensen’s inequality,

E
[
∥z̄ − z∗∥2

]
≤

2CD(G + BH)

λ
√
T

. (10)

Let z̄proj =
√
s z̄. Let zwm be the Count-Sketch estimate ofw∗ derived

from z̄proj. Recall from the proof of Theorem 1 that zproj =
√
sz and

west is the Count-Sketch estimate of w∗ derived from zproj. As in

the proof of Theorem 1, we note that the difference between the

medians of any two vectors is at most the ℓ∞ norm of the difference

of the vectors, and hence we can write,

∥west − zwm∥∞ ≤

zproj − z̄proj

∞
≤

zproj − z̄proj

2

=
√
s ∥z∗ − z̄∥

2
.

Therefore, using Eq. 10,

E[∥west − zwm∥∞] ≤
2CD(G + BH)

λ

√
s

T
. (11)

By the triangle inequality,

∥w∗ − zwm∥∞ ≤ ∥w∗ −west∥∞ + ∥west − zwm∥∞

=⇒ E
[
∥w∗ − zwm∥∞

]
≤ E

[
∥w∗ −west∥∞

]
+ E

[
∥west − zwm∥∞

]
.

By Theorem 1, for fixed constants C1,C2 and

k = (C1/ϵ
4) log

3(d/δ)max{1, β2γ 4/λ2},

s = (C2/ϵ
2) log

2(d/δ)max{1, βγ 2/λ},

∥w∗ −west∥∞ ≤ ϵ ∥w∗∥1 with probability 1−δ . Therefore, for fixed
constants C ′

1
and C ′

2
and probability 1 − δ ,

E
[
∥w∗ − zwm∥∞

]
≤

ϵ

2

∥w∗∥1

+

√
4C ′

2
(GD + BDH)2 log

2(d/δ)max{1,LR2/λ}

λ2ϵ2T
.

Therefore, for

T ≥ (C ′
3
/(ϵ4λ2))(D/∥w∗∥1)

2(G + BH)2 log
2(d/δ)max{1,LR2/λ},

E
[
∥w∗ − zwm∥∞

]
≤

ϵ

2

∥w∗∥1 +
ϵ

2

∥w∗∥2 ≤ ϵ ∥w∗∥1 .

We will now bound B,D and G, starting with B. Note that R is a JL

matrix which satisfies condition 3 with ϵ = θ . Using Eq. 4 and the

fact that ∥xi ∥2 ≤ 1,

∥Rxi ∥2 ≤
√

1 + θγ 2 =⇒ B ≤ 1 +
√
θγ ≤ 1 + ϵγ ,

where for the last bound we use the setting of

θ = min{1, λ/(4βγ 2
log(d/δ ′))}ϵ2/4

from the proof of Theorem 1. We next bound ∥z∗∥2. Using Eq. 4,

∥z∗ − Rw∗∥2 ≤ 2Rθ
√
β/λ ∥w∗∥1

=⇒ ∥z∗∥2 ≤ ∥Rw∗∥2 + 2Rθ
√
β/λ ∥w∗∥1 .

By Eq. 4, ∥Rw∗∥2 ≤
√
∥w∗∥2

2
+ θ ∥w∗∥21 ≤ ∥w∗∥2 +

√
θ ∥w∗∥1.

Therefore,

∥z∗∥2 ≤ ∥w∗∥2 +
√
θ ∥w∗∥1 + 2Rθ

√
β/λ ∥w∗∥1

= ∥w∗∥2 +
(√

θ + 2Rθ
√
β/λ

)
∥w∗∥1 .

For our choice of θ ,

∥z∗∥2 ≤ ∥w∗∥2 + ϵ ∥w∗∥1 =⇒ D ≤ D2 + ϵD1.

This implies that the (D/∥w∗∥1) term in our bound for T can be

upper bounded by 2D2/∥w∗∥1, yielding the bound on T stated in

Theorem 2. Finally, we need to upper bound G = maxt ∥∇ft (w)∥2.
We do this as follows:

∇ft (z) = ℓ′(yt zTt Rxt)Axt + λzt

=⇒ ∥∇ft (z)∥2 ≤ |ℓ
′(yt zTt Rx)|∥Rx ∥2 + λ∥zt ∥2

≤ H (1 + ϵγ) + λD.

C BASELINE ALGORITHMS

Algorithm 3: Simple Truncation

input: loss function ℓ, budget K , ℓ2-regularization
parameter λ, learning rate schedule ηt

initialization
S ← {} ▷ Empty heap

t ← 0

function Update(x, y)
τ ←

∑
i ∈S S[i] · xi ▷ Make prediction

S ← (1 − ληt)S − ηtyxi∇ℓ(yτ)
S ← Truncate(S , K)
t ← t + 1

Sketching Linear Classifiers over Data Streams SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Algorithm 4: Probabilistic Truncation
input: loss function ℓ, budget K , ℓ2-regularization

parameter λ, learning rate schedule ηt
initialization

S0 ← {}, S
′ ← {}

t ← 0

function Update(x, y)
τ ←

∑
i ∈S S[i] · xi ▷ Make prediction

for i ∈ St do
St+1[i] ← (1 − ληt)St [i] − ηtyxi∇ℓ(yτ)
if St+1[i] , 0 and St [i] = 0 then

r ∼ U(0, 1)
else

r ← S ′[i]
S ′[i] ← r |St [i]/St+1[i] |

St+1 ← Truncate(St+1, S ′, K)
t ← t + 1

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Dimensionality Reduction via Random Projection
	3.2 Online Learning

	4 Problem Statement
	4.1 The Weight Estimation Problem

	5 Finding Heavily-Weighted Features
	5.1 Weight-Median Sketch
	5.2 Active-Set Weight-Median Sketch

	6 Theoretical Analysis
	6.1 Batch Setting
	6.2 Online Setting

	7 Empirical Evaluation
	7.1 Datasets and Experimental Setup
	7.2 Baseline Methods
	7.3 Recovery Error Comparison
	7.4 Classification Error Rate
	7.5 Runtime Performance

	8 Applications
	8.1 Streaming Explanation
	8.2 Network Monitoring
	8.3 Streaming Pointwise Mutual Information

	9 Discussion
	10 Conclusions
	References
	A k-Independence of Hash Functions
	B Proofs
	B.1 Proof of Theorem 1
	B.2 Proof of Theorem 2

	C Baseline Algorithms

