Scalable Kernel Density Classification via
Threshold-Based Pruning

Edward Gan, Peter Bailis
Stanford InfoLab

ABSTRACT

Density estimation forms a critical component of many analytics
tasks including outlier detection, visualization, and statistical testing.
These tasks often seek to classify data into high and low-density
regions of a probability distribution. Kernel Density Estimation
(KDE) is a powerful technique for computing these densities, offer-
ing excellent statistical accuracy but quadratic total runtime. In this
paper, we introduce a simple technique for improving the perfor-
mance of using a KDE to classify points by their density (density
classification). Our technique, thresholded kernel density classi-
fication (tKDC), applies threshold-based pruning to spatial index
traversal to achieve asymptotic speedups over naive KDE, while
maintaining accuracy guarantees. Instead of exactly computing each
point’s exact density for use in classification, tKDC iteratively com-
putes density bounds and short-circuits density computation as soon
as bounds are either higher or lower than the target classification
threshold. On a wide range of dataset sizes and dimensions, tKDC
demonstrates empirical speedups of up to 1000x over alternatives.

1. INTRODUCTION

As data volumes grow too large for manual inspection, construct-
ing accurate models of the underlying data distribution is increas-
ingly important. In particular, estimates for the probability distribu-
tion of a dataset form a key component of analytics tasks including
spatial visualization [16, 17,29], statistical testing [15, 33], physical
modeling [5, 23], and density-based outlier detection [4,19]. In
each of these use cases, density estimation serves as a common
primitive in classifying data into low and high-density regions of the
distribution [9, 10, 54]. We refer to this task as density classification.

As an example of density classification, consider the distribution
of two measurements from a space shuttle sensor dataset [34], il-
lustrated in Figure 1a. The underlying probability distribution for
these readings—even in two dimensions—is complex: there are
several regions of high density, with no single cluster center, and a
considerable amount of fine-grained structure. A high-fidelity model
of the probability density distribution would enable several analyses.
Identifying points lying in low-density fringes of the distribution
can help identify rare operating modes of the shuttle. Computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4197-4/17/05. .. $15.00

DOL: http://dx.doi.org/10.1145/3035918.3064035

80

60 -

o 40

20 A

10° 10t 10? 10° 0 0.0003 1
bin count density

(a) Histogram of measurements,
cells colored by count.

(b) Classifying points with prob-
ability density p > 0.0003.

Figure 1: Measurements A and B (from columns 4 and 6 of the
shuttle dataset) come from a complex two-dimensional distribution.
Density classification identifies points with high probability density
in the distribution.

the contour lines that separate the clusters can illustrate constraints
on shuttle operation. Bounding the probability density of a given
point lets us assign p-values to a given observation and perform
statistical tests. Each of these tasks requires density classification,
i.e. building a model of the distribution and using it to compare a
density estimate against a threshold. Figure 1b depicts how density
classification identifies points that lie above a density threshold.
Developing accurate and efficient models for these complex dis-
tributions is difficult. Popular parametric models such as Gaussian
and Gaussian Mixture Models [6] make strong assumptions about
the underlying data distribution. When these assumptions do not
hold—as in the shuttle dataset—these methods deliver inaccurate
densities. Moreover, even when their assumptions hold, popular
parametric methods can require extensive parameter tuning. In
contrast, non-parametric methods such as Kernel Density Estima-
tion (KDE) [56], k-nearest neighbors (kNN) [43], and One-Class
SVM (OCSVM) [48] can model complex distributions with few
assumptions but are in turn much more computationally expensive.
In particular, KDE dates to the 1950s [46] and is the subject
of considerable study in statistics, offering the benefit of asymp-
totically approximating any smooth probability distribution [50].
Moreover, KDE provides normalized and differentiable probability
densities [52] that are useful in domains including astronomy [23]
and high-energy physics [15]. These properties make KDE ideal
for the density classification use cases outlined above. However,
when implemented naively, the total runtime cost of density estima-

http://dx.doi.org/10.1145/3035918.3064035

tion is quadratic in dataset size; calculating density estimates for a
two-dimensional dataset of only 500 thousand points takes over two
hours on a 2.9 GHz Intel Core i5 processor.

In this paper, we show that, when used in density classification,
much of the computational overhead in computing kernel density
estimates is unnecessary. We improve the performance of KDE-
based density classification both asymptotically and empirically
by up to three orders of magnitude by pruning density estimation
calculations according to the target classification threshold. That is,
instead of expending computational resources computing a precise
density to be used in classification, we instead iteratively refine
bounds on the density by traversing a spatial index. We short-circuit
the density computation as soon as these bounds are above or below
the target threshold. This way, we can quickly distinguish points in
dense regions from points in sparse regions, only paying for more
precise density estimates on query points close to the threshold. This
avoids the overwhelming majority of kernel evaluations required for
density estimation while still guaranteeing classification accuracy.

To apply this idea, we develop Thresholded Kernel Density Classi-
fication (tKDC), an efficient technique for performing kernel density
classification. tKDC leverages two major observations:

First, tKDC incorporates Gray and Moore’s prior insight that
spatial kd-tree indices can be used to group points into regions, each
of which can be iteratively refined to deliver increasingly accurate
estimates [26]. This existing optimization yields an approximate
estimate within € of the true density. tKDC takes this observation a
step further: instead of computing the true density within €, we can
stop as long as our bound places a point above or below the classi-
fication threshold. That is, tKDC pushes the density classification
predicate into the process of approximate density calcluation. tKDC
maintains upper and lower bounds on the estimated density and stops
index traversal (i.e., kernel computations) when the bounded density
is guaranteed to be either higher or lower than the classification
threshold. This additional pruning rule yields orders-of-magnitude
savings in the number of computations required to make an accurate
classification. For d-dimensional data (d > 1), this pruning rule
asymptotically reduces the complexity of computing the density of
a single point from O(n) to O(n%)-

Second, densities can vary dramatically across datasets. Depend-
ing on the dataset, raw probability density values can differ by
orders of magnitude. Specifying an a-priori density threshold is
difficult. This leads to a chicken-and-egg problem for classification:
tKDC must estimate densities in order to pick a good classification
threshold, but estimating densities without a threshold as a guide is
expensive. To address this, we develop a sampling-based algorithm
for accurately estimating a quantile target threshold (i.e., one useful
for classifying a given proportion of the data).

We evaluate the accuracy, runtime performance, and scalability
of a tKDC prototype on a range of real-world datasets. In each case,
tKDC achieves speedups up to 1000x compared with state-of-the-art
alternative KDE approximation algorithms while providing bounds
on its accuracy.

We make the following contributions in this paper:

e tKDC, a technique for KDE density classification that uses
thresholds to prune kernel evaluations.

e A fast, sample-based technique for bootstrapping density
quantiles, which tKDC uses for classification.

e An empirical evaluation of tKDC’s accuracy and runtime,
illustrating order-of-magnitude speedups over alternatives.

The remainder of this paper proceeds as follows: in Section 2, we
provide additional background on kernel density estimation and the
density classification task. Section 3 describes tKDC and presents a

sepal length (cm)
) ~
1

i

sepal width (cm) g -

w0

(b) Distribution of Galaxy mass
across space [1, 7], probabilities
densities signify physical mass
densities.

(a) Probability Density Contours
from iris sepal measurements [24].
Region contours provide intuition
for biological distinctions.

Figure 2: Two applications of density classification

runtime analysis, Section 4 evaluates tKDC on a range of real-world
datasets, Section 5 describes related work, and Section 6 concludes.

2. BACKGROUND AND TASK STATEMENT

In this section, we provide additional background on motivating
use-cases, formally introduce Kernel Density Estimation, and define
our target task: density classification.

2.1 Target Use Cases

When modeling a probability distribution, probability density
values are essential in enabling a number of further analyses. In
fact, in these cases, we may not need to compute the density values
themselves. Classifying whether points have densities above or
below a threshold (density classification) independently enables a
number of tasks including:

1. density-based outlier classification,
2. spatial contour visualization, and
3. density-based statistical testing.
We motivate these with example scenarios below:

Outlier Classification. Given a data distribution, we can iden-
tify any points lying in low probability-density regions as outliers.
For instance, a production engineer examining the shuttle mea-
surement data (Figure 1a) can search for times when the shuttle
entered unusual operating modes. The measurements lying in the
low density filaments between larger clusters are natural outlier
candidates, and ground truth data confirms that most of these low
density observations in fact occurred during unusual operating states.
Probability densities have been used for similar outlier classifica-
tion tasks in computer vision, fraud detection, and traffic accident
analysis [4, 19,48,49]. Unsupervised density-based outlier classi-
fication would be especially useful in explanation engines such as
MacroBase [3]. Section 5 provides more details on using KDE for
outlier detection compared with other methods.

Visualizing and Modeling Region Boundaries. The probability
distribution of a dataset also allows us to understand the contour
lines (i.e., level sets) that divide data points into distinct clusters and
regions. Figure 2a illustrates the distribution of sepal measurements
from a dataset of Iris flower measurements [24]: there are two dom-
inant modes and a sparse region separating the two. For a biologist,
understanding the shape of the contour lines defining these modes
can yield valuable intuition. Scientific insights have been made pos-
sible by visualizing probability density contours to study volcanic
lava flow [5] and understand the movement patterns of migratory
whales [42]. In fact, as seen in visualization functions available in

popular Python [57] and R [20] packages, as well as visualization
research efforts [41], one of the most common motivations for mod-
eling data probability distributions is to visualize the boundaries
of these high and low density regions. Automated procedures can
also take advantage of knowing the region boundaries to perform
clustering [16, 17] and run simulations [53].

Probability Densities for Statistics and Physics. Finally, a dis-
tribution estimate allows us to study other statistical and physical
quantities that are depend on probability densities. Figure 2b de-
picts a cross section of the Sloan Digital Sky Survey: a multi-band,
multi-dimensional survey of galaxy emissions [1]. Low probabil-
ity density regions in this dataset have been used to successfully
identify trends in physical mass distribution [23], allowing scientists
to study for instance how galaxies formed in regions of space with
low-mass density differ in spectrum. In statistics, bounds on the
probability density also translate directly into bounds on hazard
rate [51] or log likehood ratios [50] which are used in high energy
physics classifiers [15], and there are direct statistical techniques for
translating bounded density regions into classification confidence
intervals [33].

Identifying points in low and high density regions is key to en-
abling the all of the above use cases, motivating the study of fast
density classification algorithms.

2.2 Density Classification

Given a dataset X with probability density estimate f(x) and
a set of query points X, the density classification task consists
of identifying whether f(x,) is above or below a threshold ¢ for
each point x, € X,;. This is equivalent to the statistical level-set
identification problem, except that in our setting we seek to classify
points according to the density estimate f itself, rather than the
unobserved true distribution.

By adjusting ¢, density classification can serve a variety of uses.
For relatively small ¢, classifying points with f(x,) <t allows us to
identify outliers, or points that lie in the least likely regions of the
distribution. For moderate ¢, we can estimate the shape of contour
lines. We can also adjust ¢ to provide bounds on probability densities
for downstream statistical or physics-based tasks.

Figure 1b illustrates the results of estimating a probability distri-
bution based on the shuttle data (Figure 1a) and then performing
density classification on possible query points in that region of space.
Points with density above the threshold are colored and those below
are left uncolored. The shape and body of the distribution are clear
from the classification contour, and these results would be valuable
for many of the use cases discussed earlier.

This strict definition of density classification is convenient but
difficult to implement efficiently. Thus, as in other fast KDE imple-
mentations [60], in this work we focus on solving an approximate
framing of the density classification problem. By approximate we
mean that classification errors are allowed for densities very close
to (i.e., within +é&r of) the threshold density . This allows the
algorithm to avoid the expensive computations required to make
precise borderline decisions while bounding the severity of possible
misclassifications. Note that € does not define an absolute additive
precision. Since our goal is to make classifications for different ¢
with possibly widely varying magnitudes, precision is defined rel-
ative to 7. An absolute additive precision of €,,;, = 0.01 would be
unacceptably coarse for small thresholds ¢ < €.

This leads us to our final problem statement (Problem 1) for
approximate density classification. Our algorithm, tKDC, solves
this classification problem without explicitly computing f(x,), and
is described in Section 3.

Problem 1 (Density Classification). Given a dataset X with KDE
f(x) and threshold 7 to classify query points x, € X, as:

HIGH when f(xg) >t-(1+¢€)
LOW when f(x,) <t-(1—¢)

with undefined behavior otherwise.

2.3 Density Thresholds

Density classification as defined in Problem 1 is parameterized
by a density threshold ¢. In practice, raw probability densities are
relatively unwieldy: depending on the dataset size, dimensionality,
and distribution, the range of densities in a distribution varies sub-
stantially, and it is difficult to a priori set thresholds for new datasets.
Instead, it is useful to be able to specify a threshold in terms of a
probability p € [0, 1]. That is, domain experts often have an idea of
what fraction of the data they would like to classify as low density
and set the threshold accordingly. Thus from this point forwards we
will work with quantile thresholds ¢(P) [10].

In theory we would like to define the quantile threshold 7(7) to be
the point at which f(x) < t(?) with probability p. In other words, we
would ideally let (P) = sup {r : Pr[f(x) <] < p} as in [10]. How-
ever, since we lack access to the true underlying distribution this
1(P) is difficult to estimate and we instead define 7(”) in terms of
quantiles of the observed density estimates f(x) for x € X. The
authors in [10] show that for kernel density estimators this quantile
converges to the ideal #(P) hinted at above. Thus, in this work we
will define #(P) in terms of the sample quantiles.

Let the quantile function g, (S) be defined on sets of real numbers
S such that g,(S) is the (np) order statistic of S, i.e. the np-th

smallest element of S. Then, let #(”) be defined to be the p quantile
of the densities {f(x) — fo : x € X}

1) = g, ({F (x) ~ fo :x € X)) (1)
There is a bias here in using the same data points to train and then
evaluate a density, so to compensate we subtract out the contribution
a point in the dataset X makes to itself. The exact value of fy
depends on the estimator used.

The threshold ¢ in density classification can be arbitrarily specic-
fied, but since () is defined in terms of the densities f(x), it must
be computed from the data. Thus, we present an algorithm for prob-
abilistically estimating 1P) in Section 3.5. The quantile threshold
estimation algorithm relies on sampling and thus has an adjustable
failure probability &, but our density classification algorithm is
otherwise deterministic.

2.4 Kernel Density Estimation

Having defined density classification and the thresholds 1), so
introduce the kernel density estimate f which provides the densities
we use in density classification. Kernel Density Estimation (KDE)
provides a means of estimating a normalized probability density
function f(x) from a set of sample training data points X.

KDE can approximate most well-behaved arbitrary distributions
with continuous second derivative [50]. Given n data points in d
dimensions, the Mean Squared Error MSE shrinks at a rate MSE ~

o(n~ T). This is a powerful property: given enough data, KDE will
identify an accurate distribution. In contrast, parametric methods are
limited by their assumptions: for example, a mixture model offive
Gaussians will be unable to accurately capture distributions that
contain more than five distinct regions of high density. Other density
estimation techniques such as histograms require asymptotically
more data to achieve the same error [50], while methods like k-

Role Type Default Description
X Input {xi eR? } Training Dataset
Xy Input {xq € Rd} Query points
) Output R Classification Threshold
c(xq4) | Output {LO,HI} Classification
b Param R >0 1 Bandwidth factor
P Param Probability 0.01 Classification rate
[Config Probability 0.01 Failure probability
€ Config R>0 0.01 Multiplicative error

Table 1: Density Classification Task. Given X, calculate () with
failure probability 8. Then for x, € X, classify c(x;) according
to the threshold with precision €. The main parameters are the
threshold probability p and bandwidth factor b.

nearest-neighbors classification do not provide smooth, normalized
probability distributions [52].

KDE constructs an estimate of the probability density by summing
contributions from small kernel distributions centered at each point.
That is, each point in X contributes a small amount of local density
to the overall distribution, and the probability density estimate at a
given query point x, is the sum of these contributed probabilities.

The kernel function Ky controls how the density contribution of
each point in X falls off over distance: each data point contributes
more density to nearby locations. Kernel functions are parameter-
ized by a bandwidth matrix H € R9*? that specifies how quickly
the kernel falls off along different directions. The Gaussian kernel
family given in Equation 2 leads to very smooth density estimates
and we will use them by default in this paper. The bandwidth H
here corresponds to the covariance of the Gaussian:

1 T
Ky(x)= ——————e 2" H ¥ 2)
(27t)d/2 ‘H|1/2
Given a set of n training points X = {x 1xe Rd} and Kernel func-
tion Ky, the Kernel Density Estimate is then the probability density
function f(x,) : RY — R:

750) = X Kin (s =) ®
n xieX

For a training sample N of size n, KDE effectively acts a Gaussian
Mixture Model with n Gaussians. The main parameter in KDE
is the kernel bandwidth H. Bandwidth selection determines the
amount of smoothing performed by KDE and there are many exist-
ing techniques for choosing a bandwidth parameter [31,44]. The
techniques in this work do not depend on specific kernel and band-
width choices, so for simplicity we adapt standard product kernels
with diagonal bandwidth H = diag (h%., e 7h(zi) and Scott’s rule for
bandwidth selection (Equation 4) [50].

hi=b-n o)

These are near-optimal choices for approximating multivariate nor-
mal distributions and serve as useful starting points for other data dis-
tributions. In Equation 4, b is a user-defined scale factor to allow for
fine-tuning the bandwidth chosen by Scott’s rule, and o; is the stan-
dard deviation of the i-th components of X, o; = std({x\) : x € X}).

3. tKDC OVERVIEW

Overview. In this section we present our algorithm for solving the
approximate density classification problem defined in Section 2.2.
Table 1 outlines the input, output, and parameters for the density
classification task which our algorithm will address.

Our algorithm, Thresholded Kernel Density Classification (tKDC),

constructs a spatial index over the dataset X and computes upper
and lower bounds on the kernel density f(x;) in order to make a
classification. tKDC takes advantage of a classic query optimiza-
tion technique: predicate pushdown, in order achieve significant
speedups over naive density estimation.

Bounds via Spatial Indices. A naive computation of f(x,) is
prohibitively expensive: it involves accumulating the kernel contri-
butions from every point in X. Computing upper and lower bounds
instead of exact densities is much more efficient and still provides
quantifiable accuracy guarantees. tKDC computes bounds on each
density f(x,) by making use of a spatial index over the dataset X.
This index gives us a way to group points into contiguous regions
of R and lets us compute the minimum and maximum density
contribution from each region. In fact, tKDC works with upper and
lower bounds f,, f; for f(x,) instead of computing f(x,) exactly.

Predicate Pushdown. Predicate pushdown works well when ap-
plied to these bounds. Rather than computing expensive but precise
bounds for f(x) only to later perform a cheap comparison with 1),
we can push the threshold checks into the density computation. If
we find that f, < ¢(P) for instance, f (x4) must be less than () and
further computation is unnecessary for classification. We call these
predicates pruning rules. Our key insight is that, since tKDC at-
tempts to classify points rather than estimate exact densities, points
far away from the threshold (P require only a coarse bound, and
resources can be invested into estimating densities near the threshold
more precisely.

Threshold Estimation. The major difficulty with using these
pruning rules to speed up density classification is that they require
knowing 1(P). 1P) is also difficult to calculate exactly since we
define it in terms of the densities of points in X. Thus, we instead

1517) tl(p)

calculate probabilistic upper and lower bounds ¢ on 1),

With probability 1 — 8, the true /() will lie within these bounds, and
we can then use these bounds to estimate () to within multiplicative
error € and perform approximate density classification.

Pseudocode. Algorithm 1 presents the pseudocode for tKDC
with references to subroutines we will discuss later. First tKDC
calculates probabilistic initial bounds on ¢(P) (BoundThreshold) and
constructs a spatial index 7 on X (Makelndex). This constitutes the
training phase. Then, tKDC calculates bounds f;, f;, on the densities
of each point in X (BoundDensity). These point density bounds
allow us to get a more precise estimate 7P) for 1(P) by calculating
the p-quantile g;, of Dy. Finally, for each query point x,; € X, to
classify it (Classify), we can calculate bounds on its density and
compare it with the threshold estimate 7 (P,

In the following sections, we start by assuming that initial coarse

bounds h({p),t(p) are provided by an oracle and discuss how bounds

on f(x4) are computed. Subsequently, we explain how tKDC boot-
straps initial coarse bounds on 1(P), discuss additional optimizations,
and analyze the runtime performance of the algorithm.

3.1 Bounds via Spatial Indices

k-d trees [47] provide a useful spatial index for computing upper
and lower bounds on the kernel density. Most kernels (including
the Gaussian) fall off rapidly with increasing distance, so grouping
neighboring points into regions allows us to calculate upper and
lower bounds on the exact density f(x,) without explicitly evaluat-
ing each kernel. Thus, we incorporate existing techniques for using
k-d trees to evaluate kernel densities [26].

k-d Trees. A k-d tree is a binary tree index over points X C
RY. Figure 3 illustrates the first two levels of a k-d tree over 2-

Algorithm 1 tKDC: Approximate Density Classification

iP) 1P « BOUNDTHRESHOLD(X)
T < Makelndex(X)
Dy []
for x; € X do
fifu BOUNDDENSITY(T,I,gp),Zl(m
append(Dy, (f; + fu) /2 — v K (0))
f(l’) P qp(Dx)

> Construct Spatial Index
> Density estimates for x; € X

y Xi)
> Approximate threshold

function CLASSIFY(x,)
fis fu <~ BOUNDDENSITY (T, 7(?),7P) x,)
if (fi + fu) /2 > 7P) then

return HIGH
else
return LOW
Num Points: 100
range: (0,100), (0,100)
x0<3 x0>=3
Num Points: 70 Num Points: 30
range: (0,3), (0, 100) range: (3,100), (0,100)
x1 <20 x1>=20 x1 <50 x1>=50
/7 AN / AN

Figure 3: 2-dimensional k-d tree. Each node splits points along a
specific dimension, and keeps track of both a bounding box range
for the region it defines and the number of points contained within.

dimensional data points. Starting from the root node, each node
defines a region of space and splits its region along one coordinate
among its children. Thus, in figure 3 each point x 7)) € X would be
assigned to one of the child nodes depending on whether x(()") <3.
Each non-leaf node in the tree has two child nodes while each leaf
node keeps track of the sample values contained inside. There are
many standard techniques for choosing the axis along which to split,
for tKDC we default to cycling through the dimensions in sequence,
one for each level of the tree, so that in the worst case each axis will
be considered regularly. In addition, we adapt some of the features
of multi-resolution k-d trees [18]: each node in our tree keeps track
of the number of points in its region as well as its bounding box.

Distance Bounds. The bounding box of a node is a conservative
estimate of the region of space occupied by the points belonging
to the node. In tKDC, this region is represented by a sequence
of minimum and maximum coordinate values x;”i”,x;?’“" for the
points under a node and for each coordinate axis i. Given x,, since
the k-d tree tracks the number of points in a region as well as its
bounding box, we can compute upper and lower bounds on the
density contribution of an entire region of points [26]. For a region
containing a subset of points X, the total kernel density contribution
£ (x4) is given as:

)= ¥ K x0) ©

xi€X,
f) (x4): is bounded by the smallest and largest distance vectors
dmax, dmin from x4 to the bounding box of X;..

X, b X
TKH(dmax) < f()(xq) < 0

KH (dmin) (6)

3.2 Iterative Refinement
As seen in the previous section, each node in the k-d tree has a

Jiq(
" N
. i = K ()
\\ d’VYL(le
NS . N :
\ i = K = 0)
N points

(a) Iteration 1: the root bounding box gives us a very coarse bound on the
total kernel density. The two extremes are all points coincident with x, or all
points located at the furthest corner.

zg dg""
N N N.
dpen N fr = K(d) + P K ()
/ N ma N N.
/ i fn= S K(0) + K (d5)
Ny Ny

(b) Iteration 2: dividing the root node into its two child nodes gives us
finer grained bounding boxes and a tighter final kernel density bound.

Figure 4: Iterative k-d tree refinement: the total density contribution
from X is represented as a sum from disjoint subsets of X, each
belonging to a node of the k-d tree. As nodes are replaced with their
two children we get more and more precise estimates.

bounding box which constrains the density contribution from points
in its region. If the bounds are too coarse however, we need a way
to improve them. This can be done by replacing the bound obtained
from one node of the k-d tree with the bounds obtained from its
children: the same underlying data points are still being counted,
but now each point is constrained to a smaller region and we can
obtain a better bound. Figure 4 illustrates how the bounds can be
improved.

Starting with the root node, we can obtain a loose bound on the to-
tal density f(x,): the minimum possible density contribution would
occur if all of the points were located at the furthest corner, with
kernel value K (dpqyx), and similarly the maximum possible density
contribution would occur if all points were exactly x;, with kernel
value K(0). If we replace the root node with its two children, we are
left with two distinct subregions with Ny, N, points in each. This
leads to bounds using the new minimum and maximum distance vec-
tors from x4 to points in the respective subregions: in particular no
point in the second region can contribute more than K(dy ;). This
process is continued until the bounds are good enough (fulfilling
our pruning rules) or we have exhausted the k-d tree and evaluated
each leaf node’s contribution exactly.

To summarize, for a collection of k-d tree nodes that partition X
into disjoint subsets {X;} with bounding boxes {B;}, we can bound
the kernel density estimate f (x,) with:

Xi Xi
fl = Z Ln‘KH(dmax(xthi)) fu = Z |ni|KH (dn1in(xq7Bi)) @)

Iteratively replacing nodes with their children provides incremen-
tally refined bounds.

3.3 Pruning Rules

Tolerance. Iteratively refining the bounds provided by a set
of k-d tree nodes gives us a sequence of more precise bounds:

fu ® o . .fu" ° T I

4(37) ? 1(5’) 5

tl(p) o ¢ | tl(p)) |
fl] fl]

Tolerance Rule Threshold Rule

Figure 5: Pruning Rules: As the upper and lower bounds are re-
fined, we can stop computation once the interval fj, f,, for f(x4)
is confirmed to lie on one side of the threshold, or the interval is
narrower than e¢(P)

{(f,m (x4), fj” (x4))}. The key to efficient computation in tKDC
is knowing when these bounds are good enough by checking them
against pruning rule predicates. One criteria, introduced in [26], is
to stop when the upper and lower bounds are within a fraction € of
each other. This can result in savings when all nearby regions have
been precisely resolved and only very distant regions remain. Thus,
we use Equation 8 as one of our pruning rules, and refer to it as the
Tolerance Rule:

A (xg) = 17 (xg) < &1)" (8)

Threshold. Since we wish to classify rather than estimate densities,
we can go even further. Well before f, and f; are precise, we
will often know enough to make a classification: if f; is above the
threshold or f; is below, then no further computation is necessary
for classification. This realization is key to the performance gains
tKDC delivers. We encode this idea in Equation 9 and refer to these
predicates as the Threshold Rules:

F 6P (1) or f7 <P (1) ©)

The threshold rules are responsible for the vast majority of the
speedups made possible by tKDC. Furthermore, both the tolerance
and threshold rules allow us to confidently make classifications with
respect to 1P + gr(P).

Figure 5 illustrates how the tolerance and threshold rules allow
tKDC to stop when it has enough information to make a classifica-
tion. tKDC refines upper and lower bounds on the density until it
can apply one of the pruning rules, stopping when the bounds are
either clear of () or within €#(P) of each other.

3.4 Bounding the Density

tKDC combines the k-d tree density bounds and threshold and
tolerance pruning rules by using a priority queue to control the
order in which we traverse the k-d tree. We would like to priori-
tize nodes with the highest potential for improving the total density
bound, so the queue prioritizes nodes with the largest discrepancy
1y (Kpg (dmin) — Kpi (dmax)) where n, is the number of points con-
tained in the node region and dy,y,, dayx are the smallest and largest
distances from x, to the node bounding box. In practice, for small

1(P) thresholds this prioritizes hitting the threshold rule as quickly
as possible.

Algorithm 2 presents our procedure for bounding the kernel den-
sity f(X4). Wmin, Wmax here are functions which compute the min-
imum and maximum weight contribution for a node-region node
given its bounding box and the number of points inside, as in Equa-

tion 6 in Section 3.1. For now we assume that an oracle has provided

(p) ,(p)

upper and lower bounds #;”,#;"” on the threshold, the algorithm to

estimate #(”) will be explained in Section 3.5.
The bounds f;, f,, provided by the BoundDensity procedure are
useful for two purposes as seen in Algorithm 1: they are used to

Algorithm 2 Approximate Density Estimation

function BOUNDDENSITY(7, tl(p ne

pq < [T]
Ju < Wiin (x7 T)
J1 & Winax (x7 T)
while pg not empty do
if f; > 1" then
break
if £, < 1" then
break
if f,— fy <&-1" then
break
curnode + poll(pq)
J1 < f1 — Wimin(curnode)
Ju < fu— Wmax(curnode)
if curnode is leaf then
fcur — inEcurnade %Kh (X _xi)
Ji = Ji+ feur
fu — ﬁl Jr f(‘ur
else
for child in children(curnode) do
J1 4 f1 +Wmin(child)
Ju < fu+ Wmax(child)
pq < add(pq, child)

return fj, f,

,X)
> Node Priority Queue
> Weight Bounds

> Threshold Rule

> Tolerance Rule

perform classification of query points x, and they are also used to

calculate bounds on (7). Intuitively, this is possible because the

11, fu bounds are exact in classifying whether a density is outside of

tl(p) ,tl(,p), and are precise to within €t(P) otherwise.

Using f;, fu for classification is fairly straightforward. As in

Algorithm 1, if % (fz(xq) +fu(xq)) >)tL(/7> or % (fl(xq) +fu(xq)) <

tl(p) then we can classify f(x,) exactly. Otherwise, Algorithm 2

must have run until it hit the tolerance rule, so f;, — f; < t(P) and
% (fi(xg) + fu(xq)) will be within £1(P) of the true density f (xq)-
This is within the error tolerance allowed in our definition of the
approximate density classification problem.

In order to perform approximate density classification we also
need to bound 1(P) to within +¢(P) as defined in Problem 1. One
way to do this is to calculate f7, f;, for all x € X using the BoundDen-
sity procedure. If f(x,) is close to the threshold we will keep im-
proving the bounds until we hit the tolerance rule and f,, — f; < er(P),
Thus, calculating quantiles on {4 (f;(x) + fu(x)) : x € X } allows us
to estimate (P) to within £(P) as well.

Thus, the BoundDensity procedure allows us to obtain bounds on
both f(x,) and 1P) accurate to &7(P) and good enough for approxi-
mate density classification. However, in order to run efficiently the

BoundDensity procedure relies on having coarse initial bounds on
t(l’) .

3.5 Threshold Estimation

One way to estimate initial coarse bounds on 1(P) is to calculate
the densities of a smaller random sample of points. The order statis-
tics and thus quantiles of the smaller sample can provide bounds
on the quantiles of the larger dataset. Given a set of n real numbers
D, let Dy be a random sample of s of these numbers. Let d () be

the i-th order statistic (the i-th smallest number) of D and ds(i) be
the i-th order static of Dy. Then, the binomial theorem gives us

Equation 10 [25].

Pr<d<> < dmp) < gl >> —Z <f)pi(17p)x7i (10)
im1 \1

For large n the binomial bound is well approximated by a normal

distribution, so we can simplify the above equation:

Pr <d(V[7 z1-54/sp(1— p)) gd(””) Sd(sp+z1-54/sp(1— p)) S1-5

an
where the constant z, is the p-th quantile of the normal distribu-
tion. For an acceptable failure rate J, this allows us to construct
1 — & confidence intervals for d(P) by calculating densities on a
random subsample X; of s random query points rather than all of the
points in X. Thus, the specified failure probability & dictates how
large of a sample we must collect, thus influencing training time.
For instance, for s = 20000, 6 = 0.01, p = 0.01, if we calculate
20000 densities and sort them into d(¥), then 20.99 = 2.576 so we

have: P (d<'64> < £(0.01) < d<236>) > 0.99 and the 164th and 236th

densities provide a confidence interval for (P

However we are now left with a chicken and egg problem: in
order to efficiently estimate bounds on densities using Algorithm
2 we need upper and lower bounds on +(P), but to obtain bounds
on t(P) we need to estimate densities for points in a subset X; of
X. Calculating even a single exact density on a KDE trained on
X is expensive for large datasets. Instead, tKDC bootstraps itself
by iteratively training kernel density estimates on larger and larger
subsets of the data X, using quantile estimates on smaller subsets
of the training data to obtain bounds used in later iterations. Rather
than constructing the full KDE by adding up contributions from
each point in X, we can construct mini-KDEs trained on subsamples
of X. In other words, for a training subset X, C X we can compute
kernel densities fy, using data just from this subset.

() = 5 L K (1,-3)
r xeX,

We do not assume that fx, will provide an accurate estimate of f
trained on the entire dataset, but the estimates provided by evaluating
fx, serve as starting points in our bootstrapping procedure.

Algorithm 3 outlines the procedure for estimating upper and lower
bounds for (7). We can start by evaluating KDE densities with small
X, and use these to calculate initial coarse bounds for +(P). Each
set of coarse bounds is used as a starting point for obtaining more
accurate bounds in the next iteration with a larger X..

For example, if we have bounds tl(p) , t,sp) calculated from a KDE
trained on X,, then we can use we can use these bounds when
calculating densities for a KDE trained on X4, a subsample 4 times
the size of X,. The BoundDensity routine returns density bounds

(p)

that have precision &f," for densities within the threshold bounds,

so as long as enough of the new densities remain within the tl(p) , t,ﬂp)

bound we can use them to compute a new threshold bound. There
are no guarantees that the old bounds will continue to apply as we
increase X, (in fact the bounds for small r can be off by orders of
magnitudes when translated to larger r), but we can check after
evaluating densities if the bounds were too high or low and repeat
the computation with more generous bounds by multiplicatively
scaling them back. In particular, if the order statistics required to
calculate the bounds in Equation (11) lie outside of the old threshold
bound then we do not have enough precision and must repeat our
calculation with more conservative bounds.

At the end of the threshold bounding routine (Algorithm 3), we

Algorithm 3 Bootstrapped Threshold Bound
function BOUNDTHRESHOLD(X)

tl(p 0 > Threshold bounds
1P oo

r<—ro > Num training points
§ <S50 > Num query points
while » < N do

X, < sample(X,r)
X; < sample(Xy,s)
Build kdtree on X,
Recalculate bandwidth
{]‘1(’)7f,,(’)} — BOUNDDENSITY(tl(p)) x,)
{dD} « sorted ((A) /2= pK (0))
> Density estimates, correcting for self-contribution
l<sp—zq-5v/sp(1-p)
us=sp+za-s/sp(l—p)
if 4 > (") then
tl<lp) — hsp) “Mpackof f
elseif d) <" then
f;p) — t(p)/hhackoff
else o > Valid Bound
tu (u) hbuffer

Fd >/hbuffer
r%max

-
return <)

> Invalid bound

> Invalid bound

gmwth:N)

will have calculated density bounds for s query points using a KDE
trained on the complete dataset X. This gives us enough accu-
racy to determine d D, d™ the 1 — § confidence bounds for ¢(7) to
within & -#(P). The initial sample sizes ry,sg do not affect the cor-
rectness of the algorithm, and ry = 200, sg = 20000 were found to
provide reasonably fast performance on our datasets. Similarly the
multiplicative factors hpackoff, pu f fer Which control how quickly
we adjust bad threshold bounds and how much extra buffer we al-
low threshold bounds when moving to larger training samples, and
the training sample growth rate /g0y, do not affect correctness.
hpackoff = 4 Mpuffer = 1.5, hgrowen, = 4 provide good performance
in practice.

3.6 Classification Accuracy

With all of the major components of tKDC introduced, we can
revisit Algorithm 1 to discuss the accuracy of its classifications. The
BoundDensity rountine is deterministic and calculates exact (up to
floating point precision) bounds on a density flxg)- From the two

pruning rules, we know that either f; > tu or fu< tl 2 and we can
precisely classify a point x or else f(x) is near the threshold and

fu—fi <et?)

Thus, assuming that [L(‘p >,tl(p) are valid bounds for t(”), then the
p-quantile of the densities Dy, g, (Dy), is an estimate 7(P) for ¢(P)
(p)

of £¢(P), this means that the Classif %, routine correctly classifies all
points w1th densities more than &7(? away from ¢ (P), and solves the
density classification problem (Problem 1) for 1P,

that is accurate to within &7, < et Ignoring constant factors

With probability 1 — 8, the initial probabilistic bounds #”, #"

are valid on () and we furthermore have correctly classified densi-

ties with respect to 1(P) as defined in Equation 1. However, there is
a probability 6 chance the bounds on #(P) are invalid, in which case

we have solved the density classification problem for an inaccurate
threshold 7(7). We can detect when this has occurred by counting
what fraction of the points in X had densities which were higher
than ¢, or lower than #;, and then repeat the threshold estimation
procedure to try and obtain a valid bound.

3.7 Optimizations

Two other algorithmic optimizations proved useful in implement-
ing tKDC efficiently: a grid for caching known dense regions and a
custom k-d tree splitting rule.

Grid. Once a lower bound tl(p) is known for the density threshold,

tKDC tries to prune out obvious inlier points before even beginning
a tree traversal. This can be done using a d-dimensional hypergrid
with grid dimensions equal to the bandwidth of the data. Before
evaluating any densities, a single pass through the datset allows us
to count how many points lie within each grid cell. Then, future
queries f(x4) can first be checked against the count G(x,) of points
sharing a grid cell with x,. If G(X;) /N - K5 (dgiqg) Where dgiqg is the
length of the diagonal, then x, can be immediately classified above
the threshold. The size of the grid can be tuned though we have
found that setting the grid dimensions equal to the bandwidth works
well for low dimensions. The grid provides noticeable performance
improvements for small p thresholds and low dimensions but is not
as useful for large p. Due to its poor scaling with dimensionality,
we disable the grid for dimensions d > 4.

Equi-width Trees. k-d trees are usually constructed so that they
are balanced: splitting each set of points along the median of an

axis. However, this is not as efficient for tKDC and we have found
(10) + x<90)

that splitting each node at %(xi ;
x,(p) is the p-th percentile of the data points along the ith coordinate.
Since the Gaussian kernel falls off exponentially with distance it is
more important to quickly identify tightly constrained regions than
it is to identify regions with a roughly equal number of points inside.
Splitting the index along a midpoint rather than median is also used
in the formal runtime analysis in Appendix A.

) performs better, where

3.8 Runtime Analysis

In this section, we analyze tKDC runtime as the size n of the
training set X grows, where X € R is a d-dimensional dataset
drawn from a distribution D. Since each classification is performed
independently, we analyze the runtime cost of classifying a single
query point x € R?. We omit the cost of index construction (total
O(nlogn) time) and estimating the threshold (number of queries
dependent on € and §) in this analysis.

Theorem 1. For a query point x drawn from D, tKDC runs in
expected O(n%) time when d > 1 and O(log(n)) when d = 1.

Theorem 1 gives a runtime bound on the tKDC classification pro-
cedure. In contrast, the naive strategy takes O(n) time to compute
the density of a given point. Moreover, any approximation that eval-
uates kernels on neighbors within a fixed distance of the query point
(such as rkde) will also incur O(n) running time, since the number
of such points will be proportional to n. tKDC is asymptotically
faster than these algorithms with substantial gains for small d. We
provide more details in Appendix A and present a proof sketch here.

Recall that tKDC traverses a k-d tree index built over X, maintain-
ing increasingly precise bounds on the query x’s true density. We
can analyze the behavior of this traversal in two cases: first, when
the bounds provided by the index (f}, f;, in Algorithm 2) are suffi-
ciently precise to classify x, and, second, when the index bounds are
insufficient and tKDC must examine some individual points within

threshold

Figure 6: Near and Far queries: Far queries can be evaluated using
only index lookups. Near queries are more expensive. The near
region shrinks for larger n.

the leaf nodes of the k-d tree. These correspond to points whose
densities are correspondingly far from (and easily distinguishable)
or near the density threshold.

Definition 1. A far query point is one which tKDC can classify
using only the bounds derived from the k-d tree index, while a near
query point is one which tKDC must evaluate one or more exact
kernel densities to classify.

For a given training dataset X, the possible far and near query
points fall into regions of space Rf(ar,Rff‘" C R?. Figure 6 depicts
these regions for a one-dimensional dataset. The near and far regions
depend on the size n of the training data. In fact, larger training sets
yield larger far-regions Rg(ar. This is because adding more points to
the training set (and thus index) improves the index precision and
allows tKDC to classify more possible query points using just the
index. Conversely, larger training sets X have smaller near-regions.

Lemma 1. The probability a query point x falling inside R¥*“" is
proportional to O (n*5>

Lemma 1 states the above observation more precisely. Again, a
proof is deferred to Appendix A. Given this, we can derive a bound
on the expected runtime of a query.

Consider the average case for two training sets, one X, of size n
and one X, of size 2n from the same distribution D, with respective
near regions RY’"", Ry’*". We can derive a recurrence relating the
runtime cost for these two training sets. On average, any query
points that were far for X, are also far for X,,. That is, an index
traversal on the larger index over X, will suffice to classify any
points that were far under X,,. On the other hand, the cost of evalu-
ating the kernel for near points is O(n) as, in the worst case, tKDC
must evaluate the contribution from every point in the training set.

Even though near points are expensive to evaluate, the near region
shrinks for larger n. By Lemma 1 an O(n’z’ll) proportion of query
points will be near (requiring O(n) computation) and the remaining
far points have the same runtime cost under Xy, as they did under
X,. If we let F,, denote the expected runtime cost for Xj,, and let
an " E"°a” be the costs of evaluating far and near points respectively
for training set X;,, then we can derive the recurrence:

Foy < Fl” +Pr(x € R - Fyeer
<F,+0 <n*%> -0(2n)
<F,+0 <ndd;l>

By the master theorem [14], the runtime is then O(ndd;l) ford > 1
and O(log(n)) ford = 1.

Name | Lang Description
tKDC | Java Density classification w/ pruning
simple | Java Nalve algorithm, iterates through every point
sklearn | Cython | K-d tree approximation algorithm [26]
ks C Binning approximation algorithm [56]

rkde Java
nocut Java

Contribution from only nearby points [47]
tKDC with the threshold rule and grid disabled

Table 2: Algorithms used in evaluation

4. EVALUATION

In this section, we empirically evaluate tKDC’s performance,
accuracy, and scalability via a combination of synthetic and real
world datasets. We focus on the following questions:

1. Does tKDC improve throughput? (§ 4.2)

2. Is tKDC accurate in classifying densities? (§ 4.3)

3. Does tKDC scale with dataset size and dimension? (§ 4.4)
4. How does each optimization in tKDC contribute? (§ 4.5)

Our results show that tKDC achieves up to 1000x speedups over
other accurate approaches on our datasets and has excellent classi-
fication accuracy throughout. Notably, the cost of a single query
scales sublinearly with dataset size as expected from the runtime
analysis in Section 3.8, and tKDC remains faster than competing
approaches across different dimensions and threshold values. Each
optimization in tKDC plays an important role and the threshold
pruning rule is especially valuable for efficient classification.

4.1 Setup

Environment. We implement tKDC in Java,! processing single-
threaded memory-resident data. tKDC uses the Apache Commons
FastMath library for expensive floating point operations such as
exponentiation. We run experiments on a server with four Intel Xeon
E5-4657L 2.40GHz CPUs containing 12 cores per CPU and 1TB of
RAM. We measure throughput using wall-clock runtime including
both training and query time. To isolate algorithmic runtime from
data loading, we omit the time needed to load data from disk.

Unless otherwise stated, we measure both the time taken to train
tKDC on a dataset by constructing a k-d tree and then estimating
1(P) as well as the time taken to score queries from the same dataset.
Thus, we measure throughput by amortizing the training time across
the time taken to classify each point in a dataset. This is the effective
throughput for performing tasks such as outlier detection using
tKDC. When tKDC is used for other use cases with additional query
points not in the training dataset, the training cost remains fixed and
the performance should be even better.

Alternative Algorithms. We are unaware of alternative algorithms
that specifically solve the density classification task for KDE. Thus
we focus on comparing tKDC with two leading kernel density esti-
mation implementations and three of our own baselines. These are
summarized in Table 2. Scikit-learn [40] (sklearn) contains an im-
plementation of KDE in cython (a wrapper for Python C-extensions)
also based on k-d trees and the approximation techniques in [26],
while the Kernel Smoothing “ks” R package [20] is written in C and
implements an approximate KDE algorithm based on binning tech-
niques in [55]. Scikit-learn KDE was run with default settings and
€ =0.1 relative error, and ks was run with default settings and bin-
ning enabled. Since ks and sklearn have their core routines written
in C or C-like (cython) code, standard language benchmarks suggest
that a Java implementation will be about a factor of two slower.

I'Source code available at https:/github.com/stanford- futuredata/tkdc

Name | d n Description
gauss | 2 100M Multivariate Gaussian with zero mean and unit
covariance

tmy3 8 1.82M Hourly energy load profiles for US reference
buildings [39]

Home Gas Sensor measurements from the
UCI repository [28,34]

High Energy Particle collision signatures from
the UCI repository [34]

SIFT computer vision image features ex-
tracted from Caltech-256 [34]

28x28 images of handwritten digits [32], re-
duced to smaller dimensions via PCA

Space shuttle flight sensors from the UCI
repository [34]

home | 10 929k
hep 27 10.5M
sift 128 11.2M

mnist | 784 70k

shuttle | 9 43.5k

Table 3: Datasets used in evaluation

Thus, any performance advantages in our Java implementations will
be a conservative measure of the algorithmic speedups in tKDC.
Furthermore, the “nocut” baseline we implemented reproduces the
optimizations in sklearn and [26] and is usually around 2x slower
than the scikit-learn implementation.

We were unable to find many other implementations of KDE
which supported n > 2 dimensions. For example, Spark ml-lib and
Weka only support one-dimensional KDE. The ks library also only
supports up to 4 dimensions with binning. Thus, as a baseline, we
also benchmark against three of our own baselines implemented in
Java. First, we implemented a naive KDE (denoted “simple”) where
each kernel density is evaluated and summed explicitly. We also
run tests against a version of tKDC with the threshold rule and grid
disabled, but the tolerance rule still enabled with € = 0.01. This
baseline (called “nocut”) emulates the functionality of the scikit-
learn algorithm.

Finally, we implement an algorithm that performs a range query
around the query point using same k-d tree as tKDC [47] to find
all points within a certain radius of the query point, and then add
up the kernel contributions from only those nearby points. We call
this algorithm “rkde” for radial KDE, with radius set by default to
the smallest possible radius with guaranteed error € = 0.01¢ based
on the points excluded. The radius is thus set conservatively for
most of our experiments, and we show in Figure 13 in Appendix B
that even for very small distances r the same trends hold. We run
all algorithms with the same bandwidth selection rule described in
Section 2.

Datasets. Our experimental analysis makes use of seven datasets
with varying size n and dimensionality d. We list the datasets in
Table 3. Unless other stated we run queries over complete datasets,
but ignore columns with more than 50% missing values in the tmy3
dataset.

4.2 End-to-End Throughput

In Figure 7, we compare the classification throughput including
training time of tKDC with other algorithms on our datasets with at
least 50k points. Here, we reduce mnist to 64 and 256 dimensions
via PCA, and sift 64 dimensions by taking the first 64 features.
tKDC is at least 1000x faster than all implementations besides ks
on low dimensional datasets (d < 10). ks is even faster in two
dimensions but its binning efficiency falls off exponentially with
dimension. In fact, the library only supports d < 4, so we were
unable to benchmark it on higher dimensional datasets. Furthermore,
ks does not provide accuracy guarantees, as seen in Section 4.3. In
contrast, the other baselines can provide moderate speedups over the

https://github.com/stanford-futuredata/tkdc

gauss, n=100M, d=2

tmy3, n=1.82M, d=4

tmy3, n=1.82M, d=8

home, n=929k, d=10

6.36M 35.8k

Queries /s

8.96 487 7.69

hep, n=10.5M, d=27 sift, n=11.2M, d=64

104 4 7.76k 1.19k

mnist, n=70k, d=64 mnist, n=70k, d=256

12.6 2.64

Queries / s

0.62 0.44 0.35 0.21

0
% %, % %
[& % %
(e} 'O/(o GQ/}) (,((
Algorithm Algorithm

100
86.3 16
80 14.6

60
40
20

Algorithm

Algorithm

Figure 7: Throughput Comparison: tKDC exhibits significant speedups across a range of datasets and is only outperformed by ks in 2
dimensions. ks is effective in low dimensions but does not scale. tKDC does not perform as well on the 256-dimensional mnist dataset. ks
omitted when the dimensionality (d > 4) is higher than the library supports.

naive algorithm, especially in 2-dimensions, but also do not scale
on the hep, mnist, and sift datasets.

However, tKDC does not perform as well on the 256-dimensional
mnist dataset, and we believe this is because the dataset size is not
large enough to allow tKDC to effectively prune query points in such
high dimensions. Figure 14 in Appendix B illustrates the behavior
for other mnist dimensions; for our target dataset sizes (up to 10M),
we have observed that tKDC does not provide meaningful speedups
on most datasets with more than 100 dimensions.

4.3 Classification Accuracy

One of the primary benefits of using kernel density estimates is
that, at scale, they are guaranteed to converge to the true probability
distribution. tKDC allows for some error &(7) in its classifications,
so in this section we examine how well tKDC preserves the behavior
of calculating an exact kernel density estimate and then classifying
points based on their true kernel density. As ground truth, we
compute exact kernel densities using scikit-learn on 50k rows of the
tmy3 and home datasets, and all 43500 rows of the shuttle dataset.
With p = 0.01, we classify points based on whether the ground truth
density was below 1(P). Similarly, we evaluate tKDC, ks, and sklearn
ber estimating densities for each point in the dataset, estimating

») using these densities, and classifying the points accordingly.
Since p = 0.01, the classification problem identifies points under
the threshold. Figure 8 presents the F-1 classification score for
each of the algorithms. As expected from using an € = 0.01 error
parameter, tKDC has nearly perfect accuracy, only making incorrect
classification for points within &¢ of the threshold. ks accuracy
degrades considerably in 4-dimensions due to its coarse bin size.

4.4 Scalability

A naive KDE can produce precise density estimates and has
relatively few performance sensitive parameters. However, its major
weakness is that its single query runtime increases linearly (O(n))
with dataset size: queries that are instantaneous on 10k data points
become unwieldy at 100M. Thus in this section we show how tKDC

Dimensions: [2]

1.0 0.98 0.9850.992 0.995 0.998 0.975 0.962 0.973
o L
S
? 0.5
w
0.0 T .
sklearn tkdc ks

Dimensions: [4]

1.04 ©9760.9580.984 0.996 0.997 0.998
g 0.784
o
% 0.5 0.423
- | 0.224
0.0 T T : :I
sklearn tkdc ks
Dimensions: [7, 8]
» 1.0 0918 0.974 0.986 0.997 0.998 == tmy3
§ CZ1 home
£ 059 KNI shuttle
0.0 T T

sklearn tkdc
Algorithm

Figure 8: Classification Accuracy Evaluation. tKDC consistently
provides high classification accuracy with guaranteed € = 0.01. Due
to its use of bins, ks has consistently worse accuracy that degrades
sharply with dimension.

scales well over dataset size, data dimensionality, and configuration
settings such as p.

Figure 9 describes throughput (excluding training time) for clas-
sifying query points on datasets of different sizes, in this case all
subsets of the 2-d gauss dataset. We did not include ks here since
its query throughput is independent of the training set size. tKDC
achieves asymptotically better throughput as n increases as sug-

Adjusting Data Size, gauss, d=2

106 4

105 4

104
103 .

102 4

Queries / s

10! A NN
—— rkde

——- n-1

—e— tkdc
10° 4 —=— sklearn
—— simple ----- n7z -2

10—1 4
104 10° 108 107 108
Dataset Size

Figure 9: Scalability over dataset size. tKDC maintains its high
throughput as n increases, while other algorithms degrade at a much
higher rate. Expected runtimes of O(n~%) and O(n) from Sec-
tion 3.8 are shown for clarity.

Adjusting Data Size, hep, d=27

—e— tkdc n-%
103 4 +— simple n-t
—4— rkde
£ 102,
(%]
0
@
8 10! 4
100 .

104 10° 10° 107
Dataset Size

Figure 10: Scalability over dataset size on a higher-dimensional
dataset. tKDC remains asymptotically faster than O(n) algorithms,
though the difference in 27 dimensions is less pronounced than in
d=2.

gested by the O(n%) runtime bound derived in Section 3.8. In fact,

the measured throughput exceeds the O(n~ %) bound for d =2. The
other algorithms appear to have O(n~!) throughput scaling. Fig-
ure 10 repeats this experiment on the higher dimensional (27) hep

dataset. Since tKDC scales as O(n%) for d = 27 the asymptotic
speedup is not as dramatic, but tKDC still performs better than our
conservative runtime bound would expect and its advantage over
naive algorithms improves as n increases.

Figure 11 describes how tKDC scales with dimensionality for dif-
ferent subsets of the hep dataset. The runtime of the naive algorithm
is nearly independent of dimensionality, but all other approaches
benchmarked have worse performance in higher dimensions. tKDC
retains at least an order of magnitude of speedup across different
dimensions over other algorithms. Figure 14 in Appendix B illus-
trates the results on the mnist dataset up to 768 dimensions. tKDC
is competitive for these dimensions, but does not provide significant
speedups past d > 100.

In addition to dataset properties, tKDC performance also varies
with the quantile threshold parameter p which defines 1P). Figure 15

Adjusting Dimension, hep, n=10.5M

104 4 —e— tkdc
simple
" 103 4 —=— sklearn
- —— rkde
3
b5
>
o

1 2 4 8 16 27
Dataset Dimension

Figure 11: Scalability over data dimensionality. tKDC performance
degrades with dimensionality on small datasets, but remains at least
an order of magnitude faster than alternative approaches.

Throughput Kernel Evaluations

567k
g5k 114k

51k

Points / s
Kernels Evaluations / pt

Optimization Optimization

Figure 12: Cumulative Factor Analysis on 500k rows of a 4-d
tmy3 dataset. Adding optimizations one a time shows that each
optimization brings us closer to our final throughput, and reduces
the amount of kernel evaluations necessary for classification.

in Appendix B shows how the performance varies with p: tKDC
throughput is highest for very low and very high thresholds with
few neighboring points.

4.5 Performance Factor Analysis

A variety of optimizations contribute to the speedups provided by
tKDC. To understand these, we can consider the following compo-
nents of tKDC individually: the tolerance pruning rule (Section 3.3),
the threshold pruning rules (Section 3.3), trimmed midpoint tree
construction (Section 3.7), and the grid cache (Section 3.7). We will
denote these components tolerance, threshold, equiwidth, and grid,
respectively.

Figure 12 illustrates the cumulative impact of introducing these
optimizations sequentially to a baseline algorithm which traverses
the k-d tree and accumulates all individual kernel densities. We
measure both throughput and the number of kernel evaluations per
point, but exclude training time in this figure. The initial baseline
has worse throughput than a simple loop over all datapoints since
it incurs the overhead of tree traversal. However, with all optimiza-
tions enabled, tKDC can make classifications using on average 55
kernel evaluations for each query, out of 500k possible training data
points. The threshold pruning rule is responsible for the bulk of the
order-of-magnitude speedups, and each optimization contributes an
incremental improvement to the runtime.

A lesion analysis is given in Figure 16 in Appendix B which
illustrates the effect of removing each optimization individually

from the complete tKDC implementation: this further shows that no
optimization is redundant.

S. RELATED WORK

Classification. Classification is a core topic in fields including
statistics, machine learning, and data mining. In particular, the
literature contains a wealth of methods for anomaly detection and
outlier detection [11, 12], including k-nearest neighbors [43], local
outlier factor [8], and DBSCAN [22]. In this paper, we examine
classification via kernel density estimation, an unsupervised (i.e.,
label-free) statistical method for anomaly detection that can be used
to identify data that occur in particular probability regions of a
stochastic model; KDE in particular is a non-parametric statistical
model in that the model structure is not defined in advance but is
instead determined from given data [12].

We focus on KDE for two reasons: first, its non-parametric be-
havior, and, second, its statistically interpretable outputs, which are
commonly used in domain science.

First, since the 1980s, KDE has been the de facto method in
statistics to infer a continuous distribution from a set of discrete
points [51,60]; Since KDE is non-parametric, it is able to recover
a model without making assumptions about the data. In contrast,
parametric unsupervised models such as Gaussian mixture models
require the user to manually configure the number of components, a
potentially brittle process that can lead to incorrect results [36].

Second, KDE is statistically interpretable: it outputs actual proba-
bility densities that are useful in scientific domains including statisti-
cal physics and numerical analysis [15]. With probability densities,
one can not only make classifications but reason about the likelihood
of the classified points. As described in Section 2.1, KDE-based
density classification has applications in the visualization of spa-
tial datasets [16, 17, 29], ecology [38, 42], and earth science [5].
Probability density level sets have been used to construct statistical
confidence intervals [33] and also perform various forms of out-
lier detection [4, 19,49]. In contrast, the outputs of detection and
classification methods that are not statistically interpretable (e.g.
dbscan, local outlier factor) cannot directly be used in these anal-
yses. Reflecting the popularity of density classification, software
packages such as Seaborn [57] and ks [20] implement functionality
specifically for visualizing kernel density contours.

Given the utility of this combination of non-parametric behavior
(i.e., knob free) and statistical interpretability, we seek to improve
KDE’s computational overhead, thus improving the performance
and scalability of the use cases represented by the above applications
and existing packages. For other use cases that do not demand
statistical interpretability or have labeled data available, parametric
and/or supervised outlier detection techniques may be preferable.

Density Estimation. As a core statistical primitive, density classifi-
cation is the subject of considerable mathematical analysis [9, 54].
In particular, [10] studied the effectiveness of using kernel density
estimates to identify level-sets and quantile level-sets, although this
line of work did not improve on the computational complexity of
computing these quantities. The task of density classification is
also closely related to the support estimation problem in machine
learning [48], which can be solved using one-class Support Vector
Machines (SVMs). However, one-class SVMs require 0(n3) train-
ing time naively and O(n??) using accelerated methods [48]. Thus,
training a one-class SVMs is even slower than evaluating KDE,
which we study in this work; extending tKDC-style optimizations
to one-class SVMs is an interesting opportunity for future work.
KDE is best suited for datasets of modest dimension [35,51,55].
In many of our motivating use cases, domain experts (or automated

routines) often leverage a relatively small number of dimensions
(cf. [3,21,59]). High-dimensional datasets suffer from the “curse of
dimensionality” [13] where, in high-dimensional spaces, the distinc-
tion between nearby and far-away points becomes less pronounced,
blurring the distinction between low and high density regions. For
high-dimensional datasets (hundreds or thousands of dimensions),
we expect users can use tKDC in conjunction with dimensionality
reduction methods such as PCA [30] and sketch-based methods such
as Locality Sensitive Hashing [2].

Fast Kernel Density Estimation. As a powerful distribution es-
timator, KDE is the subject of study both in statistics [55] and,
recently, databases [60]. To illustrate similarities and differences
with tKDC, we divide existing research in fast KDE computation,
into two classes: algorithms that rely primarily on data transforma-
tions such as FFT and the Fast Gauss Transform, and algorithms
that rely primarily on spatially grouping the data.

In the former class, methods based on grids and binning (such as
“ks”) can take advantage of FFT for very high performance [20, 51,
55]. However, many of these techniques do not provide accuracy
guarantees and require building indices that scale exponentially with
dimension. Other methods based on the Gauss transform provide
better accuracy bounds [45, 58], but can require delicate parameter
tuning [37] and also usually also scale exponentially poorly with
dimension. [37] tries to address these issues but does not provide
consistently better performance than simple tree-based methods in
its evaluation.

In the latter class of fast KDE methods, other techniques rely
on grouping points into clusters for faster evaluation [31, 60]. In
particular, [60] builds an index with guarantees on accuracy: specifi-
cally, [60] allows a fixed additive error threshold € as opposed to
a threshold or data-point dependent bound. Other efforts leverage
k-d and ball trees to derive density bounds [18,26]. As described in
Section 3, tKDC builds directly upon these techniques, whose data
structures scale well to larger dimensions and provide good accuracy
guarantees. However, existing k-d tree based KDE implementations
focus on making density estimates, not classifications, and so are
unable to take advantage of the cutoff threshold 1(P) that is funda-
mental to tKDC'’s performance. In our evaluation, we achieve orders
of magnitude speedups compared with these methods. tKDC does
not make use of “dual-tree” techniques for grouping both query and
training points [26] and integrating these with our pruning rules is a
promising direction of future work.

6. CONCLUSION

Density classification is a recurring task in data analytics, and we
introduce tKDC, which performs density classification via Kernel
Density Estimation. tKDC makes use of pruning rules to classify
point probability densities according to a quantile threshold while
maintaining accuracy guarantees. This brings the runtime cost of
evaluating a single density down to O(rzdd;I), allowing tKDC to scale
to a variety of dataset sizes and dimensionalities and offer orders of
magnitude higher throughput over alternative methods.

Acknowledgements

We thank the many members of the Stanford InfoLab as well as
Moses Charikar, John Duchi, and Greg Valiant for their valuable
feedback on work. This research was supported in part by Toyota
Research Institute, Intel, the Army High Performance Computing
Research Center, RWE AG, Visa, Keysight Technologies, Facebook,
VMWare, and the NSF Graduate Research Fellowship under grant
DGE-114747.

7.

[1]

[2]

3

[4

[5]

[6]

[7

[8]

[9

[10]

(1]

[12]
[13]
[14]
[15]
[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23

[24]
[25]

[26]

[27]

(28]

[29]

[30]
(31]

(32]

REFERENCES

S. Alam, F. D. Albareti, C. A. Prieto, F. Anders, et al. The eleventh and twelfth
data releases of the sloan digital sky survey: Final data from sdss-iii. The
Astrophysical Journal Supplement Series, 219(1):12, 2015.

A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In FOCS, 2006.

P. Bailis, E. Gan, S. Madden, D. Narayanan, K. Rong, and S. Suri. MacroBase:
Prioritizing Attention in Fast Data. In SIGMOD, 2017.

A. Baillo, A. Cuevas, and A. Justel. Set estimation and nonparametric detection.
Canadian Journal of Statistics, 28(4):765-782, 2000.

M. S. Bebbington and S. J. Cronin. Spatio-temporal hazard estimation in the
auckland volcanic field, new zealand, with a new event-order model. Bulletin of
Volcanology, 73(1):55-72, 2011.

C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

M. Blanton. Sdss galaxy map. http://www.sdss.org/science/orangepie/, June
2014.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying
density-based local outliers. In SIGMOD, 2000.

B. Cadre. Kernel estimation of density level sets. Journal of multivariate
analysis, 97(4):999-1023, 2006.

B. Cadre, B. Pelletier, and P. Pudlo. Estimation of density level sets with a given
probability content. Journal of Nonparametric Statistics, 25(1):261-272, 2013.
G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Micenkovi,

E. Schubert, I. Assent, and M. E. Houle. On the evaluation of unsupervised
outlier detection: measures, datasets, and an empirical study. Data Mining and
Knowledge Discovery, 30(4):891-927, 2016.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
Comput. Surv., 41(3):15:1-15:58, July 2009.

L. Chen. Curse of dimensionality. In Encyclopedia of Database Systems, pages
545-546. Springer, 2009.

T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

K. Cranmer. Kernel estimation in high-energy physics. Computer Physics
Communications, 136(3):198 — 207, 2001.

A. Cuevas, M. Febrero, and R. Fraiman. Estimating the number of clusters.
Canadian Journal of Statistics, 28(2):367-382, 2000.

A. Cuevas, M. Febrero, and R. Fraiman. Cluster analysis: a further approach
based on density estimation. Computational Statistics & Data Analysis,
36(4):441 — 459, 2001.

K. Deng and A. W. Moore. Multiresolution instance-based learning. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence
- Volume 2, IICAT’95, pages 1233-1239, San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc.

L. Devroye and G. L. Wise. Detection of abnormal behavior via nonparametric
estimation of the support. SIAM Journal on Applied Mathematics,
38(3):480-488, 1980.

T. Duong et al. ks: Kernel density estimation and kernel discriminant analysis
for multivariate data in r. Journal of Statistical Software, 21(i07), 2007.

J. G. Dy and C. E. Brodley. Feature selection for unsupervised learning. Journal
of machine learning research, 5(Aug):845-889, 2004.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters a density-based algorithm for discovering clusters in large
spatial databases with noise. In KDD-96 Proceedings, 1996.

Ferdosi, B. J., Buddelmeijer, H., Trager, S. C., Wilkinson, M. H. F., and
Roerdink, J. B. T. M. Comparison of density estimation methods for
astronomical datasets. A & A, 531:A114, 2011.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7(2):179-188, 1936.

J. D. Gibbons and S. Chakraborti. Nonparametric statistical inference. Springer,
2011.

A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward
computational tractability. In Proceedings of the Third SIAM International
Conference on Data Mining, San Francisco, CA, USA, May 1-3, 2003, pages
203-211, 2003.

P. Hall and M. Wand. On the accuracy of binned kernel density estimators.
Journal of Multivariate Analysis, 56(2):165 — 184, 1996.

R. Huerta, T. Mosqueiro, J. Fonollosa, N. Rulkov, and I. Rodriguez-Lujan.
Online decorrelation of humidity and temperature in chemical sensors for
continuous monitoring. Chemometrics and Intelligent Laboratory Systems,
2016.

R.J. Hyndman. Computing and graphing highest density regions. The
American Statistician, 50(2):120-126, 1996.

1. Jolliffe. Principal component analysis. Wiley Online Library, 2002.

M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of bandwidth
selection for density estimation. Journal of the American Statistical Association,
91(433):401-407, 1996.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

(33]
[34]

[35]

[36]

[37

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]
[50]

(511

[52]
(53]
[54]
[55]
[56]
[571
[58]

[59]

[60]

to document recognition. Proceedings of the IEEE, 86(11):2278-2324, Nov
1998.

J. Lei. Classification with confidence. Biometrika, 2014.

M. Lichman. UCI machine learning repository. http://archive.ics.uci.edu/ml,
2013.

H. Liu, J. D. Lafferty, and L. A. Wasserman. Sparse nonparametric density
estimation in high dimensions using the rodeo. In AISTATS, 2007.

G.J. McLachlan and S. Rathnayake. On the number of components in a
gaussian mixture model. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 4(5):341-355, 2014.

V. I. Morariu, B. V. Srinivasan, V. C. Raykar, R. Duraiswami, and L. S. Davis.
Automatic online tuning for fast gaussian summation. In NIPS, 2009.

S. D. Newsome, J. D. Yeakel, P. V. Wheatley, and M. T. Tinker. Tools for
quantifying isotopic niche space and dietary variation at the individual and
population level. Journal of Mammalogy, 93(2):329-341, 2012.

O. of Energy Efficiency & Renewable Energy (EERE). Commercial and
residential hourly load profiles for all tmy3 locations in the united states.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

A. Perrot, R. Bourqui, N. Hanusse, F. Lalanne, and D. Auber. Large interactive
visualization of density functions on big data infrastructure. In LDAV, 2015.

L. T. Quakenbush, J. J. Citta, et al. Fall and winter movements of bowhead
whales (balaena mysticetus) in the chukchi sea and within a potential petroleum
development area. Arctic, 63(3):289-307, 2010.

S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining
outliers from large data sets. In SIGMOD, 2000.

V. C. Raykar and R. Duraiswami. Fast optimal bandwidth selection for kernel
density estimation. In SDM, 2006.

V. C. Raykar, R. Duraiswami, and L. H. Zhao. Fast computation of kernel
estimators. Journal of Computational and Graphical Statistics, 19(1):205-220,
2010.

M. Rosenblatt. Remarks on some nonparametric estimates of a density function.
Ann. Math. Statist., 27(3):832-837, 09 1956.

H. Samet. Foundations of Multidimensional and Metric Data Structures (The
Morgan Kaufimann Series in Computer Graphics and Geometric Modeling).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

B. Schélkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson.
Estimating the support of a high-dimensional distribution. Neural computation,
13(7):1443-1471, 2001.

E. Schubert, A. Zimek, and H.-P. Kriegel. Generalized Outlier Detection with
Flexible Kernel Density Estimates, pages 542-550.

D. W. Scott. Multivariate Density Estimation: Theory, Practice, and
Visualization. Wiley Series in Probability and Statistics. Wiley, 2009.

B. W. Silverman. Algorithm as 176: Kernel density estimation using the fast
fourier transform. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 31(1):93-99, 1982.

B. W. Silverman. Density estimation for statistics and data analysis, volume 26.
CRC press, 1986.

D. Stoneking. Improving the manufacturability of electronic designs. I[EEE
Spectrum, 36(6):70-76, 1999.

A. B. Tsybakov et al. On nonparametric estimation of density level sets. The
Annals of Statistics, 25(3):948-969, 1997.

M. Wand. Fast computation of multivariate kernel estimators. Journal of
Computational and Graphical Statistics, 3(4):433—445, 1994.

M. Wand and M. Jones. Kernel Smoothing. Chapman & Hall/CRC Monographs
on Statistics & Applied Probability. Taylor & Francis, 1994.

M. Waskom, O. Botvinnik, drewokane, P. Hobson, et al. seaborn: v0.7.1 (june
2016), June 2016.

C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis. Improved fast gauss
transform and efficient kernel density estimation. In /CCV, 2003.

C. Zhang, A. Kumar, and C. Ré. Materialization optimizations for feature
selection workloads. ACM Transactions on Database Systems (TODS), 41(1):2,
2016.

Y. Zheng, J. Jestes, J. M. Phillips, and F. Li. Quality and efficiency for kernel
density estimates in large data. In SIGMOD, 2013.

APPENDIX

A.

RUNTIME ANALYSIS

In this section, we provide a formal exposition of the runtime
analysis given in Section 3.8. Recall that we have a training dataset
X € R"™ with n points and d dimensions, sampled from an under-
lying distribution D. Here, we consider a single threshold t =1, =1,

http://www.sdss.org/science/orangepie/
http://archive.ics.uci.edu/ml

and a tolerance of € = 0, with no grid optimizations. This corre-
sponds to tKDC with only the cutoff rule enabled. Even with only
the cutoff rule—which is responsible for most of our speedup—
tKDC has asymptotically improved performance.

We will start by establishing Lemma 1:

Lemma. The probability of a query point x falling inside RY**" is

proportional to O (n*$>

Proof. We show how the precision provided by the k-d tree index
density bounds improves (expanding the far region) as we add more
points to the training set X. Note that tKDC may or may not make
full use of the index before it selectively evaluates leaf nodes that
may have a bigger impact on improving the upper and lower bounds,
however this makes tKDC more efficient than an algorithm which
strictly evaluates all index nodes before resolving any individual
point contributions. By bounding the behavior of this more strict
algorithm, we can conservatively bound the runtime of tKDC.

Let 1, denote the index on a training set of n points. If we double
the number of points, each leaf in I, will become a parent node with
two children, split along the trimmed midpoint in one dimension.
After we double d times, each leaf in /,4,, spans half the range as its
corresponding parent leaf in /,, along each dimension. By Taylor’s
theorem, for large n we can show that the precision A, provided by
these kernel density bounding box estimates for I, is proportional
to the maximum width w of the boxes [27]. Thus Ay, = %An SO
A, =O0(n~14)

Any query point x with density p(x) far enough from the threshold
t can be classified using only the index and is thus a “far” point in
our previous nomenclature. More precisely, when |p(x) —1| > A,
then an index I, is sufficiently precise to classify the point without
traversing leaf nodes. Thus, the “near” region is Ry’ = {x: |p(x) —
(< A}

Now, let g be the cumulative distribution function of the densities
p(x) forx ~ X, i.e. g(y) = Pr[p(x) <y|. Then, by Taylor’s theorem
as n grows and A, shrinks, the derivative ¢’ (y) gives us a measure of
how many points x have densities close to p(x), where 24/ (t)dt ~
Pr[t —dt < p(x) <t+dt]. Letting dt = A, we then have:

Prlx € R¥Y| =~ 24/ (1)An = O (q'(t)né)
O

Now we have proven Lemma 1, and we can solve a more precise
version of the recurrence in Section 3.8.

P doL
ananJro(q ("7)

When % > log, (1), we can use case 3 of the master theorem [14]

to show that F, = O(q’(t)ndd;l) when d > 1. Otherwise, when d = 1
and d%] = 0, we can use case 2 of the master theorem to show that
Fy = 0(q (1) log(n)).

Note that this more precise runtime expression (which encodes
not just the dependence on n but also on 7) shows that the runtime
is proportional to ¢’ (t) the density of points near the threshold ¢, so
we can compare with Figure 15 to see how the throughput decreases
for larger thresholds with more “nearby” points than small tail
thresholds.

B. ADDITIONAL EVALUATION

Figure 13 illustrates how the performance of the rkde algorithms
depends on the radius threshold of nearby points considered. A
smaller thresholds means more points can be pruned out from con-
sideration when performing a range query, but also means that the

Adjusting Radial Distance: tmy3, n=1.82M, d=4

104 4
o —4— rkde
4 10° 4 tkdc
=
é':;

102 4

101 4

0 1 2 3 4 5

Radius Cutoff (multiples of bandwidth)

Figure 13: Scalability with radius threshold for rkde algorithm.
Smaller radiuses allow for better performance at the cost of worse
accuracy, but is still orders of magnitude slower than tKDC.

Adjusting Dimension, mnist, n=70k

105 J
—e— tkdc —=— sklearn
simple —— rkde
104 4
(0]
» 103 4
2
@
>
o 102 4
101 4

1 2 4 8 16 32 64 128 256 784
Dataset Dimension

Figure 14: Scalability over data dimensionality on the mnist dataset.
tKDC does not perform as well on small, high dimensional datasets,
but remains competitive with other approaches.

resulting density estimate will be more inaccurate. In the plot, the
radius is the distance threshold for pruning far-away points after
scaling by the bandwidth, and in this test for » < 1.2 the error in the
densities is on the order of the threshold ¢, so the results are highly
unreliable for small r. In any case, rkde is unable to match tKDC’s
throughput while preserving any accuracy.

Figure 14 presents an additional benchmark evaluating tKDC’s
performance on higher dimensional data, in this case the mnist
dataset with up to 768 dimensions. For d < 256 we used a PCA
to reduce the dimensionality since many of the pixels in mnist are
almost always 0, while for d = 768 the native dimension we use the
raw dataset. For d < 256 we also scale the bandwidth by 3 the
standard Scott’s rule bandwidth to ameliorate underflow issues in
this dataset, and for d = 768 use a bandwidth of » = 1000. For this
relatively small n = 70k dataset, tKDC scales relatively poorly with
dimension since it’s asymptotic advantage with n does not have a
chance to kick in in higher dimensions, however it never degrades
to the point where it is worse than a naive computation.

Figure 15 illustrates how the performance of tKDC running with
€ = 0.1 degrades for higher p, but remains better than sklearn, ks,
and other baseline approaches. The pruning rules are more effective
when there are relatively few query points near the threshold at
very low and very high values. The relationship here is made more
explicit in the runtime analysis in Appendix A, where we show that

Adjusting Threshold: tmy3, n=1.82M, d=4

10°
—8— tkdc
" —Ak- simple
10°% 5 M- sklearn
L10% 4
w
Q@
=
S 102
3 10?1
1] —— R — i — i — i ——l— ——— B — W —
LIS RN SSpurl, Sitems. (i Smsiis Jparits, Supiie juiay. i Syl e §
10° T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Quantile Threshold

Figure 15: Throughput for different quantile boundaries: Perfor-
mance is best for very low and very high thresholds, but remains an
order of magnitude faster than sklearn and naive methods which do
not depend on p.

the runtime is proportional to the relative density of points near the
threshold.

Throughput Kernel Evaluations

10° 108
137k k! 193k
105 4 sosk Bk [2
105 4
» 104 1 §
P 5 10%
pdi 103 d =
c ©
S o 103 4 754
o 102] 'n
[9)
10t g 1021 ss4 98 90.9
pv4
1001 101 1
Q’/), \)’3» S %, % Q’/b)3» \)5/ %, %
%, R & Y, B, S, S T4 O
% vy % %% % oy T
(4 ® % (-4 ® %

Optimization Optimization

Figure 16: Lesion Analysis on 500k rows of a 4-d tmy3 dataset.
Removing a single optimization at a time shows that no optimization
is redundant.

Figure 16 shows the effect of removing each of our optimizations
individually from the complete tKDC implementation. Compared
to the complete suite, removing each optimization has an impact on
the throughput, illustrating the contribution of each. Removing the
threshold pruning rule in particular erases nearly all of the gains: it
is the foundation of the performance improvements in tKDC.

	Introduction
	Background and Task Statement
	Target Use Cases
	Density Classification
	Density Thresholds
	Kernel Density Estimation

	tKDC Overview
	Bounds via Spatial Indices
	Iterative Refinement
	Pruning Rules
	Bounding the Density
	Threshold Estimation
	Classification Accuracy
	Optimizations
	Runtime Analysis

	Evaluation
	Setup
	End-to-End Throughput
	Classification Accuracy
	Scalability
	Performance Factor Analysis

	Related Work
	Conclusion
	References
	Appendices
	Runtime Analysis
	Additional Evaluation

