
15

Scalable Atomic Visibility with RAMP Transactions

PETER BAILIS, Stanford University
ALAN FEKETE, University of Sydney
ALI GHODSI, JOSEPH M. HELLERSTEIN, and ION STOICA, UC Berkeley

Databases can provide scalability by partitioning data across several servers. However, multipartition, mul-
tioperation transactional access is often expensive, employing coordination-intensive locking, validation,
or scheduling mechanisms. Accordingly, many real-world systems avoid mechanisms that provide useful
semantics for multipartition operations. This leads to incorrect behavior for a large class of applications
including secondary indexing, foreign key enforcement, and materialized view maintenance. In this work,
we identify a new isolation model—Read Atomic (RA) isolation—that matches the requirements of these
use cases by ensuring atomic visibility: either all or none of each transaction’s updates are observed by
other transactions. We present algorithms for Read Atomic Multipartition (RAMP) transactions that en-
force atomic visibility while offering excellent scalability, guaranteed commit despite partial failures (via
coordination-free execution), and minimized communication between servers (via partition independence).
These RAMP transactions correctly mediate atomic visibility of updates and provide readers with snap-
shot access to database state by using limited multiversioning and by allowing clients to independently
resolve nonatomic reads. We demonstrate that, in contrast with existing algorithms, RAMP transactions
incur limited overhead—even under high contention—and scale linearly to 100 servers.

Categories and Subject Descriptors: H.2.4 [Systems]: Distributed Databases

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Atomic visibility, transaction processing, NoSQL, secondary indexing,
materialized views

ACM Reference Format:
Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2016. Scalable atomic visibility
with RAMP transactions. ACM Trans. Database Syst. 41, 3, Article 15 (July 2016), 45 pages.
DOI: http://dx.doi.org/10.1145/2909870

1. INTRODUCTION

Faced with growing amounts of data and unprecedented query volume, distributed
databases increasingly split their data across multiple servers, or partitions, such that
no one partition contains an entire copy of the database [Baker et al. 2011; Chang et al.
2006; Curino et al. 2010; Das et al. 2010; DeCandia et al. 2007; Kallman et al. 2008;

This research was supported by NSF CISE Expeditions award CCF-1139158 and DARPA XData Award
FA8750-12-2-0331, the National Science Foundation Graduate Research Fellowship (grant DGE-1106400),
and gifts from Amazon Web Services, Google, SAP, Apple, Inc., Cisco, Clearstory Data, Cloudera, EMC,
Ericsson, Facebook, GameOnTalis, General Electric, Hortonworks, Huawei, Intel, Microsoft, NetApp, NTT
Multimedia Communications Laboratories, Oracle, Samsung, Splunk, VMware, WANdisco and Yahoo!.
Authors’ addresses: P. Bailis, 353 Serra Mall, Stanford University, Stanford, CA 94305; email:
pbailis@cs.stanford.edu; A. Fekete, School of Information Technologies, building J12, University of Syd-
ney, NSW 2006, Australia; email: alan.fekete@sydney.edu.au; A. Ghodsi, J. M. Hellerstein, and I. Stoica, 387
Soda Hall, Berkeley, CA 94720; emails: {alig, hellerstein, istoica}@cs.berkeley.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0362-5915/2016/07-ART15 $15.00
DOI: http://dx.doi.org/10.1145/2909870

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

http://dx.doi.org/10.1145/2909870
http://dx.doi.org/10.1145/2909870

15:2 P. Bailis et al.

Thomson et al. 2012]. This strategy succeeds in allowing near-unlimited scalability
for operations that access single partitions. However, operations that access multiple
partitions must communicate across servers—often synchronously—in order to provide
correct behavior. Designing systems and algorithms that tolerate these communication
delays is a difficult task but is key to maintaining scalability [Corbett et al. 2012;
Kallman et al. 2008; Jones et al. 2010; Pavlo et al. 2012].

In this work, we address a largely underserved class of applications requiring mul-
tipartition, atomically visible1 transactional access: cases where all or none of each
transaction’s effects should be visible. The status quo for these multipartition atomic
transactions provides an uncomfortable choice between algorithms that are fast but
deliver inconsistent results and algorithms that deliver consistent results but are often
slow and unavailable under failure. Many of the largest modern, real-world systems
opt for protocols that guarantee fast and scalable operation but provide few—if any—
transactional semantics for operations on arbitrary sets of data items [Bronson et al.
2013; Chang et al. 2006; Cooper et al. 2008; DeCandia et al. 2007; Hull 2013; Qiao et al.
2013; Weil 2011]. This may lead to anomalous behavior for several use cases requiring
atomic visibility, including secondary indexing, foreign key constraint enforcement, and
materialized view maintenance (Section 2). In contrast, many traditional transactional
mechanisms correctly ensure atomicity of updates [Bernstein et al. 1987; Corbett et al.
2012; Thomson et al. 2012]. However, these algorithms—such as two-phase locking and
variants of optimistic concurrency control—are often coordination intensive, slow, and
under failure, unavailable in a distributed environment [Bailis et al. 2014a; Curino
et al. 2010; Jones et al. 2010; Pavlo et al. 2012]. This dichotomy between scalability
and atomic visibility has been described as “a fact of life in the big cruel world of huge
systems” [Helland 2007]. The proliferation of nontransactional multi-item operations
is symptomatic of a widespread “fear of synchronization” at scale [Birman et al. 2009].

Our contribution in this article is to demonstrate that atomically visible transactions
on partitioned databases are not at odds with scalability. Specifically, we provide high-
performance implementations of a new, nonserializable isolation model called Read
Atomic (RA) isolation. RA ensures that all or none of each transaction’s updates are
visible to others and that each transaction reads from an atomic snapshot of database
state (Section 3)—this is useful in the applications we target. We subsequently de-
velop three new, scalable algorithms for achieving RA isolation that we collectively
title Read Atomic Multipartition (RAMP) transactions (Section 4). RAMP transactions
guarantee scalability and outperform existing atomic algorithms because they satisfy
two key scalability constraints. First, RAMP transactions guarantee coordination-free
execution: one client’s transactions cannot cause another client’s transactions to stall or
fail. Second, RAMP transactions guarantee partition independence: clients only contact
partitions that their transactions directly reference (i.e., there is no central master, co-
ordinator, or scheduler). Together, these properties ensure limited coordination across
partitions and horizontal scalability for multipartition access.

RAMP transactions are scalable because they appropriately control the visibility
of updates without inhibiting concurrency. Rather than force concurrent reads and
writes to stall, RAMP transactions allow reads to “race” writes: RAMP transactions can
autonomously detect the presence of nonatomic (partial) reads and, if necessary, repair
them via a second round of communication with servers. To accomplish this, RAMP
writers attach metadata to each write and use limited multiversioning to prevent
readers from stalling. The three algorithms we present offer a trade-off between the
size of this metadata and performance. RAMP-Small transactions require constant space

1Our use of “atomic” (specifically, RA isolation) concerns all-or-nothing visibility of updates (i.e., the ACID
isolation effects of ACID atomicity; Section 3). This differs from uses of “atomicity” to denote serializabil-
ity [Bernstein et al. 1987] or linearizability [Attiya and Welch 2004].

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:3

(a timestamp per write) and two RoundTrip Time delays (RTTs) for reads and writes.
RAMP-Fast transactions require metadata size that is linear in the number of writes
in the transaction but only require one RTT for reads in the common case and two in
the worst case. RAMP-Hybrid transactions employ Bloom filters [Bloom 1970] to provide
an intermediate solution. Traditional techniques like locking couple atomic visibility
and mutual exclusion; RAMP transactions provide the benefits of the former without
incurring the scalability, availability, or latency penalties of the latter.

In addition to providing a theoretical analysis and proofs of correctness, we demon-
strate that RAMP transactions deliver in practice. Our RAMP implementation achieves
linear scalability to over 7 million operations per second on a 100 server cluster (at
overhead below 5% for a workload of 95% reads). Moreover, across a range of workload
configurations, RAMP transactions incur limited overhead compared to other tech-
niques and achieve higher performance than existing approaches to atomic visibility
(Section 5).

While the literature contains an abundance of isolation models [Bailis et al. 2014a;
Adya 1999], we believe that the large number of modern applications requiring RA
isolation and the excellent scalability of RAMP transactions justify the addition of yet
another model. RA isolation is too weak for some applications, but, for the many that
it can serve, RAMP transactions offer substantial benefits.

The remainder of this article proceeds as follows: Section 2 presents an overview of
RAMP transactions and describes key use cases based on industry reports. Section 3
defines RA isolation, presents both a detailed comparison with existing isolation guar-
antees and a syntactic condition, the Read-Subset-Writes property, that guarantees
equivalence to serializable isolation, and defines two key scalability criteria for RAMP
algorithms to provide. Section 4 presents and analyzes three RAMP algorithms, which
we experimentally evaluate in Section 5. Section 6 presents modifications of the RAMP
protocols to better support multidatacenter deployments and to enforce transitive de-
pendencies. Section 7 compares with Related Work, and Section 8 concludes with a
discussion of promising future extensions to the protocols presented here.

2. OVERVIEW AND MOTIVATION

In this article, we consider the problem of making transactional updates atomically
visible to readers—a requirement that, as we outline in this section, is found in several
prominent use cases today. The basic property we provide is fairly simple: either all or
none of each transaction’s updates should be visible to other transactions. For example,
if x and y are initially null and a transaction T1 writes x = 1 and y = 1, then another
transaction T2 should not read x = 1 and y = null. Instead, T2 should either read x = 1
and y = 1 or, possibly, x = null and y = null. Informally, each transaction reads from an
unchanging snapshot of database state that is aligned along transactional boundaries.
We call this property atomic visibility and formalize it via the RA isolation guarantee
in Section 3.

The classic strategy for providing atomic visibility is to ensure mutual exclusion
between readers and writers. For example, if a transaction like T1 above wants to
update data items x and y, it can acquire exclusive locks for each of x and y, update
both items, then release the locks. No other transactions will observe partial updates
to x and y, ensuring atomic visibility. However, this solution has a drawback: while one
transaction holds exclusive locks on x and y, no other transactions can access x and y
for either reads or writes. By using mutual exclusion to enforce the atomic visibility of
updates, we have also limited concurrency. In our example, if x and y are located on
different servers, concurrent readers and writers will be unable to perform useful work
during communication delays. These communication delays form an upper bound on
throughput: effectively, 1

message delay operations per second.

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:4 P. Bailis et al.

To avoid this upper bound, we separate the problem of providing atomic visibility
from the problem of maintaining mutual exclusion. By achieving the former but avoid-
ing the latter, the algorithms we develop in this article are not subject to the scalability
penalties of many prior approaches. To ensure that all servers successfully execute a
transaction (or that none do), our algorithms employ an Atomic Commitment Proto-
col (ACP). When coupled with a blocking concurrency control mechanism like locking,
ACPs are harmful to scalability and availability: arbitrary failures can (provably) cause
any ACP implementation to stall [Bernstein et al. 1987]. (Optimistic concurrency con-
trol mechanisms can similarly block during validation.) We instead use ACPs with
nonblocking concurrency control mechanisms; this means that individual transactions
can stall due to failures or communication delays without forcing other transactions
to stall. In a departure from traditional concurrency control, we allow multiple ACP
rounds to proceed in parallel over the same data.

The end result—our RAMP transactions—provide excellent scalability and perfor-
mance under contention (e.g., in the event of write hotspots) and are robust to partial
failure. RAMP transactions’ nonblocking behavior means that they cannot provide cer-
tain guarantees like preventing concurrent updates. However, applications that can use
RA isolation will benefit from our algorithms. The remainder of this section identifies
several relevant use cases from industry that require atomic visibility for correctness.

2.1. RA Isolation in the Wild

As a simple example, consider a social networking application: if two users, Sam and
Mary, become “friends” (a bidirectional relationship), other users should never see
that Sam is a friend of Mary but Mary is not a friend of Sam: either both relationships
should be visible, or neither should be. A transaction under RA isolation would correctly
enforce this behavior. We can further classify three general use cases for RA isolation:

(1) Foreign key constraints. Many database schemas contain information about re-
lationships between records in the form of foreign key constraints. For example,
Facebook’s TAO [Bronson et al. 2013], LinkedIn’s Espresso [Qiao et al. 2013], and
Yahoo! PNUTS [Cooper et al. 2008] store information about business entities such
as users, photos, and status updates as well as relationships between them (e.g.,
the previous friend relationships). Their data models often represent bidirectional
edges as two distinct unidirectional relationships. For example, in TAO, a user per-
forming a “like” action on a Facebook page produces updates to both the LIKES and
LIKED_BY associations [Bronson et al. 2013]. PNUTS’s authors describe an identical
scenario [Cooper et al. 2008]. These applications require foreign key maintenance
and often, due to their unidirectional relationships, multientity update and ac-
cess. Violations of atomic visibility surface as broken bidirectional relationships
(as with Sam and Mary previously) and dangling or incorrect references. For exam-
ple, clients should never observe that Frank is an employee of department.id=5,
but no such department exists in the department table.

With RAMP transactions, when inserting new entities, applications can bundle
relevant entities from each side of a foreign key constraint into a transaction. When
deleting associations, users can avoid dangling pointers by creating a “tombstone”
at the opposite end of the association (i.e., delete any entries with associations via
a special record that signifies deletion) [Zdonik 1987].

(2) Secondary indexing. Data is typically partitioned across servers according to a
primary key (e.g., user ID). This allows fast location and retrieval of data via pri-
mary key lookups but makes access by secondary attributes challenging (e.g., in-
dexing by birth date). There are two dominant strategies for distributed secondary
indexing. First, the local secondary index approach colocates secondary indexes and

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:5

primary data, so each server contains a secondary index that only references and
indexes data stored on its server [Baker et al. 2011; Qiao et al. 2013]. This allows
easy, single-server updates but requires contacting every partition for secondary
attribute lookups (write-one, read-all), compromising scalability for read-heavy
workloads [Bronson et al. 2013; Corbett et al. 2012; Qiao et al. 2013]. Alternatively,
the global secondary index approach locates secondary indexes (which may be par-
titioned, but by a secondary attribute) separately from primary data [Cooper et al.
2008; Baker et al. 2011]. This alternative allows fast secondary lookups (read-one)
but requires multipartition update (at least write-two).

Real-world services employ either local secondary indexing (e.g., Espresso [Qiao
et al. 2013], Cassandra, and Google Megastore’s local indexes [Baker et al. 2011])
or nonatomic (incorrect) global secondary indexing (e.g., Espresso and Megastore’s
global indexes, Yahoo! PNUTS’s proposed secondary indexes [Cooper et al. 2008]).
The former is nonscalable but correct, while the latter is scalable but incorrect.
For example, in a database partitioned by id with an incorrectly maintained global
secondary index on salary, the query ‘‘SELECT id, salary WHERE salary >
60,000’’ might return records with salary less than $60,000 and omit some
records with salary greater than $60,000.

With RAMP transactions, the secondary index entry for a given attribute can
be updated atomically with base data. For example, suppose a secondary index
is stored as a mapping from secondary attribute values to sets of item versions
matching the secondary attribute (e.g., the secondary index entry for users with
blue hair would contain a list of user IDs and last-modified timestamps correspond-
ing to all of the users with attribute hair-color=blue). Insertions of new primary
data require additions to the corresponding index entry, deletions require removals,
and updates require a “tombstone” deletion from one entry and an insertion into
another.

(3) Materialized view maintenance. Many applications precompute (i.e., material-
ize) queries over data, as in Twitter’s Rainbird service [Weil 2011], Google’s Perco-
lator [Peng and Dabek 2010], and LinkedIn’s Espresso systems [Qiao et al. 2013].
As a simple example, Espresso stores a mailbox of messages for each user along
with statistics about the mailbox messages: for Espresso’s read-mostly workload,
it is more efficient to maintain (i.e., prematerialize) a count of unread messages
rather than scan all messages every time a user accesses her mailbox [Qiao et al.
2013]. In this case, any unread message indicators should remain in sync with
the messages in the mailbox. However, atomicity violations will allow materialized
views to diverge from the base data (e.g., Susan’s mailbox displays a notification
that she has unread messages but all 60 messages in her inbox are marked as
read).

With RAMP transactions, base data and views can be updated atomically. The
physical maintenance of a view depends on its specification [Chirkova and Yang
2012; Huyn 1998; Blakeley et al. 1986], but RAMP transactions provide appropri-
ate concurrency control primitives for ensuring that changes are delivered to the
materialized view partition. For select-project views, a simple solution is to treat
the view as a separate table and perform maintenance as needed: new rows can
be inserted/deleted according to the specification, and if necessary, the view can
be (re-)computed on demand (i.e., lazy view maintenance [Zhou et al. 2007]). For
more complex views, such as counters, users can execute RAMP transactions over
specialized data structures such as the CRDT G-Counter [Shapiro et al. 2011].

In brief: Status Quo. Despite application requirements for RA isolation, few large-
scale production systems provide it. For example, the authors of Tao, Espresso, and

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:6 P. Bailis et al.

PNUTS describe several classes of atomicity anomalies exposed by their systems, rang-
ing from dangling pointers to the exposure of intermediate states and incorrect sec-
ondary index lookups, often highlighting these cases as areas for future research and
design [Bronson et al. 2013; Qiao et al. 2013; Cooper et al. 2008]. These systems are
not exceptions: data stores like Bigtable [Chang et al. 2006], Dynamo [DeCandia et al.
2007], and many popular “NoSQL” [Mohan 2013] and even some “NewSQL” [Bailis et al.
2014a] stores do not provide transactional guarantees for multi-item operations. Unless
users are willing to sacrifice scalability by opting for serializable semantics [Corbett
et al. 2012], they are often left without transactional semantics.

The designers of these Internet-scale, real-world systems have made a conscious
decision to provide scalability at the expense of multipartition transactional semantics.
Our goal with RAMP transactions is to preserve this scalability but deliver correct,
atomically visible behavior for the use cases we have described.

3. SEMANTICS AND SYSTEM MODEL

In this section, we formalize RA isolation and, to capture scalability, formulate a pair
of strict scalability criteria: coordination-free execution and partition independence.
Readers more interested in RAMP algorithms may wish to proceed to Section 4.

3.1. RA Isolation: Formal Specification

To formalize RA isolation, as is standard [Adya 1999; Bernstein et al. 1987], we consider
ordered sequences of reads and writes to arbitrary sets of items, or transactions. We
call the set of items a transaction reads from and writes to its item read set and item
write set. Each write creates a version of an item and we identify versions of items by
a timestamp taken from a totally ordered set (e.g., natural numbers) that is unique
across all versions of each item. Timestamps therefore induce a total order on versions
of each item, and we denote version i of item x as xi. All items have an initial version
⊥ that is located at the start of each order of versions for each item and is produced
by an initial transaction T⊥. Each transaction ends in a commit or an abort operation;
we call a transaction that commits a committed transaction and a transaction that
aborts an aborted transaction. In our model, we consider histories comprised of a set of
transactions along with their read and write operations, versions read and written, and
commit or abort operations. In our example histories, all transactions commit unless
otherwise noted.

Definition 3.1 (Fractured Reads). A transaction Tj exhibits the fractured reads
phenomenon if transaction Ti writes versions xa and yb (in any order, where x and y
may or may not be distinct items), Tj reads version xa and version yc, and c < b.

We also define RA isolation to prevent transactions from reading uncommitted or
aborted writes. This is needed to capture the notion that, under RA isolation, read-
ers only observe the final output of a given transaction that has been accepted by
the database. To do so, we draw on existing definitions from the literature on weak
isolation. Though these guarantees predate Adya’s dissertation [Adya 1999], we use
his formalization of them, which, for completeness, we reproduce in the following in
the context of our system model. We provide some context for the interested reader,
however Adya [1999] provides the most comprehensive treatment.

Read dependencies capture behavior where one transaction observes another trans-
action’s writes.

Definition 3.2 (Read-Depends). Transaction Tj directly read-depends on Ti if trans-
action Ti writes some version xi and Tj reads xi.

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:7

Antidependencies capture behavior where one transaction overwrites the versions
that another transaction reads. In a multiversioned model like Adya’s, we define over-
writes according to the version order defined for that item.

Definition 3.3 (Antidepends). Transaction Tj directly antidepends on Ti if transaction
Ti reads some version xk and Tj writes x’s next version (after xk) in the version order.
Note that the transaction that wrote the later version directly antidepends on the
transaction that read the earlier version.

Write dependencies capture behavior where one transaction overwrites another
transaction’s writes.

Definition 3.4 (Write-Depends). Transaction Tj directly write-depends on Ti if Ti
writes a version xi and Tj writes x’s next version (after xi) in the version order.

We can combine these three kinds of labeled edges into a data structure called the
Direct Serialization Graph.

Definition 3.5 (Direct Serialization Graph). We define the Direct Serialization Graph
(DSG) arising from a history H, denoted by DSG(H) as follows. Each node in the graph
corresponds to a committed transaction and directed edges correspond to different
types of direct conflicts. There is a read dependency edge, write dependency edge, or
antidependency edge from transaction Ti to transaction Tj if Tj reads/writes/directly
antidepends on Ti.

We can subsequently define several kinds of undesirable behaviors by stating prop-
erties about the DSG. The first captures the intent of the Read Uncommitted isolation
level [Berenson et al. 1995].

Definition 3.6 (G0: Write Cycles). A history H exhibits phenomenon G0 if DSG(H)
contains a directed cycle consisting entirely of write-dependency edges.

The next three undesirable behaviors comprise the intent of the Read Committed
isolation level [Berenson et al. 1995].

Definition 3.7 (G1a: Aborted Reads). A history H exhibits phenomenon G1a if H
contains an aborted transaction Ta and a committed transaction Tc such that Tc reads
a version written by Ta.

Definition 3.8 (G1b: Intermediate Reads). A history H exhibits phenomenon G1b if
H contains a committed transaction Ti that reads a version of an object xj written by
transaction T f , and T f also wrote a version xk such that j < k.

The definition of the Fractured Reads phenomenon subsumes the definition of G1b.
For completeness, and, to prevent confusion, we include it here and in our discussion
in the following.

Definition 3.9 (G1c: Circular Information Flow). A history H exhibits phenomenon
G1c if DSG(H) contains a directed cycle that consists entirely of read-dependency and
write-dependency edges.

Our RAMP protocols prevent G1c by assigning the final write to each item in each
transaction the same timestamp. However, to avoid further confusion between the
standard practice of assigning each final write in a serializable multiversion history
the same timestamp [Bernstein et al. 1987] and the flexibility of timestamp assign-
ment admitted in Adya’s formulation of weak isolation, we continue with the previous
definitions.

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:8 P. Bailis et al.

As Adya describes, the previous criteria prevent readers from observing uncommitted
versions (i.e., those produced by a transaction that has not committed or aborted),
aborted versions (i.e., those produced by a transaction that has aborted), or intermediate
versions (i.e., those produced by a transaction but were later overwritten by writes to
the same items by the same transaction).

We can finally define RA isolation:

Definition 3.10 (RA). A system provides RA isolation if it prevents fractured reads
phenomena and also proscribes phenomena G0, G1a, G1b, G1c (i.e., prevents transac-
tions from reading uncommitted, aborted, or intermediate versions).

Thus, RA informally provides transactions with a “snapshot” view of the database
that respects transaction boundaries (see Sections 3.3 and 3.4 for more details, includ-
ing a discussion of transitivity). RA is simply a restriction on write visibility—RA re-
quires that all or none of a transaction’s updates are made visible to other transactions.

3.2. RA Implications and Limitations

As outlined in Section 2.1, RA isolation matches many of our use cases. However, RA
is not sufficient for all applications. RA does not prevent concurrent updates or provide
serial access to data items; that is, under RA, two transactions are never prevented
from both producing different versions of the same data items. For example, RA is
an incorrect choice for an application that wishes to maintain positive bank account
balances in the event of withdrawals. RA is a better fit for our “friend” operation
because the operation is write-only and correct execution (i.e., inserting both records)
is not conditional on preventing concurrent updates.

From a programmer’s perspective, we have found RA isolation to be most easily
understandable (at least initially) with read-only and write-only transactions; after
all, because RA allows concurrent writes, any values that are read might be changed
at any time. However, read-write transactions are indeed well defined under RA.

In Section 3.3, we describe RA’s relation to other formally defined isolation levels,
and in Section 3.4, we discuss when RA provides serializable outcomes.

3.3. RA Compared to Other Isolation Models

In this section, we illustrate RA’s relationship to alternative weak isolation models by
both example and reference to particular isolation phenomena drawn from Adya [1999]
and Bailis et al. [2014a]. We have included it in the extended version of this work in
response to valuable reader and industrial commentary requesting clarification on
exactly which phenomena RA isolation does and does not prevent.

For completeness, we first reproduce definitions of existing isolation models (again,
using Adya’s models) and then give example histories to compare and contrast with
RA isolation.

Read Committed. We begin with the common [Bailis et al. 2014a] Read Commit-
ted isolation. Note that the phenomena mentioned in the following were defined in
Section 3.1.

Definition 3.11 (Read Committed (PL-2 or RC)). Read Committed isolation proscribes
phenomena G1a, G1b, G1c, and G0.

RA is stronger than Read Committed as Read Committed does not prevent fractured
reads. History 1 does not respect RA isolation. After T1 commits, both T2 and T3 could
both commit but, to prevent fractured reads, T4 and T5 must abort. History (1) respects

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:9

RC isolation and all transactions can safely commit.

T1 w(x1); w(y1), (1)
T2 r(x⊥); r(y⊥),
T3 r(x1); r(y1),
T4 r(x⊥); r(y1),
T5 r(x1); r(y⊥).

Lost Updates. Lost Updates phenomena informally occur when two transactions si-
multaneously attempt to make conditional modifications to the same data item(s).

Definition 3.12 (Lost Update). A history H exhibits the phenomenon Lost Updates
if DSG(H) contains a directed cycle having one or more antidependency edges and all
edges are by the same data item x.

That is, Lost Updates occur when the version that a transaction reads is overwritten
by a second transaction that the first transaction depends on. History (2) exhibits the
Lost Updates phenomenon: T1 antidepends on T2 because T2 overwrites x⊥, which T1
read, and T2 antidepends on T1 because T1 also overwrites x⊥, which T2 read. However,
RA does not prevent Lost Updates phenomena, and History (2) is valid under RA. That
is, T1 and T2 can both commit under RA isolation.

T1 r(x⊥); w(x1), (2)
T2 r(x⊥); w(x2).

History (2) is invalid under a stronger isolation model that prevents Lost Updates
phenomena. For completeness, we provide definitions of two such models—Snapshot
Isolation and Cursor Isolation—in the following.

Informally, a history is snapshot isolated if each transaction reads a transaction-
consistent snapshot of the database and each of its writes to a given data item x is the
first write in the history after the snapshot that updates x. To more formally describe
Snapshot Isolation, we formalize the notion of a predicate-based read, as in Adya. Per
Adya, queries and updates may be performed on a set of items if a certain condition
called the predicate applies. We call the set of items a predicate P refers to as P ’s
logical range and denote the set of versions returned by a predicate-based read rj(Pj)
as Vset(Pj). We say a transaction Ti changes the matches of a predicate-based read
rj(Pj) if Ti overwrites a version in Vset(Pj).

Definition 3.13 (Version Set of a Predicate-Based Operation). When a transaction
executes a read or write based on a predicate P, the system selects a version for each
item to which P applies. The set of selected versions is called the Version set of this
predicate-based operation and is denoted by Vset(P).

Definition 3.14 (Predicate-Many-Preceders (PMP)). A history H exhibits phe-
nomenon PMP if, for all predicate-based reads ri(Pi : Vset(Pi)) and rj(Pj : Vset(Pj)
in Tk such that the logical ranges of Pi and Pj overlap (call it Po) and the set of trans-
actions that change the matches of ri(Pi) and rj(Pj) for items in Po differ.

To complete our definition of Snapshot Isolation, we must also consider a variation
of the DSG. Adya describes the Unfolded Serialization Graph (USG) in Adya [1999,
Section 4.2.1]. For completeness, we reproduce it here. The USG is specified for a
transaction of interest, Ti, and a history, H, and is denoted by USG(H, Ti). For the
USG, we retain all nodes and edges of the DSG except for Ti and the edges incident on
it. Instead, we split the node for Ti into multiple nodes—one node for every read/write
event in Ti. The edges are now incident on the relevant event of Ti.

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:10 P. Bailis et al.

USG(H, Ti) is obtained by transforming DSG(H) as follows: For each node p (p �=
Ti) in DSG(H), we add a node to USG(H, Ti). For each edge from node p to node q
in DSG(H), where p and q are different from Ti, we draw a corresponding edge in
USG(H, Ti). Now we add a node corresponding to every read and write performed by
Ti. Any edge that was incident on Ti in the DSG is now incident on the relevant event
of Ti in the USG. Finally, consecutive events in Ti are connected by order edges, e.g.,
if an action (e.g., SQL statement) reads object yj and immediately follows a write on
object x in transaction Ti, we add an order edge from wi(xi) to ri(yj).

Definition 3.15 (Observed Transaction Vanishes (OTV)). A history H exhibits phe-
nomenon OTV if USG(H) contains a directed cycle consisting of exactly one read-
dependency edge by x from Tj to Ti and a set of edges by y containing at least one
antidependency edge from Ti to Tj and Tj ’s read from y precedes its read from x.

Informally, OTV occurs when a transaction observes part of another transaction’s
updates but not all of them (e.g., T1 writes x1 and y1 and T2 reads x1 and y⊥). OTV is
weaker than fractured reads because it allows transactions to read multiple versions
of the same item: in our previous example, if another transaction T3 also wrote x3,
T1 could read x1 and subsequently x3 without exhibiting OTV (but this would exhibit
fractured reads and therefore violate RA).

With these definitions in hand, we can finally define Snapshot Isolation.

Definition 3.16 (Snapshot Isolation). A system provides Snapshot Isolation if it
prevents phenomena G0, G1a, G1b, G1c, PMP, OTV, and Lost Updates.

Informally, cursor stability ensures that, while a transaction is updating a particular
item x in a history H, no other transactions will update x. We can also formally define
Cursor Stability per Adya.

Definition 3.17 (G-cursor(x)). A history H exhibits phenomenon G-cursor(x) if
DSG(H) contains a cycle with an antidependency and one or more write-dependency
edges such that all edges correspond to operations on item x.

Definition 3.18 (Cursor Stability). A system provides Cursor Stability if it prevents
phenomena G0, G1a, G1b, G1c, and G-cursor(x) for all x.

Under either Snapshot Isolation or Cursor Stability, in History (2), either T1 or
T2, or both would abort. However, Cursor Stability does not prevent fractured reads
phenomena, so RA and Cursor Stability are incomparable.

Write Skew. Write Skew phenomena informally occur when two transactions simul-
taneously attempted to make disjoint conditional modifications to the same data items.

Definition 3.19 (Write Skew (Adya G2-item)). A history H exhibits phenomenon
Write Skew if DSG(H) contains a directed cycle having one or more antidependency
edges.

RA does not prevent Write Skew phenomena. History 3 exhibits the Write Skew
phenomenon (Adya’s G2): T1 antidepends on T2 and T2 antidepends on T1. However,
History 3 is valid under RA. That is, T1 and T2 can both commit under RA isolation.

T1 r(y⊥); w(x1), (3)
T2 r(x⊥); w(y2).

History (3) is invalid under a stronger isolation model that prevents Write Skew phe-
nomena. One stronger model is Repeatable Read, defined next.

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:11

Definition 3.20 (Repeatable Read). A system provides Repeatable Read isolation if
it prevents phenomena G0, G1a, G1b, G1c, and Write Skew for nonpredicate reads and
writes.

Under Repeatable Read isolation, the system would abort either T1, T2, or both.
Adya’s formulation of Repeatable Read is considerably stronger than the ANSI SQL
standard specification [Bailis et al. 2014a].

Missing Dependencies. Notably, RA does not—on its own—prevent missing depen-
dencies or missing transitive updates. We reproduce Adya’s definitions as follows:

Definition 3.21 (Missing Transaction Updates). A transaction Tj misses an effect of
a transaction Ti if Ti writes xi and commits and Tj reads another version xk such that
k < i; that is, Tj reads a version of x that is older than the version that was committed
by Ti.

Adya subsequently defines a criterion that prohibits missing transaction updates
across all types of dependency edges:

Definition 3.22 (No-Depend-Misses). If transaction Tj depends on transaction Ti, Tj
does not miss the effects of Ti.

History (4) fails to satisfy No-Depend-Misses but is still valid under RA. That is,
T1, T2, and T3 can all commit under RA isolation. Thus, fractured reads prevention is
similar to No-Depend-Misses but only applies to immediate read dependencies (rather
than all transitive dependencies).

T1 w(x1); w(y1), (4)
T2 r(y1); w(z2),
T3 r(x⊥); r(z2).

History (4) is invalid under a stronger isolation model that prevents missing depen-
dencies phenomena, such as standard semantics for Snapshot Isolation (notably, not
Parallel Snapshot Isolation [Sovran et al. 2011]) and Repeatable Read isolation. Under
these models, the system would abort either T3 or all of T1, T2, and T3.

This behavior is particularly important and belies the promoted use cases that we
discuss in Sections 3.2 and 3.4: writes that should be read together should be written
together.

We further discuss the benefits and enforcements of transitivity in Section 6.3.

Predicates. Thus far, we have not extensively discussed the use of predicate-based
reads. As Adya notes [Adya 1999] and we described earlier, predicate-based isolation
guarantees can be cast as an extension of item-based isolation guarantees (see also
Adya’s PL-2L, which closely resembles RA). RA isolation is no exception to this rule.

Relating to Additional Guarantees. RA isolation subsumes several other useful
guarantees. RA prohibits Item-Many-Preceders and Observed Transaction Vanishes
phenomena; RA also guarantees Item Cut Isolation, and with predicate support, RA
subsumes Predicate Cut Isolation [Bailis et al. 2014b]. Thus, it is a combination of
Monotonic Atomic View and Item Cut Isolation. For completeness, we reproduce these
definitions next.

Definition 3.23 (Item-Many-Preceders (IMP)). A history H exhibits phenomenon
IMP if DSG(H) contains a transaction Ti such that Ti directly item-read-depends by x
on more than one other transaction.

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:12 P. Bailis et al.

Fig. 1. Comparison of RA with isolation levels from Adya [1999] and Bailis et al. [2014a]. RU: Read Uncom-
mitted, RC: Read Committed, CS: Cursor Stability, MAV: Monotonic Atomic View, ICI: Item Cut Isolation,
PCI: Predicate Cut Isolation, RA: Read Atomic, SI: Snapshot Isolation, RR: Repeatable Read (Adya PL-2.99),
S: Serializable.

Informally, IMP occurs if a transaction observes multiple versions of the same item
(e.g., transaction Ti reads x1 and x2).

Definition 3.24 (Item Cut Isolation (I-CI)). A system that provides Item Cut Isolation
prohibits the phenomenon IMP.

Definition 3.25 (Predicate-Many-Preceders (PMP)). A history H exhibits the phe-
nomenon PMP if, for all predicate-based reads ri(Pi : Vset(Pi)) and rj(Pj : Vset(Pj) in
Tk such that the logical ranges of Pi and Pj overlap (call it Po), the set of transactions
that change the matches of Po for ri and rj differ.

Informally, PMP occurs if a transaction observes different versions resulting from
the same predicate read (e.g., transaction Ti reads Vset(Pi) = ∅ and Vset(Pi) = {x1})).

Definition 3.26 (Monotonic Atomic View (MAV)). A system that provides Monotonic
Atomic View isolation prohibits the phenomenon OTV in addition to providing Read
Committed isolation.

Summary. Figure 1 relates RA isolation to several existing models. RA is stronger than
Read Committed, Monotonic Atomic View, and Cut Isolation; weaker than Snapshot
Isolation, Repeatable Read, and Serializability; and incomparable to Cursor Stability.

3.4. RA and Serializability

When we began this work, we started by examining the use cases outlined in Section 2
and derived a weak isolation guarantee that would be sufficient to ensure their correct
execution. For general-purpose read-write transactions, RA isolation may indeed lead
to nonserializable (and possibly incorrect) database states and transaction outcomes.
Yet, as Section 3.2 hints, there appears to be a broader “natural” pattern for which
RA isolation appears to provide an intuitive (even “correct”) semantics. In this section,
we show that for transactions with a particular property of their item read and item
write sets, RA is, in fact, serializable. We define this property, called the Read-Subset-
Items-Written (RSIW) property, prove that transactions obeying the RSIW property
lead to serializable outcomes, and discuss the implications of the RSIW property for
the applications outlined in Section 2.

Because our system model operates on multiple versions, we must make a small
refinement to our use of the term “serializability”—namely, we draw a distinction
between serial and one-copy serializable schedules [Bernstein et al. 1987]. First, we
say that two histories H1 and H2 are view equivalent if they contain the same set of

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:13

committed transactions and have the same operations and DSG(H1) and DSG(H2)
have the same direct read dependencies. For brevity, and for consistency with prior
work, we say that Ti reads from Tj if Ti directly read-depends on Tj . We say that a
transaction is read-only if it does not contain write operations and that a transaction is
write-only if it does not contain read operations. In this section, we concern ourselves
with one-copy serializability [Bernstein et al. 1987], which we define using the previous
definition of view equivalence.

Definition 3.27 (One-Copy Serializability). A history is one-copy serializable if it is
view equivalent to a serial execution of the transactions over a single logical copy of
the database.

The basic intuition behind the RSIW property is straightforward: under RA isolation,
if application developers use a transaction to bundle a set of writes that should be
observed together, any readers of the items that were written will, in fact, behave
“properly”—or one-copy serializably. That is, for read-only and write-only transactions,
if each reading transaction only reads a subset of the items that another write-only
transaction wrote, then RA isolation is equivalent to one-copy serializable isolation.
Before proving that this behavior is one-copy serializable, we characterize this condition
more precisely:

Definition 3.28 (RSIW). A read-only transaction Tr exhibits the RSIW property if,
whenever Tr reads a version produced by a write-only transaction Tw, Tr only reads
items written by Tw.

For example, consider the following History (5):

T1 w(x1); w(y1), (5)
T2 r(x1); r(y1),
T3 r(x1); r(z⊥).

Under History (5), T2 exhibits the RSIW property because it reads a version produced
by transaction T1 and its item read set ({x, y}) is a subset of T1’s item write set ({x, y}).
However, T3 does not exhibit the RSIW property because (i) T3 reads from T1 but T3’s
read set ({x, z}) is not a subset of T1’s write set ({x, y}) and (ii) perhaps more subtly, T3
reads from both T1 and T⊥.

We say that a history H containing read-only and write-only transactions exhibits
the RSIW property (or has RSIW) if every read-only transaction in H exhibits the
RSIW property.

This brings us to our main result in this section:

THEOREM 3.29. If a history H containing read-only and write-only transactions has
RSIW and is valid under RA isolation, then H is one-copy serializable.

The proof of Theorem 3.29 is by construction: given a history H has RSIW and is valid
under RA isolation, we describe how to derive an equivalent one-copy serial execution
of the transactions in H. We begin with the construction procedure, provide examples
of how to apply the procedure, then prove that the procedure converts RSIW histories
to their one-copy serial equivalents. We include the actual proof in Appendix A.

Utility. Theorem 3.29 is helpful because it provides a simple syntactic condition for
understanding when RA will provide one-copy serializable access. For example, we can
apply this theorem to our use cases from Section 2. In the case of multientity update
and read, if clients issue read-only and write-only transactions that obey the RSIW
property, their result sets will be one-copy serializable. The RSIW property holds for

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:14 P. Bailis et al.

equality-based lookup of single records from an index (e.g., fetch from the index and
subsequently fetch the corresponding base tuple, each of which was written in the same
transaction or was autogenerated upon insertion of the tuple into the base relation).
However, the RSIW property does not hold in the event of multituple reads, leading to
less intuitive behavior. Specifically, if two different clients trigger two separate updates
to an index entry, some clients may observe one update but not the other, and other
clients may observe the opposite behavior. In this case, the RAMP protocols still provide
a snapshot view of the database according to the index(es)—that is, clients will never
observe base data that is inconsistent with the index entries—but nevertheless surface
nonserializable database states. For example, if two transactions each update items x
and y to value 2, then readers of the index entry for 2 may observe x = 2 and y = 2
but not both at the same time; this is because two transactions updating two separate
items do not have RSIW. Finally, for more general materialized view accesses, point
queries and bulk insertions may also have RSIW.

As discussed in Section 2, in the case of indexes and views, it is helpful to view
each physical data structure (e.g., a CRDT [Shapiro et al. 2011] used to represent
an index entry) as a collection of versions. The RSIW property applies only if clients
make modifications to the entire collection at once (e.g., as in a DELETE CASCADE opera-
tion); otherwise, a client may read from multiple transaction item write sets, violating
RSIW.

Coupled with an appropriate algorithm ensuring RA isolation, we can ensure one-
copy serializable isolation. This addresses a long-standing concern with our work: why
is RA somehow “natural” for these use cases (but not necessarily all use cases)? We
have encountered applications that do not require one-copy serializable access—such
as the mailbox unread message maintenance from Section 2 and, in some cases, index
maintenance for non-read-modify-write workloads—and therefore may safely violate
RSIW but believe it is a handy principle (or, at the least, rule of thumb) for reasoning
about applications of RA isolation and the RAMP protocols.

Finally, the RSIW property is only a sufficient condition for one-copy serializable
behavior under RA isolation. There are several alternative sufficient conditions to
consider. As a natural extension, while RSIW only pertains to pairs of read-only and
write-only transactions, one might consider allowing readers to observe multiple write
transactions. For example, consider the following history:

T1 w(x1); w(y1), (6)
T2 w(u2); w(z2),
T3 r(x1); r(z2).

History (6) is valid under RA and is also one-copy serializable but does not satisfy RSIW:
T3 reads from two transactions’ write sets. However, consider the following history:

T1 : w(x1); w(y1), (7)
T2 : w(u2); w(z2),
T3 : r(x1); r(z⊥),
T4 : r(x⊥); r(z2).

History (7) is valid under RA, consists only of read-only and write-only transactions,
yet is no longer one-copy serializable. T3 observes a prefix beginning with T⊥; T1 while
T4 observes a prefix beginning with T⊥; T2.

Thus, while there may indeed be useful criteria beyond the RSIW property that
we might consider as a basis for one-copy serializable execution under RA, we have
observed RSIW to be the most intuitive and useful thus far. One clear criteria is to

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:15

search for schedules or restrictions under RA with an acyclic DSG (from Appendix A).
The reason why RSIW is so simple for read-only and write-only transactions is that
each read-only transaction only reads from one other transaction and does not induce
any additional antidependencies. Combining reads and writes complicates reasoning
about the acyclicity of the graph.

This exercise touches upon an important lesson in the design and use of weakly
isolated systems: by restricting the set of operations accessible to a user (e.g., RSIW
read-only and write-only transactions), one can often achieve more scalable implemen-
tations (e.g., using weaker semantics) without necessarily violating existing abstrac-
tions (e.g., one-copy serializable isolation). While prior work often focuses on restricting
only operations (e.g., to read-only or write-only transactions [Lloyd et al. 2013; Bailis
et al. 2014c; Agrawal and Krishnaswamy 1991], or stored procedures [Thomson et al.
2012; Kallman et al. 2008; Jones et al. 2010], or single-site transactions [Baker et al.
2011]) or only semantics (e.g., weak isolation guarantees [Bailis et al. 2014a; Lloyd
et al. 2013; Bailis et al. 2012]), we see considerable promise in better understanding
the intersection between and combinations of the two. This is often subtle and almost
always challenging, but the results—as we found here—may be surprising.

3.5. System Model and Scalability

We consider databases that are partitioned, with the set of items in the database spread
over multiple servers. Each item has a single logical copy, stored on a server—called
the item’s partition—whose identity can be calculated using the item. Clients forward
operations on each item to the item’s partition, where they are executed. Transaction
execution terminates in commit, signaling success, or abort, signaling failure. In our
examples, all data items have the null value (⊥) at database initialization. We do not
model replication of data items within a partition; this can happen at a lower level of
the system than our discussion (see Section 4.6) as long as operations on each item are
linearizable [Attiya and Welch 2004].
Scalability Criteria. As we hinted in Section 1, large-scale deployments often eschew
transactional functionality on the premise that it would be too expensive or unstable
in the presence of failure and degraded operating modes [Birman et al. 2009; Bronson
et al. 2013; Chang et al. 2006; Cooper et al. 2008; DeCandia et al. 2007; Helland 2007;
Hull 2013; Qiao et al. 2013; Weil 2011]. Our goal in this article is to provide robust and
scalable transactional functionality, and, so we first define criteria for “scalability”:
Coordination-free execution ensures that one client’s transactions cannot cause another
client’s to block and that, if a client can contact the partition responsible for each item
in its transaction, the transaction will eventually commit (or abort of its own volition).
This prevents one transaction from causing another to abort—which is particularly
important in the presence of partial failures—and guarantees that each client is able
to make useful progress. In the absence of failures, this maximizes useful concurrency.
In the literature, coordination-free execution for replicated transactions is also called
transactional availability [Bailis et al. 2014a]. Note that “strong” isolation models like
serializability and Snapshot Isolation require coordination and thus limit scalability.
Locking is an example of a non-coordination-free implementation mechanism.

Many applications can limit their data accesses to a single partition via explicit
data modeling [Das et al. 2010; Qiao et al. 2013; Baker et al. 2011; Helland 2007] or
planning [Curino et al. 2010; Pavlo et al. 2012]. However, this is not always possible. In
the case of secondary indexing, there is a cost associated with requiring single-partition
updates (scatter-gather reads), while in social networks like Facebook and large-scale
hierarchical access patterns as in Rainbird [Weil 2011], perfect partitioning of data
accesses is near impossible. Accordingly:

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:16 P. Bailis et al.

Partition independence ensures that, in order to execute a transaction, a client only con-
tacts partitions for data items that its transaction directly accesses. Thus, a partition
failure only affects transactions that access items contained on the partition. This also
reduces load on servers not directly involved in a transaction’s execution. In the litera-
ture, partition independence for replicated data is also called replica availability [Bailis
et al. 2014a] or genuine partial replication [Schiper et al. 2010]. Using a centralized
validator or scheduler for transactions is an example of a non-partition-independent
implementation mechanism.

In addition to the previous requirements, we limit the metadata overhead of algo-
rithms. There are many potential solutions for providing atomic visibility that rely on
storing prohibitive amounts of state. We will attempt to minimize the metadata—that
is, data that the transaction did not itself write but which is required for correct execu-
tion. Our algorithms will provide constant-factor metadata overhead (RAMP-S, RAMP-H)
or else overhead linear in transaction size (but independent of data size; RAMP-F). As an
example of a solution using prohibitive amounts of metadata, each transaction could
send copies of all of its writes to every partition it accesses so that readers observe all of
its writes by reading a single item. This provides RA isolation but requires considerable
storage. Other solutions may require extra data storage proportional to the number of
servers in the cluster or, worse, the database size (Section 7).

4. RAMP TRANSACTION ALGORITHMS

Given specifications for RA isolation and scalability, we present algorithms for achiev-
ing both. For ease of understanding, we first focus on providing read-only and write-only
transactions with a “last writer wins” overwrite policy, then subsequently discuss how
to perform read/write transactions. Our focus in this section is on intuition and un-
derstanding; we defer all correctness and scalability proofs to Appendix B, providing
salient details inline.

At a high level, RAMP transactions allow reads and writes to proceed concurrently.
This provides excellent performance but, in turn, introduces a race condition: one
transaction might only read a subset of another transaction’s writes, violating RA (i.e.,
fractured reads might occur). Instead of preventing this race (hampering scalability),
RAMP readers autonomously detect the race (using metadata attached to each data
item) and fetch any missing, in-flight writes from their respective partitions. To make
sure that readers never have to block waiting for writes to arrive at a partition, writers
use a two-phase (atomic commitment) protocol that ensures that once a write is visible
to readers on one partition, any other writes in the transaction are present on and, if
appropriately identified by version, readable from their respective partitions.

In this section, we present three algorithms that provide a trade-off between the
amount of metadata required and the expected number of extra reads to fetch missing
writes. As discussed in Section 2, if techniques like distributed locking couple mutual
exclusion with atomic visibility of writes, RAMP transactions correctly control visibility
but allow concurrent and scalable execution.

4.1. RAMP-Fast

To begin, we present a RAMP algorithm that, in the race-free case, requires one RTT
for reads and two RTTs for writes, called RAMP-Fast (abbreviated RAMP-F; Algorithm 1).
RAMP-F stores metadata in the form of write sets (overhead linear in transaction size).
Overview. Each write in RAMP-F (lines 14–21) contains a timestamp (line 15) that
uniquely identifies the writing transaction as well as a set of items written in the
transaction (line 16). For now, combining a unique client ID and client-local sequence
number is sufficient for timestamp generation (see also Section 4.5).

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:17

RAMP-F write transactions proceed in two phases: a first round of communication
places each timestamped write on its respective partition. In this PREPARE phase, each
partition adds the write to its local database (versions, lines 1, 17–19). A second round of
communication (lines 20–21) marks versions as committed. In this COMMIT phase, each
partition updates an index containing the highest-timestamped committed version of
each item (lastCommit, lines 2, 6–8).
RAMP-F read transactions begin by first fetching the last (highest-timestamped) com-

mitted version for each item from its respective partition (lines 23–30). Using the
results from this first round of reads, each reader can calculate whether it is “missing”
any versions (that is, versions that were prepared but not yet committed on their par-
titions). The reader calculates a mapping from each item i to the highest-timestamped
version of i that appears in the metadata of any version (of i or of any other item) in
the first-round read set (lines 26–29). If the reader has read a version of an item that
has a lower timestamp than indicated in the mapping for that item, the reader issues a
second read to fetch the missing version (by timestamp) from its partition (lines 30–32).
Once all missing versions are fetched (which can be done in parallel), the client can
return the resulting set of versions—the first-round reads, with any missing versions
replaced by the optional, second round of reads.
By Example. Consider the RAMP-F execution depicted in Figure 2. T1 writes to both x
and y, performing the two-round write protocol on two partitions, Px and Py. However,
T2 reads from x and y while T1 is concurrently writing. Specifically, T2 reads from Px
after Px has committed T1’s write to x, but T2 reads from Py before Py has committed
T1’s write to y. Therefore, T2’s first-round reads return x = x1 and y = ∅, and returning
this set of reads would violate RA. Using the metadata attached to its first-round
reads, T2 determines that it is missing y1 (since vlatest[y] = 1 and 1 > ∅) and so T2
subsequently issues a second read from Py to fetch y1 by version. After completing its
second-round read, T2 can safely return its result set. T1’s progress is unaffected by T2,
and T1 subsequently completes by committing y1 on Py.
Why it Works. RAMP-F writers use metadata as a record of intent: a reader can detect
if it has raced with an in-progress commit round and use the metadata stored by
the writer to fetch the missing data. Accordingly, RAMP-F readers only issue a second
round of reads in the event that they read from a partially committed write transaction
(where some but not all partitions have committed a write). In this event, readers will
fetch the appropriate writes from the not-yet-committed partitions. Most importantly,
RAMP-F readers never have to stall waiting for a write that has not yet arrived at a
partition: the two-round RAMP-F write protocol guarantees that, if a partition commits a
write, all of the corresponding writes in the transaction are present on their respective
partitions (though possibly not committed locally). As long as a reader can identify
the corresponding version by timestamp, the reader can fetch the version from the
respective partition’s set of pending writes without waiting. To enable this, RAMP-F
writes contain metadata linear in the size of the writing transaction’s write set (plus a
timestamp per write).
RAMP-F requires two RTTs for writes: one for PREPARE and one for COMMIT. For reads,

RAMP-F requires one RTT in the absence of concurrent writes and two RTTs otherwise.
RAMP timestamps are only used to identify specific versions and in ordering concur-

rent writes to the same item; RAMP-F transactions do not require a “global” timestamp
authority. For example, if lastCommit[i] = 2, there is no requirement that a transaction
with timestamp 1 has committed or even that such a transaction exists.

4.2. RAMP-Small: Trading Metadata for RTTs

While RAMP-F requires metadata size linear in write set size but provides best-case one
RTT for reads, RAMP-Small (RAMP-S) uses constant metadata but always requires two

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:18 P. Bailis et al.

Fig. 2. Space-time diagram for RAMP-F execution for two transactions T1 and T2 performed by clients C1 and
C2 on partitions Px and Py. Lightly shaded boxes represent current partition state (lastCommit and versions),
while the single darker box encapsulates all messages exchanged during C2’s execution of transaction T2.
Because T1 overlaps with T2, T2 must perform a second round of reads to repair the fractured read between
x and y. T1’s writes are assigned timestamp 1. We depict a compressed version of metadata, where each item
does not appear in its list of writes (e.g., Px sees {y} only and not {x, y}).

RTT for reads (Algorithm 2). RAMP-S and RAMP-F writes are identical, but instead of
attaching the entire write set to each write, RAMP-S writers only store the transaction
timestamp (line 7). Unlike RAMP-F, RAMP-S readers issue a first round of reads to fetch
the highest committed timestamp for each item from its respective partition (lines 3,
9–11). Then the readers send the entire set of timestamps they received to the partitions
in a second round of communication (lines 13–14). For each item in the read request,
RAMP-S servers return the highest-timestamped version of the item that also appears
in the supplied set of timestamps (lines 5–6). Readers subsequently return the results
from the mandatory second round of requests.
By Example. In Figure 3, under RAMP-S, Px and Py, respectively, return the sets {1}
and {∅} in response to T2’s first round of reads. T2 would subsequently send the set
{1,∅} to both Px and Py, which would return x1 and y1.
Why it Works. In RAMP-S, if a transaction has committed on some but not all partitions,
the transaction timestamp will be returned in the first round of any concurrent read

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:19

ALGORITHM 1: RAMP-Fast
Server-side Data Structures

1: versions: set of versions 〈item, value, timestamp tsv, metadata md〉
2: lastCommit[i]: last committed timestamp for item i

Server-side Methods
3: procedure PREPARE(v : version)
4: versions.add(v)
5: return

6: procedure COMMIT(tsc : timestamp)
7: Its ← {w.item | w ∈ versions ∧ w.tsv = tsc}
8: ∀i ∈ Its, lastCommit[i] ← max(lastCommit[i], tsc)

9: procedure GET(i : item, tsreq : timestamp)
10: if tsreq = ∅ then
11: return v ∈ versions : v.item = i ∧ v.tsv = lastCommit[item]
12: else
13: return v ∈ versions : v.item = i ∧ v.tsv = tsreq

Client-side Methods
14: procedure PUT ALL(W : set of 〈item, value〉)
15: tstx ← generate new timestamp
16: Itx ← set of items in W
17: parallel-for 〈i, v〉 ∈ W
18: w ← 〈item = i, value = v, tsv = tstx, md = (Itx − {i})〉
19: invoke PREPARE(w) on respective server (i.e., partition)
20: parallel-for server s : s contains an item in W
21: invoke COMMIT(tstx) on s

22: procedure GET ALL(I : set of items)
23: ret ← {}
24: parallel-for i ∈ I
25: ret[i] ← GET(i, ∅)
26: vlatest ← {} (default value: −1)
27: for response r ∈ ret do
28: for itx ∈ r.md do
29: vlatest[itx] ← max(vlatest[itx], r.tsv)

30: parallel-for item i ∈ I
31: if vlatest[i] > ret[i].tsv then
32: ret[i] ← GET(i, vlatest[i])

33: return ret

transaction accessing the committed partitions’ items. In the (required) second round
of read requests, any prepared-but-not-committed partitions will find the committed
timestamp in the reader-provided set and return the appropriate version. In contrast
with RAMP-F, where readers explicitly provide partitions with a specific version to return
in the (optional) second round, RAMP-S readers defer the decision of which version
to return to the partition, which uses the reader-provided set to decide. This saves
metadata but increases RTTs, and the size of the parameters of each second-round GET

request is (worst-case) linear in the read set size. Unlike RAMP-F, there is no requirement
to return the value of the last committed version in the first round (returning the
version, lastCommit[i], suffices in line 3).

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:20 P. Bailis et al.

Fig. 3. Space-time diagram for RAMP-S execution for two transactions T1 and T2 performed by clients C1 and
C2 on partitions Px and Py. Lightly shaded boxes represent current partition state (lastCommit and versions),
while the single darker box encapsulates all messages exchanged during C2’s execution of transaction T2. T2
first fetches the highest committed timestamp from each partition, then fetches the corresponding version.
In this depiction, partitions only return timestamps instead of actual versions in response to first-round
reads.

4.3. RAMP-Hybrid: An Intermediate Solution

RAMP-Hybrid (RAMP-H; Algorithm 3) strikes a compromise between RAMP-F and RAMP-S.
RAMP-H and RAMP-S write protocols are identical, but instead of storing the entire write
set (as in RAMP-F), RAMP-H writers store a Bloom filter [Bloom 1970] representing the
transaction write set (line 1). RAMP-H readers proceed as in RAMP-F, with a first round
of communication to fetch the last-committed version of each item from its partition
(lines 3–5). Given this set of versions, RAMP-H readers subsequently compute a list
of potentially higher-timestamped writes for each item (lines 7–10). Any potentially
missing versions are fetched in a second round of reads (lines 11).

By Example. In Figure 2, under RAMP-H, x1 would contain a Bloom filter with positives
for x and y and y∅ would contain an empty Bloom filter. T2 would check for the presence

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:21

ALGORITHM 2: RAMP-Small
Server-side Data Structures
same as in RAMP-F (Algorithm 1)

Server-side Methods
PREPARE, COMMIT same as in RAMP-F

1: procedure GET(i : item, tsset : set of timestamps)
2: if tsset = ∅ then
3: return v ∈ versions : v.item = i ∧ v.tsv = lastCommit[i]
4: else
5: tsmatch = {t | t ∈ tsset ∧ ∃v ∈ versions : v.item = i ∧ v.tv = t}
6: return v ∈ versions : v.item = i ∧ v.tsv = max(tsmatch)

Client-side Methods
7: procedure PUT ALL(W : set of 〈item, value〉)

same as RAMP-F PUT ALL but do not instantiate md on line 18

8: procedure GET ALL(I : set of items)
9: tsset ← {}

10: parallel-for i ∈ I
11: tsset.add(GET(i, ∅).tsv)
12: ret ← {}
13: parallel-for item i ∈ I
14: ret[i] ← GET(i, tsset)
15: return ret

of y in x1’s Bloom filter (since x1’s version is 1 and 1 > ∅) and, finding a match, conclude
that it is potentially missing a write (y1). T2 would subsequently fetch y1 from Py.

Why it Works. RAMP-H is effectively a hybrid between RAMP-F and RAMP-S. If the Bloom
filter has no false positives, RAMP-H reads behave like RAMP-F reads. If the Bloom filter
has all false positives, RAMP-H reads behave like RAMP-S reads. Accordingly, the number
of (unnecessary) second-round reads (i.e., which would not be performed by RAMP-F)
is controlled by the Bloom filter false positive rate, which is in turn (in expectation)
proportional to the size of the Bloom filter. Any second-round GET requests are accom-
panied by a set of timestamps that is also proportional in size to the false positive
rate. Therefore, RAMP-H exposes a trade-off between metadata size and expected per-
formance. To understand why RAMP-H is safe, we simply have to show that any false
positives (second-round reads) will not compromise the integrity of the result set; with
unique timestamps, any reads due to false positives will return null.

4.4. Summary of Basic Algorithms

The RAMP algorithms allow readers to safely race writers without requiring either to
stall. The metadata attached to each write allows readers in all three algorithms to
safely handle concurrent and/or partial writes and in turn allows a trade-off between
metadata size and performance (Table I): RAMP-F is optimized for fast reads, RAMP-S is
optimized for small metadata, and RAMP-H is, as the name suggests, a middle ground.
RAMP-F requires metadata linear in transaction size, while RAMP-S and RAMP-H require
constant metadata. However, RAMP-S and RAMP-H require more RTTs for reads compared
to RAMP-F when there is no race between readers and writers. When reads and writes
race, in the worst case, all algorithms require two RTTs for reads. Writes always require
two RTTs to prevent readers from stalling due to missing, unprepared writes.

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:22 P. Bailis et al.

Table I. Comparison of Basic Algorithms: RTTs Required for Writes (W), Reads (R) without
Concurrent Writes and in the Worst Case (O), Stored Metadata and Metadata Attached

to Read Requests (In Addition to a Timestamp for Each)

Algorithm
RTTs/transaction Metadata (+stamp)

W R (stable) R (O) Stored Per-Request
RAMP-F 2 1 2 txn items -
RAMP-S 2 2 2 - stamp/item
RAMP-H 2 1 + ε 2 Bloom filter stamp/item

ALGORITHM 3: RAMP-Hybrid
Server-side Data Structures
Same as in RAMP-F (Algorithm 1)

Server-side Methods
PREPARE, COMMIT same as in RAMP-F
GET same as in RAMP-S

Client-side Methods
1: procedure PUT ALL(W : set of 〈item, value〉)

same as RAMP-F PUT ALL but instantiate md on line 18
with a Bloom filter containing Itx

2: procedure GET ALL(I : set of items)
3: ret ← {}
4: parallel-for i ∈ I
5: ret[i] ← GET(i, ∅)
6: v f etch ← {}
7: for version v ∈ ret do
8: for version v′ ∈ ret : v′ �= v do
9: if v.tsv > v′.tsv ∧ v.md.lookup(v′.item) → True then

10: v f etch[v′.item].add(v.tsv)
11: parallel-for item i ∈ v f etch
12: ret[i] ← GET(i, v f etch[i]) if GET(i, v f etch[i]) �= ⊥
13: return ret

RAMP algorithms are scalable because clients only contact partitions directly ac-
cessed by their transactions (partition independence), and clients cannot stall one
another (are coordination-free). More specifically, readers do not interfere with other
readers, writers do not interfere with other writers, and readers and writers can pro-
ceed concurrently. When a reader races a writer to the same items, the writer’s new
versions will only become visible to the reader (i.e., be committed) once it is guaranteed
that the reader will be able to fetch all of them (possibly via a second round of commu-
nication). A reader will never have to stall waiting for writes to arrive at a partition
(for details, see Invariant 1 in the Appendix); however, the reader may have to contact
the servers twice in order to fetch any versions that were missing from its first set of
reads.

4.5. Additional Details

In this section, we discuss relevant implementation details.

Multiversioning and Garbage Collection. RAMP transactions rely on multiver-
sioning to allow readers to access versions that have not yet committed and/or
have been overwritten. In our pseudocode, we have presented an implementation
based on multiversioned storage; in practice, multiversioning can be implemented by

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:23

using a single-versioned storage engine for retaining the last committed version of each
item and using a “look-aside” store for access to both prepared-but-not-yet-committed
writes and (temporarily) any overwritten versions. The look-aside store should make
prepared versions durable but can—at the risk of aborting transactions in the event
of a server failure—simply store any overwritten versions in memory. Thus, with some
work, RAMP algorithms are portable to non-multi-versioned storage systems.

In both architectures, each partition’s data will grow without bound if old versions
are not removed. If a committed version of an item is not the highest-timestamped
committed version (i.e., a committed version v of item k where v < lastCommit[i]), it
can be safely discarded (i.e., Garbage Collected, or GCed) as long as no readers will
attempt to access it in the future (via second-round GET requests). It is easiest to simply
limit the running time of read transactions and GC overwritten versions after a fixed
amount of real time has elapsed. Any read transactions that take longer than this GC
window can be restarted [Lloyd et al. 2011, 2013]. Therefore, the maximum number
of versions retained for each item is bounded by the item’s update rate, and servers
can reject any client GET requests for versions that have been GCed (and the read
transaction can be restarted). As a more principled solution, partitions can also gossip
the timestamps of items that have been overwritten and have not been returned in
the first round of any ongoing read transactions. Under RAMP-F, if a second-round read
request arrives at a server and the server does not have that version due to garbage
collection, it can safely ignore the request or signal failure.

Read-Write Transactions. Until now, we have focused on read-only and write-only
transactions. However, we can extend our algorithms to provide read-write transac-
tions. If transactions predeclare the data items they wish to read, then the client can
execute a GET_ALL transaction at the start of transaction execution to prefetch all items;
subsequent accesses to those items can be served from this prefetched set. Clients can
buffer any writes and, upon transaction commit, send all new versions to servers (in
parallel) via a PUT_ALL request. As in Section 3, this may result in anomalies due to
concurrent update but does not violate RA isolation. Given the benefits of predeclared
read/write sets [Curino et al. 2010; Pavlo et al. 2012; Thomson et al. 2012] and write
buffering [Corbett et al. 2012; Shute et al. 2013], we believe this is a reasonable strat-
egy. For secondary index lookups, clients can first look up secondary index entries then
subsequently (within the same transaction) read primary data (specifying versions
from index entries as appropriate).

Timestamps. Timestamps should be unique across transactions and, for “session”
consistency (Appendix), increase on a per-client basis. Given unique client IDs, a client
ID and sequence number form unique transaction timestamps without coordination.
Without unique client IDs, servers can assign unique timestamps with high probability
using Universally Unique Identifiers (UUIDs) and by hashing transaction contents.

Overwrites. In our algorithms, versions are overwritten according to a highest-
timestamp-wins policy. In practice, and for commutative updates, users may wish to
employ a different policy upon COMMIT: for example, perform set union. In this case,
lastCommit[i] contains an abstract data type (e.g., set of versions) that can be up-
dated with a merge operation [DeCandia et al. 2007; Terry et al. 1994] (instead of
update If Greater) upon commit. This treats each committed record as a set of versions,
requiring additional metadata (that can be GCed as in Section 4.8).

4.6. Distribution and Fault Tolerance

RAMP transactions operate in a distributed setting, which poses challenges due to
latency, partial failure, and network partitions. Under coordination-free execution,

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:24 P. Bailis et al.

failed clients do not cause other clients to fail, while partition independence ensures
that clients only have to contact partitions for items in their transactions. This provides
fault tolerance and availability as long as clients can access relevant partitions. In this
section, we address incident concerns. First, replication can be used to increase the
number of servers hosting a partition, thus increasing availability. Second, we describe
the RAMP protocol behavior when clients are unable to contact servers.

Replication. RAMP protocols can benefit from a variety of mechanisms including
traditional database master-slave replication with failover, quorum-based protocols,
and state machine replication, which increase the number of physical servers that host
a given data item [Bernstein et al. 1987]. To improve durability, RAMP clients can wait
until the effects of their operations (e.g., modifications to versions and lastCommit)
are persisted to multiple physical servers before returning from PUT_ALL calls (either
via master-to-slave replication or via quorum replication and by performing two-phase
commit across multiple active servers). Notably, because RAMP transactions can safely
overlap in time, replicas can process different transactions’ PREPARE and COMMIT requests
in parallel. Availability can also benefit in many protocols, such as quorum replication.
We discuss more advanced replication techniques in Section 6.1.

Stalled Operations. RAMP writes use a two-phase atomic commitment protocol that
ensures readers never block waiting for writes to arrive. As discussed in Section 2, every
ACP may block during failures [Bernstein et al. 1987]. However, under coordination-
free execution, a blocked transaction (due to failed clients, failed servers, or network
partitions) cannot cause other transactions to block. Blocked writes instead act as
“resource leaks” on partitions: partitions will retain prepared versions indefinitely
unless action is taken.

To “free” these leaks, RAMP servers can use the Cooperative Termination Protocol
(CTP) described in Bernstein et al. [1987]. CTP can always complete the transaction
except when every partition has performed PREPARE but no partition has performed
COMMIT. In CTP, if a server Sp has performed PREPARE for transaction T but times out
waiting for a COMMIT, Sp can check the status of T on any other partitions for items
in T ’s write set. If another server Sc has received COMMIT for T , then Sp can COMMIT

T . If Sa, a server responsible for an item in T , has not received PREPARE for T , Sa and
Sp can promise never to PREPARE or COMMIT T in the future and Sp can safely discard
its versions. Under CTP, if a client blocks mid-COMMIT, the servers will ensure that the
writes will eventually COMMIT and therefore become visible on all partitions. A client
recovering from a failure can read from the servers to determine if they unblocked its
write.

CTP only runs when writes block (or time-outs fire) and runs asynchronously with
respect to other operations. CTP requires that PREPARE messages contain a list of servers
involved in the transaction (a subset of RAMP-F metadata but a superset of RAMP-H and
RAMP-S) and that servers remember when they COMMIT and “abort” writes (e.g., in a log
file). Compared to alternatives (e.g., replicating clients [Gray and Lamport 2006]), we
have found CTP to be both lightweight and effective. We evaluate CTP in Section 5.3.

4.7. Additional Semantics

While our RAMP transactions provide RA isolation, they also provide a number of addi-
tional useful guarantees. With linearizable servers, once a user’s operation completes,
all other users will observe its effects (regular register semantics, applied at the trans-
action level); this provides a notion of real-time recency. This also ensures that each
user’s operations are visible in the order in which they are completed. Our RAMP im-
plementations provide a variant of PRAM consistency, where for each item, each user’s

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:25

writes are serialized [Lipton and Sandberg 1988] (i.e., “session” ordering [Daudjee and
Salem 2004]). For example, if a user updates her privacy settings and subsequently
posts a new photo, the photo cannot be read without the privacy setting change [Cooper
et al. 2008]. However, Parallel Random Access Memory (PRAM) does not respect the
happens-before relation [Lamport 1978] across users (or missing dependencies, as dis-
cussed in Section 3.3). If Sam reads Mary’s comment and replies to it, other users
may read Sam’s comment without Mary’s comment. We further discuss this issue in
Section 6.3.

4.8. Further Optimizations

RAMP algorithms also allow several possible optimizations:

Faster Commit Detection. If a server returns a version in response to a GET request,
then the transaction that created the version must have issued a COMMIT on at least
one server. In this case, the server can safely mark the version as committed and
update lastCommit. This means that the transaction commit will be reflected in any
subsequent GET requests that read from lastCommit for this item—even though the
COMMIT message from the client may yet be delayed. The net effect is that the later GET

requests may not have to issue second-round reads to fetch the versions that otherwise
would not have been marked as committed. This scenario will occur when all partitions
have performed PREPARE and at least one server but not all partitions have performed
COMMIT (as in CTP). This allows faster updates to lastCommit (and therefore fewer
expected RAMP-F and RAMP-H RTTs).

Metadata Garbage Collection. Once all of transaction T ’s writes are committed on
each respective partition (i.e., are reflected in lastCommit), readers are guaranteed to
read T ’s writes (or later writes). Therefore, nontimestamp metadata for T ’s writes
stored in RAMP-F and RAMP-H (write sets and Bloom filters) can be discarded. Detecting
that all servers have performed COMMIT can be performed asynchronously via a third
round of communication performed by either clients or servers.

One-Phase Writes. We have considered two-phase writes, but if a user does not wish
to read her writes (thereby sacrificing session guarantees outlined in Section 4.7), the
client can return after issuing its PREPARE round (without sacrificing durability). The
client can subsequently execute the COMMIT phase asynchronously, or similar to opti-
mizations presented in Paxos Commit [Gray and Lamport 2006], the servers can ex-
change PREPARE acknowledgments with one another and decide to COMMIT autonomously.
This optimization is safe because multiple PREPARE phases can safely overlap. We lever-
age a similar observation in Section 6.1.

5. EXPERIMENTAL EVALUATION

We proceed to experimentally demonstrate RAMP transaction scalability as compared
to existing transactional and nontransactional mechanisms. RAMP-F, RAMP-H, and of-
ten RAMP-S outperform existing solutions across a range of workload conditions while
exhibiting overheads typically within 8% and no more than 48% of peak throughput.
As expected from our theoretical analysis, the performance of our RAMP algorithms
does not degrade substantially under contention and scales linearly to over 7.1 million
operations per second on 100 servers. These outcomes validate our choice to pursue
coordination-free and partition-independent algorithms.

5.1. Experimental Setup

To demonstrate the effect of concurrency control on performance and scalability, we
implemented several concurrency control algorithms in a partitioned, multiversioned,

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:26 P. Bailis et al.

main-memory database prototype. Our prototype is in Java and employs a custom
Remote Procedure Call (RPC) system with Kryo 2.20 for serialization. Servers are
arranged as a distributed hash table [Stoica et al. 2001] with partition placement
determined by random hashing of keys to servers. As in stores like Dynamo [DeCandia
et al. 2007], clients can connect to any server to execute operations, which the server will
perform on their behalf (i.e., each server acts as a client in our RAMP pseudocode). We
implemented RAMP-F, RAMP-S, and RAMP-H and configure a wall-clock GC window of 5s as
described in Section 4.5. RAMP-H uses a 256-bit Bloom filter based on an implementation
of MurmurHash2.0, with four hashes per entry; to demonstrate the effects of filter
saturation, we do not modify these parameters in our experiments. Our prototype
utilizes the faster commit detection optimization from Section 4.5. We chose not to
employ metadata garbage collection and one-phase writes in order to preserve session
guarantees and because metadata overheads were generally minor.

Algorithms for Comparison. As a baseline, we do not employ any concurrency control
(denoted NWNR, for No Write and No Read locks); reads and writes take one RTT and
are executed in parallel.

We also consider three lock-based mechanisms [Gray et al. 1976]: Long Write locks
and Long Read locks, providing Repeatable Read isolation (PL-2.99; denoted LWLR), long
write locks with short read locks, providing Read Committed isolation (PL-2L; denoted
LWSR; does not provide RA), and long write locks with no read locks, providing Read Un-
committed isolation (LWNR; also does not provide RA). While only LWLR provides RA, LWSR
and LWNR provide a useful basis for comparison, particularly in measuring concurrency-
related locking overheads. To avoid deadlocks, the system lexicographically orders lock
requests by item and performs them sequentially. When locks are not used (as for reads
in LWNR and reads and writes for NWNR), the system parallelizes operations.

We also consider an algorithm where, for each transaction, designated “coordina-
tor” servers enforce RA isolation—effectively, the Eiger system’s 2PC-PCI mecha-
nism [Lloyd et al. 2013] (denoted E-PCI; Section 7). Writes proceed via prepare and
commit rounds, but any reads that arrive at a partition and while a write transaction
to the same item is pending must contact a (randomly chosen, per-write-transaction)
“coordinator” partition to determine whether the coordinator’s prepared writes have
been committed. Writes require two RTTs, while reads require one RTT during qui-
escence and two RTTs in the presence of concurrent updates (to a variable number of
coordinator partitions—linear in the number of concurrent writes to the item). Using
a coordinator violates partition independence but—in this case—is still coordination-
free. We optimize 2PC-PCI reads by having clients determine a read timestamp for
each transaction (eliminating an RTT) and do not include happens-before metadata.

This range of lock-based strategies (LWNR, LWSR, LWNR), recent comparable approach
(E-PCI), and best-case (NWNR; no concurrency control) baseline provides a spectrum of
strategies for comparison.

Environment and Benchmark. We evaluate each algorithm using the YCSB bench-
mark [Cooper et al. 2010] and deploy variably sized sets of servers on public cloud
infrastructure. We employ cr1.8xlarge instances on Amazon EC2, each containing 32
virtual CPU cores (Intel Xeon E5-2670) and 244GB RAM. By default, we deploy five
partitions on five servers. We group sets of reads and sets of writes into read-only and
write-only transactions (default size: four operations), and use the default YCSB work-
load (workloada, with Zipfian distributed item accesses) but with a 95% read and 5%
write proportion, reflecting read-heavy applications (Section 2, Bronson et al. [2013],
Lloyd et al. [2013], and Weil [2011]; e.g., Tao’s 500 to 1 reads-to-writes [Bronson et al.
2013; Lloyd et al. 2013], Espresso’s 1000 to 1 Mailbox application [Qiao et al. 2013],
and Spanner’s 3396 to 1 advertising application [Corbett et al. 2012]).

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:27

Fig. 4. Throughput and latency under varying client load. We omit latencies for LWLR, which peaked at over
1.5s.

By default, use 5000 YCSB clients distributed across five separate EC2 instances. As
in stock YCSB, each client makes a sequence of synchronous requests to the database.
When we later vary the number of clients, we keep the number of servers hosting the
clients fixed. To fully expose our metadata overheads, use a value size of 1 byte per
write. We found that lock-based algorithms were highly inefficient for YCSB’s default
1K item database, so we increased the database size to 1M items by default. Each
version contains a timestamp (64 bits), and, with YCSB keys (i.e., item IDs) of size
11 bytes and a transaction size of L writes, RAMP-F requires 11L bytes of metadata
per version, while RAMP-H requires 32 bytes. We successively vary several parameters,
including number of clients, read proportion, transaction size, value size, database size,
and number of servers and report the average of three 60s trials.

Reproducibility. All source code used in experiments is available at https://www.
github.com/pbailis/.

5.2. Experimental Results: Comparison

Our first set of experiments focuses on two metrics: performance compared to baseline
and performance compared to existing techniques. The overhead of RAMP algorithms is
typically less than 8% compared to baseline (NWNR) throughput, is sometimes zero, and
is never greater than 50%. RAMP-F and RAMP-H always outperform the lock-based and E-
PCI techniques, while RAMP-S outperforms lock-based techniques and often outperforms
E-PCI. We proceed to demonstrate this behavior over a variety of conditions:

Number of Clients. RAMP performance scales well with increased load and incurs lit-
tle overhead (Figure 4). With few concurrent clients, there are few concurrent updates
and therefore few second-round reads; performance for RAMP-F and RAMP-H is close to or
even matches that of NWNR. At peak throughput with 10,000 clients, RAMP-F and RAMP-H
pay a throughput overhead of 4.2% compared to NWNR. RAMP-F and RAMP-H exhibit near-
identical performance; the RAMP-H Bloom filter triggers few false positives and there-
fore few extra RTTs compared to RAMP-F. RAMP-S incurs greater overhead and peaks at

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

https://www. ignorespaces github.com/pbailis/
https://www. ignorespaces github.com/pbailis/

15:28 P. Bailis et al.

almost 60% of the throughput of NWNR. Its guaranteed two-round-trip reads are ex-
pensive and it acts as an effective lower bound on RAMP-F and RAMP-H performance. In
all configurations, the algorithms achieve low latency: RAMP-F, RAMP-H, NWNR less than
35ms on average and less than 10ms at 5000 clients; RAMP-S less than 53ms, 14.3ms at
5000 clients.

In comparison, the remaining algorithms perform less favorably. In contrast with
the RAMP algorithms, E-PCI servers must check a coordinator server for each in-
flight write transaction to determine whether to reveal writes to clients. For modest
load, the overhead of these commit checks places E-PCI performance between that
of RAMP-S and RAMP-H. Under YCSB’s Zipfian workload, there is a high probability
that the several “hot” keys in the workload have a pending write, requiring a E-PCI
commit check. The number of in-flight writes further increases with load, increasing
the number of E-PCI commit checks. This in turn decreases throughput, and with
10,000 concurrent clients, E-PCI performs so many commit checks per read that it
underperforms the LWNR lock-based scheme. Under this configuration, more than 20%
of reads trigger a commit check, and on servers with hot items, each commit check
requires indirected coordinator checks for an average of 9.84 transactions. Meanwhile,
multipartition locking is expensive [Pavlo et al. 2012]: with 10,000 clients, the most
efficient algorithm, LWNR, attains only 28.6% of the throughput of NWNR, while the least
efficient, LWLR, attains only 1.6% and peaks at 3412 transactions per second.

We subsequently varied several other workload parameters, which we briefly discuss
in the following and plot in Figure 5.

Read Proportion. Increased write activity leads to a greater number of races between
reads and writes and therefore additional second-round RTTs for RAMP-F and RAMP-H
reads. With all write transactions, all RAMP algorithms are equivalent (two RTTs) and
achieve approximately 65% of the throughput of NWNR. With all reads, RAMP-F, RAMP-S,
NWNR, and E-PCI are identical, with a single RTT. Between these extremes, RAMP-F and
RAMP-S scale near linearly with the write proportion. In contrast, lock-based protocols
fare poorly as contention increases, while E-PCI again incurs penalties due to commit
checks.

Transaction Size. Increased transaction sizes (i.e., number of operations) have vari-
able impact on the relative performance of RAMP algorithms. Coordination-free execu-
tion ensures long-running transactions are not penalized, but with longer transactions,
metadata overheads increase. RAMP-F relative throughput decreases due to additional
metadata (linear in transaction size) and RAMP-H relative performance also decreases
as its Bloom filters saturate. (However, YCSB’s Zipfian-distributed access patterns re-
sult in a nonlinear relationship between size and throughput.) As discussed earlier, we
explicitly decided not to tune RAMP-H Bloom filter size but believe a logarithmic increase
in filter size could improve RAMP-H performance for large transaction sizes (e.g., 1024
bit filters should lower the false positive rate for transactions of size 256 from over 92%
to slightly over 2%).

Value Size. Value size similarly does not seriously impact relative throughput. At a
value size of 1B, RAMP-F is within 2.3% of NWNR. However, at a value size of 100KB, RAMP-
F performance nearly matches that of NWNR: the overhead due to metadata decreases,
and write request rates slow, decreasing concurrent writes (and subsequently second-
round RTTs). Nonetheless, absolute throughput drops by a factor of 24 as value sizes
move from 1B to 100KB.

Database Size. RAMP algorithms are robust to high contention for a small set of
items: with only 1000 items in the database, RAMP-F achieves throughput within 3.1%

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:29

Fig. 5. Algorithm performance across varying workload conditions. RAMP-F and RAMP-H exhibit similar per-
formance to NWNR baseline, while RAMP-S’s two RTT reads incur a greater performance penalty across almost
all configurations. RAMP transactions consistently outperform RA isolated alternatives.

of NWNR. RAMP algorithms are largely agnostic to read/write contention, although with
fewer items in the database, the probability of races between readers and in-progress
writers increases, resulting in additional second-round reads for RAMP-F and RAMP-H.
In contrast, lock-based algorithms fare poorly under high contention, while E-PCI indi-
rected commit checks again incurred additional overhead. By relying on clients (rather
than additional partitions) to repair fractured writes, RAMP-F, RAMP-H, and RAMP-S per-
formance is less affected by hot items.

Overall, RAMP-F and RAMP-H exhibit performance close to that of no concurrency con-
trol due to their independence properties and guaranteed worst-case performance.
As the proportion of writes increases, an increasing proportion of RAMP-F and RAMP-H

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:30 P. Bailis et al.

operations take two RTTs and performance trends towards that of RAMP-S, which pro-
vides a constant two RTT overhead. In contrast, lock-based protocols perform poorly
under contention. E-PCI triggers many commit checks but performs well without con-
tention and for particularly read-heavy workloads. The ability to allow clients to in-
dependently verify read sets enables good performance despite a range of (sometimes
adverse) conditions (e.g., high contention).

5.3. Experimental Results: CTP Overhead

We also evaluated the overhead of blocked writes in our implementation of the CTP
discussed in Section 4.6. To simulate blocked writes, we artificially dropped a percent-
age of COMMIT commands in PUT_ALL calls such that clients returned from writes early
and partitions were forced to complete the commit via CTP. This behavior is worse
than expected because “blocked” clients continue to issue new operations. The follow-
ing table reports the throughput reduction as the proportion of blocked writes increases
(compared to no blocked writes) for a workload of 100% RAMP-F write transactions:

Blocked % 0.01% 0.1% 25% 50%
Throughput No change 99.86% 77.53% 67.92%

As these results demonstrate, CTP can reduce throughput because each commit
check consumes resources (here, network and CPU capacity). However, CTP only per-
forms commit checks in the event of blocked writes (or time-outs; set to 5s in our
experiments), so a modest failure rate of 1 in 1000 writes has a limited effect. The
higher failure rates produce a near-linear throughput reduction but, in practice, a
blocking rate of even a few percent is likely indicative of larger systemic failures. As
Figure 5 hints, the effect of additional metadata for the participant list in RAMP-H and
RAMP-S is limited, and for our default workload of 5% writes, we observe similar trends
but with throughput degradation of 10% or less across the previous configurations.
This validates our initial motivation behind the choice of CTP: average-case overheads
are small.

5.4. Experimental Results: Scalability

We finally validate our chosen scalability criteria by demonstrating linear scalability
of RAMP transactions to 100 servers. We deployed an increasing number of servers
within the us-west-2 EC2 region and, to mitigate the effects of hot items during scal-
ing, configured uniform random access to items. We were unable to include more than
20 instances in an EC2 “placement group,” which guarantees 10GbE connections be-
tween instances; so, past 20 servers, servers communicated over a degraded network.
At around 40 servers, we exhausted the us-west-2b “availability zone” (datacenter) ca-
pacity and had to allocate our instances across the remaining zones, further degrading
network performance. To avoid bottlenecks on the client, we deploy as many instances
to host YCSB clients as we do to host prototype servers. However, as shown in Figure 6,
each RAMP algorithm scales linearly. In expectation, at 100 servers, almost all trans-
actions span multiple servers: all but one in 100M transactions is a multipartition
operation, highlighting the importance of partition independence. With 100 servers,
RAMP-F achieves slightly under 7.1 million operations per second, or 1.79 million trans-
actions per second on a set of 100 servers (71, 635 operations per partition per second).
At all scales, RAMP-F throughput was always within 10% of NWNR. With 100 servers,
RAMP-F was within 2.6%, RAMP-S within 3.4%, and RAMP-S was within 45% of NWNR. In
light of our scalability criteria, this behavior is unsurprising.

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:31

Fig. 6. RAMP transactions scale linearly to over 7 million operations/s with comparable performance to
NWNR baseline.

6. APPLYING AND MODIFYING THE RAMP PROTOCOLS

In this section, we discuss modifications to RAMP to enable multidatacenter and effi-
cient quorum replication as well as causally consistent operation. Our goals here are
twofold. First, we believe this section will be beneficial to systems implementers inte-
grating RAMP protocols into databases such as Cassandra [Lakshman and Malik 2008]
that support wide-area and quorum-replicated deployments. Second, we believe this
material will be useful to readers who are familiar with existing and recent work on
both multidatacenter and causally consistent replication. Namely, RAMP is compatible
with many of these replication scenarios, and in some cases, enables new optimizations.

6.1. Multidatacenter RAMP

The RAMP algorithms presented in this work have assumed linearizable server op-
eration. Hence, if RAMP is used in a system where data items are replicated, then a
linearizable replication mechanism must be used, such as a primary-backup or other
replicated state machine approach. While this has simplified our discussion and results
in reasonable performance in many environments, the cost of linearizability is often
expensive, particularly in geo-replicated environments where latency is lower-bounded
by the speed of light [Bailis et al. 2014a; Abadi 2012]. While the RAMP algorithms’
lack of coordination mitigates throughput penalties due to, for example, stalls during
contended multipartition access, actually accessing the partitions themselves may take
time and increase the latency of individual operations. Moreover, in the event of partial
failures, it is often beneficial to provide greater availability guarantees.

In this section, we discuss strategies for lowering the latency and improving the
availability of operations. Our primary target in this setting is a multidatacenter,
geo-replicated context, where servers are located in separate clusters in possibly geo-
graphically remote regions. This setting has received considerable attention in recent
research and, increasingly, in some of the largest production data management sys-
tems [Sovran et al. 2011; Lloyd et al. 2011, 2013; Corbett et al. 2012]. The actual porting
of concurrency control algorithms to this context is not terribly difficult, but any ineffi-
ciencies due to synchronization and coordination are magnified in this setting, making
it an ideal candidate for practical study. Thus, we couch our discussion in the context
of fully replicated clusters (i.e., groups of replicas of each partition).

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:32 P. Bailis et al.

Fig. 7. Control flow for operations under multidatacenter RAMP strategies with client in Cluster A writing
to partitions X and Y. In the high availability RAMP strategy (Figure 7(a)), a write must be prepared on
F + 1 servers (here, F = 3) before is committed. In the sticky RAMP strategy, a write can be prepared
and committed within a single datacenter and asynchronously propagated to other datacenters, where it
is subsequently prepared and committed (Figure 7(b)). The sticky strategy requires that clients maintain
affinity with a single cluster in order to guarantee available and correctly isolated behavior.

The key challenge in achieving higher availability and lower latency in RAMP is
ensuring that partially committed writes can still be completed. In the standard RAMP
algorithms, this is accomplished by waiting to commit until after all partitions have
prepared. Yet, in a replicated context, this waiting is potentially expensive; over wide-
area networks, this can take hundreds of milliseconds. There are two straightforward
ways to circumvent these overheads: deferring the commit operation and maintaining
stickiness.

Prepare-F HA RAMP. The first strategy is easier to understand but perhaps less
practical. A client specifies a minimum durability for its write operations, measured
in terms of number of failures it wishes to survive, F. When writing, the client issues
a prepare request to all clusters and waits until it receives a successful response
from F + 1 servers. This ensures that the client’s write is durable, and the client
knows its intent has been logged on at least F + 1 servers. The client transaction
subsequently returns success (Figure 7(a)). Once all servers have received the prepare
request (detectable via either server-server communication as in the CTP protocol or
via an asynchronous callback on the client), the servers can begin to commit the client’s
writes autonomously. This preserves RA isolation—but at a cost. Namely, there is no
guarantee of visibility of writes: a client is not guaranteed to read its own writes.
Moreover, if a single server is offline, the servers will not begin the commit step,
and clients will not observe the effects of the prepared transactions for an indefinite
period of time. By ensuring availability of writes (i.e., clients return early), we have
sacrificed visibility in the form of ensuring that writes are accessible to readers. Thus,
clients will not enjoy session guarantees [Terry et al. 1994] such as Read Your Writes.
Given the importance of these session guarantees for many of the industrial users we
have encountered (e.g., see Facebook’s TAO geo-replication [Bronson et al. 2013]), we
currently do not favor this approach.

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:33

Sticky HA RAMP. The second strategy is to ensure a degree of stickiness, or affinity,
between clients and servers within a datacenter [Bailis et al. 2014a]. Each client is
assigned its own datacenter. Instead of having a client issue its writes to the entire
database replica set, the client can instead issue its prepare and commit operations to
its assigned datacenter (or local replica group) and subsequently forward the writes to
be prepared and committed autonomously in separate clusters (Figure 7(b)). That is,
once a writer has performed the appropriate RAMP protocol in its assigned datacenter,
it can return. In an N-datacenter deployment, each full write protocol is performed N
separate times—once per datacenter. If the same timestamp is assigned to each write,
the end state of each datacenter will be equivalent. As long as clients remain connected
to the same datacenter (i.e., is “sticky” with respect to its database connections), it will
read its writes.

The total number of prepare and commit operations is the same as in the first
strategy, but the commit point is staggered—each cluster reaches a commit point inde-
pendently, at different times. Moreover, clusters operate independently, so throughput
is not improved—only latency—because each cluster must replay every other clus-
ter’s writes [Bailis et al. 2012]. This is the basic strategy espoused by traditional log
shipping approaches [Ladin et al. 1992] as well as more recent proposals such as the
COPS [Lloyd et al. 2011] and Eiger [Lloyd et al. 2013] systems.

However, this stickiness has an often-neglected penalty: a client can no longer connect
to arbitrary servers and expect to read its own writes. If a server is down in a client’s
local datacenter, the client must—in the worst case—locate an entire other replica
set to which the client can connect. This negatively affects availability: the Prepare-
F strategy can utilize all servers at once, but the sticky strategy requires clients to
maintain affinity for availability. In cases when this “sticky availability” [Bailis et al.
2014a] is acceptable (e.g., each datacenter contains a set of application servers that
issue the RAMP protocols against another datacenter-local set of storage servers), this
may be a reasonable compromise.

6.2. Quorum-Replicated RAMP Operation

While RAMP Prepare-F and Sticky HA are best suited for multidatacenter deployments,
in quorum-replicated systems such as Dynamo and Cassandra [Lakshman and Malik
2008; DeCandia et al. 2007], there are several optimizations that can be used to further
improve availability, even within a single datacenter.

Our key observation here is that, to guarantee maximum two-round-trips for reads,
only PREPARE and second-round GET requests need to intersect on a given set of replicas.
Recall that second-round GET requests are issued in order to “repair” any fractured
reads from the first round of read results. In the event of these fractured reads, a reader
must have access to versions corresponding to fractured reads that have been prepared
but were not committed at the time of the first-round read. However, assembling the
first round of committed versions can run under partial (i.e., nonintersecting) quorum
operation [Malkhi et al. 2001] with respect to commit messages.

This means that COMMIT and first-round GET operations can proceed on effectively
any server in a set of replicas, enabling two key optimizations. In these optimizations,
we assume that readers issue second-round read requests and writers issue PREPARE

operations using a quorum system [Naor and Wool 1998] of replicas (e.g., majority
quorums).

First, first-round read requests can be served from any replica of a given item. Then,
if a client detects a race (in RAMP-F or RAMP-H), it can issue the optional second round of
requests to a quorum of servers. RAMP-S will always issue the second round of requests.
This optimization improves the latency of the first round of reads and also enables

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:34 P. Bailis et al.

speculative retry [Dean and Barroso 2013]. It also decreases the load on the servers
and increases availability for first-round read operations.

Second, commit operations can be performed on any replica of a given item. Similar to
the optimization proposed in Prepare-F RAMP, servers can propagate commit messages
between themselves asynchronously, possibly piggybacking on antientropy messages
as in systems like Cassandra and Dynamo. This optimization improves the latency of
commit. However, because all servers must commit the transaction eventually, it does
not necessarily decrease the load on servers.

To quantify the potential latency improvements achievable using these optimiza-
tions, we draw on latency distributions from a recent study of Dynamo-style oper-
ation [Bailis et al. 2014d]. According to latency data from a Dynamo-style quorum-
replicated database running on spinning disks at LinkedIn, moving from waiting for
two replicas of three to respond (N = 3, R = 1) to waiting for one replica of three to
respond (N = 3, R = 1) to a write request decreased latency from 21.0ms to 11.0ms at
the 99.9th percentile; 1.63ms to 0.66ms for reads. For a similar database at Yammer,
the gains for writes are 427ms to 10.8ms and the gains for reads are 32.6ms to 5.6ms—
an even more impressive gain. Over a wide-area network with latency of 75ms, the
gains are as much as 148ms. Thus, in practice, these simple optimizations may prove
worthwhile.

6.3. RAMP, Transitive Dependencies, and Causal Consistency

In Section 3.3, we discussed how RA isolation does not enforce transitive read-write
dependencies across transactions. For example, if Ta read-depends on Tb (i.e., Ta reads
a version that Tb created), another transaction Tc might read-depend on Ta (i.e., Tc
reads a version that Ta created) but antidepend on Tb (i.e., Tb overwrites a version
that Ta read). In this section, we discuss why we made this design decision as well as
alternatives for enforcing dependencies and their costs.

The primary challenges in enforcing transitive dependencies come in limiting meta-
data while preserving availability and partition independence. In the extreme, if we
limited ourselves to serial access to database state, we could easily preserve informa-
tion about dependencies using a single scalar: any transactions would observe versions
with lower scalar values, similar to classic serializable multiversion concurrency con-
trol. However, if we wish to preserve available and coordination-free operation (and
therefore concurrent creation of versions), then we must admit a partial ordering of
versions. To avoid fractured reads as in RA isolation while preserving dependency in-
formation, we either need to find a way to capture this partial order or otherwise limit
the degree of availability in the system.

Full Causality Tracking. The former approach—tracking “cuts” in a system with
partially ordered events—is well studied. As a first approximation, we can consider the
problem of capturing RA with dependency tracking as an instance of capturing causal-
ity in a distributed system, with each event corresponding to a transaction commit and
dependencies due to reads (i.e., a causal memory with atomically visible, multiregister
reads). In line with this approximation, we could replace each timestamp in the RAMP
algorithms with a suitable mechanism for tracking causality; for example, instead of
storing a scalar timestamp, we could store a vector clock, with one entry per client in
the system. Subsequently, clients could maintain a vector clock containing the highest-
committed writes they had seen, and upon reading from servers, ensure that the server
commits any writes that happen before the client’s current vector. Thus, we can use
vector clocks to track dependencies across transactions.

The problem with the preceding approach is in the size of the metadata required.
Primarily, with N concurrent clients, each vector will require O(N) space, which is

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:35

potentially prohibitive in practice. Moreover, the distributed systems literature
strongly suggests that, with N concurrent clients, O(N) space is required to capture
full causal lineage as previously [Charron-Bost 1991]. Thus, while using vector clocks
to enforce transitive dependencies is a correct approach, it incurs considerable over-
heads that we do not wish to pay and have yet to be proven viable at scale in practical
settings [Bailis et al. 2012].2

The latter approach—limiting availability—is also viable, at the cost of undercutting
our scalability goals from Section 3.5.

Bound Writer Concurrency. One simple approach—as we hinted earlier—is to limit
the concurrency of writing clients: we can bound the overhead of vector clocks to an
arbitrarily small amount by limiting the amount of concurrency in the system. For ex-
ample, if we allow five clients to perform writes at a given time, we only need a vector of
size five. This requires coordination between writers (but not readers). As Section 5.2
demonstrated, RAMP transaction performance degrades gracefully under write con-
tention; under the decreased concurrency strategy, performance would effectively hit
a cliff. Latency would increase due to queuing delays and write contention, and for a
workload like YCSB with a fixed proportion of read to write operations, throughput
would be limited. Specifically, for a workload with p writers (p = 0.05 in our default
configuration), if W writers were permitted at a given time, the effective number of
active YCSB clients in the system would become W

p . Despite these limits, this is per-
haps the most viable solution we have encountered and, moreover, does not affect read
performance under read-heavy workloads.

Sacrificing Partition Independence. Another approach to improving availability
is to sacrifice partition independence. As we discuss and evaluate in Sections 5.1
and 5.2, it is possible to preserve transaction dependencies by electing special coordina-
tor servers as points of rendezvous for concurrently executing transactions. If extended
to a non-partition-independent context, the RAMP protocols begin to more closely re-
semble traditional multiversion concurrency control solutions, in particular Chan and
Gray [1985]. More recently, the 2PC-PCI mechanism [Lloyd et al. 2013] we evaluated
is an elegant means of achieving this behavior if partition independence is unimpor-
tant. Nevertheless, as our experimental evaluation shows, sacrificing this partition
independence can be costly under some workloads.

Sacrificing Causality. A final approach to limiting the overhead of dependency
tracking is to limit the number of dependencies to track. Several prior systems have
used limited forms of causality, for example, application-supplied dependency informa-
tion [Bailis et al. 2013; Ladin et al. 1992], as a basis for dependency tracking. In this
strategy, applications inform the system about what versions should precede a given
write; in Bailis et al. [2012], we show that, for many modern web applications, these
histories can be rather small (often one item, with a power-law distribution over sizes).
In this case, it is possible that we could encode the causal history in its entirety along
with each write, or exploit otherwise latent information within the data such as com-
ment reply-to fields to mine this data automatically. This strategy breaks the current
RAMP API, so we do not consider it further. However, when possible, it is the only
known strategy for circumventing the O(N) upper bound on dependency tracking in
causally consistent storage systems ensuring availability of both readers and writers.

2Another alternative that uses additional metadata is the strawman from Section 3.5, in which clients send
all of the writes in their transaction to all of the partitions responsible for at least one write in the transaction.
This uses even more metadata than the vector-based approach.

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:36 P. Bailis et al.

Experiences with Systems Operators. While causal consistency provides a num-
ber of useful guarantees, in practice, we perceive a lack of interest in maintaining full
causal consistency; database operators and users are often unwilling to pay the meta-
data and implementation costs of full causality tracking. As we have seen in Section 2,
many of these real-world operators exhibit an aversion to synchronization at scale, so
maintaining availability is paramount to either their software offerings or business
operation. In fact, we have found coordination-free execution and partition indepen-
dence to be valuable selling points for the RAMP algorithms presented in this work.
Instead, we have found many users instead favor guarantees such as Read Your Writes
(provided by the RAMP algorithms) rather than full dependency tracking, opting for
variants of explicit causality (e.g., via foreign key constraints or explicit dependen-
cies) or restricted, per-item causality tracking (e.g., version vectors [DeCandia et al.
2007]). Despite this mild pessimism, we view further reduction of causality overhead
to be an interesting area for future work—including a more conclusive answer to the
availability-metadata trade-off surfaced by Charron-Bost [1991].

7. RELATED WORK

Replicated databases offer a broad spectrum of isolation guarantees at varying costs
to performance and availability [Bernstein et al. 1987]:

Serializability. At the strong end of the isolation spectrum is serializability, which
provides transactions with the equivalent of a serial execution (and therefore also
provides RA). A range of techniques can enforce serializability in distributed databases
[Bernstein et al. 1987; Agrawal and Krishnaswamy 1991], multiversion concurrency
control (e.g., Phatak and Badrinath [1999]), locking (e.g., Llirbat et al. [1997]), and
optimistic concurrency control [Shute et al. 2013]. These useful semantics come with
costs in the form of decreased concurrency (e.g., contention and/or failed optimistic op-
erations) and limited availability during partial failure [Bailis et al. 2014a; Davidson
et al. 1985]. Many designs [Kallman et al. 2008; Das et al. 2010] exploit cheap
serializability within a single partition but face scalability challenges for distributed
operations. Recent industrial efforts like F1 [Shute et al. 2013] and Spanner [Corbett
et al. 2012] have improved performance via aggressive hardware advances, but their
reported throughput is still limited to 20 and 250 writes per item per second. Multipar-
tition serializable transactions are expensive and, especially under adverse conditions,
are likely to remain expensive [Curino et al. 2010; Jones et al. 2010; Pavlo et al. 2012].

Weak Isolation. The remainder of the isolation spectrum is more varied. Most real-
world databases offer (and often default to) nonserializable isolation models [Mohan
2013; Bailis et al. 2014a]. These “weak isolation” levels allow greater concurrency and
fewer system-induced aborts compared to serializable execution but provide weaker se-
mantic guarantees. For example, the popular choice of Snapshot Isolation prevents Lost
Update anomalies but not Write Skew anomalies [Berenson et al. 1995]; by preventing
Lost Update, concurrency control mechanisms providing Snapshot Isolation require
coordination [Bailis et al. 2014a]. In recent years, many “NoSQL” designs have avoided
cross-partition transactions entirely, effectively providing Read Uncommitted isolation
in many industrial databases such PNUTS [Cooper et al. 2008], Dynamo [DeCandia
et al. 2007], TAO [Bronson et al. 2013], Espresso [Qiao et al. 2013], Rainbird [Weil
2011], and BigTable [Chang et al. 2006]. These systems avoid penalties associated
with stronger isolation but in turn sacrifice transactional guarantees (and therefore do
not offer RA).

Related Mechanisms. There are several algorithms that are closely related to our
choice of RA and RAMP algorithm design.

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:37

COPS-GT’s two-round read-only transaction protocol [Lloyd et al. 2011] is similar
to RAMP-F reads—client read transactions identify causally inconsistent versions by
timestamp and fetch them from servers. While COPS-GT provides causal consistency
(requiring additional metadata), it does not support RA isolation for multi-item writes.

Eiger provides its write-only transactions [Lloyd et al. 2013] by electing a coordinator
server for each write. As discussed in Section 5 (E-PCI), the number of “commit checks”
performed during its read-only transactions is proportional to the number of concurrent
writes. Using a coordinator violates partition independence but in turn provides causal
consistency. This coordinator election is analogous to G-Store’s dynamic key group-
ing [Das et al. 2010] but with weaker isolation guarantees; each coordinator effectively
contains a partitioned completed transaction list from Chan and Gray [1985]. Instead
of relying on indirection, RAMP transaction clients autonomously assemble reads and
only require constant factor (or, for RAMP-F, linear in transaction size) metadata size
compared to Eiger’s PL-2L (worst-case linear in database size).

RAMP transactions are inspired by our earlier proposal for MAV isolation: transac-
tions read from a monotonically advancing view of database state [Bailis et al. 2014a].
MAV is strictly weaker than RA and does not prevent fractured reads, as required
for our applications (i.e., reads are not guaranteed to be transactionally aligned). The
prior MAV algorithm we briefly sketched in Bailis et al. [2014a] is similar to RAMP-F
and, as a consequence of its weaker semantics, allows one-round read transactions.
The RAMP algorithms described here are portable to the highly available (i.e., nonlin-
earizable, “AP/EL” [Gilbert and Lynch 2002; Abadi 2012]) replicated setting of Bailis
et al. [2014a], albeit with necessary penalties to latency between updates and their
visibility.

A portion of this work originally appeared in SIGMOD as Bailis et al. [2014c]. This
invited article expands upon that work. It provides an extended discussion of the
RA isolation model (Section 3.3), the introduction of the RSIW model (Section 3.4)
and proof of serializability for RA isolation under the RSIW property (Appendix A),
and applications of the basic RAMP algorithms to multidatacenter deployments (Sec-
tion 6.1) and causally consistent replication (Section 6.3). Since the publication of Bailis
et al. [2014c], we have leveraged the RAMP algorithms in the development of coordi-
nation avoiding implementations of transactional workloads including TPC-C [Bailis
et al. 2015] and, more recently, in Object Relational Mapping (ORM)-backed workloads.
RAMP has also received attention in the developer community. A proposal for RAMP
implementation in Cassandra is currently under review, at least one other production
NoSQL store has a RAMP implementation under way, and RA isolation was featured in
Facebook’s Apollo database roadmap as an alternative to strongly consistent operation.

We are unaware of another protocol for partitioned databases that ensures
coordination-free execution, partition independence, and at least RA isolation.

8. CONCLUSIONS AND EXTENSIONS

This article described how to achieve atomically visible multipartition transactions
without incurring the performance and availability penalties of traditional algorithms.
We first identified a new isolation level—RA isolation—that provides atomic visibility
and matches the requirements of a large class of real-world applications. We subse-
quently achieved RA isolation via scalable, contention-agnostic RAMP transactions.
In contrast with techniques that use inconsistent but fast updates, RAMP transac-
tions provide correct semantics for applications requiring secondary indexing, foreign
key constraints, and materialized view maintenance while maintaining scalability and
performance. By leveraging multiversioning with a variable but small (and, in two
of three algorithms, constant) amount of metadata per write, RAMP transactions al-
low clients to detect and assemble atomic sets of versions in one to two rounds of

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:38 P. Bailis et al.

communication with servers (depending on the RAMP implementation). The choice
of coordination-free and partition-independent algorithms allowed us to achieve near-
baseline performance across a variety of workload configurations and scale linearly
to 100 servers. While RAMP transactions are not appropriate for all applications, the
many applications for which they are appropriate may benefit measurably.

Given our experiences designing and evaluating the RAMP transaction protocols, we
believe there are a number of interesting extensions that merit further examination.

First, RAMP metadata effectively encodes a limited form of transaction intent: read-
ers and servers are only able to repair fractured reads because the metadata encodes
the remainder of the work required to complete the transaction. We believe it would
be interesting to generalize this concept to arbitrary program logic: for example, in a
model such as lazy transactions [Faleiro et al. 2014] or eventual serializability [Fekete
et al. 1996], with transactions expressed as stored procedures, multiple, otherwise
conflicting/coordinating clients could instead cooperate in order to complete one anoth-
ers’ transactions in the event of a failure—without resorting to the use of a centralized
master (e.g., for prescheduling or validating transaction execution). This programming
model is largely incompatible with traditional interactive transaction execution but is
nevertheless exciting to consider as an extension of these protocols.

Second, and more concretely, we see several opportunities to extend RAMP to more
specialized use cases. The RAMP protocol family is currently not well suited to large
scans and, as we have discussed, does not enforce transitive dependencies across trans-
actions. We view restricting the concurrency of writers (but not readers) to be a useful
step forward in this area, with predictable impact on writer performance. This strikes
a middle ground between traditional MVCC and the current RAMP protocols.

Finally, as we noted in Section 3.4, efficient transaction processing often focuses on
weakening semantics (e.g., weak isolation) or changing the programming model (e.g.,
stored procedures as previously). As our investigation of the RSIW property demon-
strates, there may exist compelling combinations of the two that yield more intuitive,
high-performance, or scalable results than examining semantics or programming mod-
els in isolation. Addressing this question is especially salient for the many users of
weak isolation models in practice today [Bailis et al. 2014a], as it can help one under-
stand when applications require stronger semantics and when, in fact, weak isolation
is not simply fast but is also “correct.”

APPENDIX

A. RSIW PROOF

To begin, we first show that there exists a well-defined total ordering of write-only
transactions in a history that is valid under RA isolation. This will be useful in ordering
write transactions in our one-copy equivalent execution.

LEMMA A.1 (WELL-DEFINED TOTAL ORDER ON WRITES). Given a history H containing
read-only and write-only transactions that is valid under RA isolation, DSG(H) does
not contain any directed cycles consisting entirely of write-dependency edges.

PROOF. H is valid under RA isolation and therefore does not exhibit phenomenon
G1c. Thus, H does not contain any directed cycles consisting entirely of dependency
edges. Therefore, H does not contain any directed cycles consisting entirely of write-
dependency edges.

We will also need to place read-only transactions in our history. To do so, we show that,
under RA isolation and the RSIW property (i.e., the preconditions of Theorem 3.29),
each read-only transaction will only read from one write-only transaction.

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:39

LEMMA A.2 (SINGLE READ DEPENDENCY). Given a history H containing read-only and
write-only transactions that obeys the RSIW property and is valid under RA isolation,
each node in DSG(H) contains at most one direct read-dependency edge.

PROOF. Consider a history H containing read-only and write-only transactions that
has RSIW and is valid under RA isolation. Write-only transactions have no reads, so
they have no read-dependency edges in DSG(H). However, suppose DSG(H) contains
a node corresponding to a read-only transaction Tr containing more than one direct
read-dependency edge. For two read-dependency edges to exist, Tr must have read
versions produced by at least two different write-only transactions; pick any two and
call them Ti and Tj , corresponding to read versions xa and yd.

If x and y are the same item, then a < d or d < a. In either case, Tr exhibits the
fractured reads phenomenon and H is not valid under RA isolation, a contradiction.

Therefore, x and y must be distinct items. Because H obeys the RSIW property, Tr
must also obey the RSIW property. By the definition of the RSIW property, Tr must
have only read items written to by Ti and items also written to by Tj ; this implies that
Ti and Tj each wrote to items x and y. We can label Ti ’s write to y as yb and Tj ’s write
to x as xc. Per Lemma A.1, Ti ’s writes to x and y must either both come before or both
follow Tj ’s corresponding writes to x and y in the version order for each of x and y; that
is, either both a < b and c < d or both b < a and d < c.

If a < b and c < d, then Tr exhibits the fractured reads phenomenon: Tr read xa and
yd but Tj , which wrote yd also wrote xb, and a < b. If b < a and d < c, then Tr again
exhibits the fractured reads phenomenon: Tr read xa and yd but Ti, which wrote xa, also
wrote yc, and d < c. In either case, H is not valid under RA isolation, a contradiction.

Therefore, each node in DSG(H) must not contain more than one read-dependency
edge.

We now use this ordering on reads and writes to construct a total ordering on trans-
actions in a history:

PROCEDURE 1 (TRANSFORM). Given a history H containing read-only and write-only
transactions that has RSIW and is valid under RA isolation, construct a total ordering
O of the transactions in H as follows:

(1) Perform a topological sorting in O of each pair of committed write-only transactions
in H ordered by the write-dependency edges in DSG(H). That is, for each pair
of write-only transactions (T1, T2) in H that performed at least one write to the
same item, place the transaction that wrote the higher-versioned item later in O.
Lemma A.1 ensures such a total ordering exists.

(2) For each committed read-only transaction Tr in H, place Tr in O after the write-only
transaction Tw whose writes Tr read (i.e., after the write-only transaction that Tr
directly read-depends on) but before the next write-only transaction Tw′ in O (or, if
no such transaction exists, at the end of O). By Lemma A.2, each committed read-
only transaction read-depends on only one write-only transaction, so this ordering
is similarly well defined.

Return O.

As an example, consider the following history:

T1 w(x1); w(y1), (8)
T2 w(x2); w(y2),
T3 r(x1); r(y1),
T4 r(y2).

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:40 P. Bailis et al.

History (8) obeys the RSIW property and is also valid under RA isolation. Applying
procedure TRANSFORM to History 8, in the first step, we first order our write-only trans-
actions T1 and T2. Both T1 and T2 write to x and y, but T2’s writes have a later version
number than T1’s, so, according to Step 1 of TRANSFORM, we have O = T1; T2. Now, in
Step 2 of TRANSFORM, we consider the read-only transactions T3 and T4. We place T3
after the transaction that it read from (T1) and before the next write transaction in
the sequence (T2), yielding O = T1; T3; T2. We place T4 after the transaction that it
read from (T2) and, because there is no later write-only transaction following T2 in
O, place T4 at the end of O, yielding O = T1; T3; T2; T4. In this case, we observe that,
as Theorem 3.29 suggests, it is possible to TRANSFORM an RSIW and RA history into a
one-copy serial equivalent and that O is in fact a one-copy serializable execution.

Now we can prove Theorem 3.29. We demonstrate that executing the transactions
of H in the order resulting from applying TRANSFORM to H on a single-copy database
yields an equivalent history (i.e., read values and final database state) as H. Because
O is a total order, H must be one-copy serializable.

PROOF OF THEOREM 3.29. Consider history H containing read-only and write-only
transactions that has RSIW and is valid under RA isolation. We begin by apply-
ing TRANSFORM to H to produce an ordering O.

We create a new history Ho by considering an empty one-copy database and examin-
ing each transaction Th in O in serial order as follows: if Th is a write-only transaction,
execute a new transaction Tow that writes each version produced by Th to the one-copy
database and commits. If Th is a read-only transaction, execute a new transaction Tor
that reads from the same items as Th and commits. Ho is the result of a serial execution
of transactions over a single logical copy of the database; Ho is one-copy serializable.

We now show that H and Ho are equivalent. First, all committed transactions and
operations in H also appear in Ho because TRANSFORM operates on all transactions in
H and all transactions and their operations (with single-copy operations substituted
for multiversion operations) appear in the total order O used to produce Ho. Second,
DSG(H) and DSG(Ho) have the same direct read dependencies. This is a straightfor-
ward consequence of Step 2 of TRANSFORM: in O, each read-only transaction Tr appears
immediately following the write-only transaction Tw upon which Tr read-depends.
When the corresponding read transaction is executed against the single-copy database
in Ho, the serially preceding write-only transaction will produce the same values that
the read transaction read in H. Therefore, H and Ho are equivalent.

Because Ho is one-copy serializable and Ho is equivalent to H, H must also be one-
copy serializable.

We have opted for the preceding proof technique because we believe the TRANSFORM

procedure provides clarity into how executions satisfying both RA isolation and the
RSIW property relate to their serializable counterparts. An alternative and elegant
proof approach leverages the work on multiversion serializability theory [Bernstein
et al. 1987], which we briefly sketch here. Given a history H that exhibits RA isola-
tion and has RSIW, we show that MVSG(H) is acyclic. By an argument resembling
Lemma A.2, the in-degree for read-only transactions in SG(H) (i.e., Adya’s direct read
dependencies) is one. By an argument resembling Lemma A.1, the edges between
write-only transactions in MVSG(H) produced by the first condition of the MVSG con-
struction (xi � xj in the definition of the MVSG [Bernstein et al. 1987, p. 152]; that
is, Adya’s write dependencies) are acyclic. Therefore, any cycles in the MVSG must
include at least one of the second kind of edges in the MVSG(H) (xj � xi; i.e., Adya’s
direct antidependencies). But, for such a cycle to exist, a read-only transaction Tr must
antidepend on a write-only transaction Twi that in turn write-depends on another

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:41

write-only transaction Tw j upon which Tr read-depends. Under the RSIW property,
Twi and Tw j will have written to at least one of the same items, and the presence of a
write-dependency cycle will indicate a fractured reads anomaly in Tr.

B. RAMP CORRECTNESS AND INDEPENDENCE

RAMP-F Correctness. To prove RAMP-F provides RA isolation, we show that the
two-round read protocol returns a transactionally atomic set of versions. To do so, we
formalize criteria for atomic (read) sets of versions in the form of companion sets. We
will call the set of versions produced by a transaction sibling versions and say that x
is a sibling item to a write yj if there exists a version xk that was written in the same
transaction as yj .

Given two versions xi and yj , we say that xi is a companion version to yj if xi is a
transactional sibling of yj or if the transaction that wrote yj also wrote xk and i > k.
We say that a set of versions V is a companion set if, for every pair (xi, yj) of versions
in V where x is a sibling item of yj , xi is a companion to yj . In Figure 2, the versions
returned by T2’s first round of reads ({x1, y∅}) do not comprise a companion set because
y∅ has a lower timestamp than x1’s sibling version of y (that is, x1 has sibling version
y1 and but ∅ < 1 so y∅ has too low of a timestamp). In Figure 2, the versions returned
by T2’s second round of reads ({x1, y1}) are a companion set. If a third transaction T3
wrote another version x3, x3 would be a companion version to y1 (because x3 has higher
version than x1). Subsets of companion sets are also companion sets and companion
sets also have a useful property for RA isolation:

CLAIM 1 (COMPANION SETS ARE ATOMIC). In the absence of G1c phenomena, if the set
of versions read by a transaction is a companion set, the transaction does not exhibit
fractured reads.

Claim 1 follows from the definitions of companion sets and fractured reads.

JUSTIFICATION. If V is a companion set, then every version xi ∈ V is a companion to
every other version yj ∈ V that contains x in its sibling items. If V contained fractured
reads, V would contain two versions xi, yj such that the transaction that wrote yj also
wrote a version xk, i < k. However, in this case, xi would not be a companion to yj , a
contradiction. Therefore, V cannot contain fractured reads.

To provide RA, RAMP-F clients assemble a companion set for the requested items (in
vlatest), which we prove in the following:

CLAIM 2. RAMP-F provides RA isolation.

JUSTIFICATION. Each version in RAMP-F contains information regarding its sibling
items, which can be identified by item and timestamp. Given a set of versions, record-
ing the highest timestamped version of each item (as recorded either in the version
itself or via sibling metadata) yields a companion set of item-timestamp pairs: if a
client reads two versions xi and yj such that x is in yj ’s sibling items but i < j, then
vlatest[x] will contain j and not i. Accordingly, given the versions returned by the first
round of RAMP-F reads, clients calculate a companion set containing versions of the re-
quested items. Given this companion set, clients check the first-round versions against
this set by timestamp and issue a second round of reads to fetch any companions that
were not returned in the first round. The resulting set of versions will be a subset
of the computed companion set and will therefore also be a companion set. This en-
sures that the returned results do not contain fractured reads. RAMP-F first-round reads
access lastCommit, so each transaction corresponding to a first-round version is com-
mitted, and therefore any siblings requested in the (optional) second round of reads

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:42 P. Bailis et al.

are also committed. Accordingly, RAMP-F never reads aborted or nonfinal (intermediate)
writes. Moreover, RAMP-F timestamps are assigned on a per-transaction basis, prevent-
ing write-dependency cycles and therefore G1c. This establishes that RAMP-F provides
RA.

RAMP-F Scalability and Independence. RAMP-F also provides the independence
guarantees from Section 3.5. The following invariant over lastCommit is core to RAMP-F
GET request completion:

INVARIANT 1 (COMPANIONS PRESENT). If a version xi is referenced by lastCommit (that
is, lastCommit[x] = i), then each of xi’s sibling versions are present in versions on their
respective partitions.

Invariant 1 is maintained by RAMP-F’s two-phase write protocol. lastCommit is only
updated once a transaction’s writes have been placed into versions by a first round of
PREPARE messages. Siblings will be present in versions (but not necessarily lastCommit).

CLAIM 3. RAMP-F is coordination-free.

Recall from Section 3.5 that coordination-free execution ensures that one client’s
transactions cannot cause another client’s to block and that, if a client can contact the
partition responsible for each item in its transaction, the transaction will eventually
commit (or abort of its own volition).

JUSTIFICATION. Clients in RAMP-F do not communicate or coordinate with one another
and only contact servers. Accordingly, to show that RAMP-F provides coordination-free
execution, it suffices to show that server-side operations always terminate. PREPARE

and COMMIT methods only access data stored on the local partition and do not block
due to external coordination or other method invocations; therefore, they complete. GET

requests issued in the first round of reads have tsreq = ⊥ and therefore will return the
version corresponding to lastCommit[k], which was placed into versions in a previously
completed PREPARE round. GET requests issued in the second round of client reads have
tsreq set to the client’s calculated vlatest[k]. vlatest[k] is a sibling of a version returned
from lastCommit in the first round, so due to Invariant 1, the requested version will be
present in versions. Therefore, GET invocations are guaranteed access to their requested
version and can return without waiting. The success of RAMP-F operations does not
depend on the success or failure of other clients’ RAMP-F operations.

CLAIM 4. RAMP-F provides partition independence.

JUSTIFICATION. RAMP-F transactions do not access partitions that are unrelated to each
transaction’s specified data items and servers do not contact other servers in order to
provide a safe response for operations.

RAMP-S Correctness. RAMP-S writes and first-round reads proceed identically to
RAMP-F writes, but the metadata written and returned is different. Therefore, the proof
is similar to RAMP-F, with a slight modification for the second round of reads.

CLAIM 5. RAMP-S provides RA isolation.

JUSTIFICATION. To show that RAMP-S provides RA, it suffices to show that RAMP-S second-
round reads (resp) are a companion set. Recall that all versions produced in a RAMP-S
transaction are assigned the same timestamp. Given two versions xi, yj ∈ resp such
that x �= y, if x is a sibling item of yj , then xi must be a companion to yj . If xi were not a
companion to yj , then it would imply that x is not a sibling item of yj (so we are done)
or that j > i. If j > i, then due to Invariant 1 (which also holds for RAMP-S writes due
to identical write protocols), yj ’s sibling is present in versions on the partition for x and

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

Scalable Atomic Visibility with RAMP Transactions 15:43

would have been returned by the server (line 6), a contradiction. Each second-round
GET request returns only one version, so we are done.

RAMP-S Scalability and Independence. RAMP-S ensures coordination-free execu-
tion and partition independence. The proofs closely resemble those of RAMP-F: Invari-
ant 1 ensures that incomplete commits do not stall readers, and all server-side opera-
tions are guaranteed to complete.

RAMP-H Correctness. The probabilistic behavior of the RAMP-H Bloom filter admits
false positives. However, given unique transaction timestamps (Section 4.5), requesting
false siblings by timestamp and item does not affect correctness:

CLAIM 6. RAMP-H provides RA isolation.

JUSTIFICATION. To show that RAMP-H provides RA isolation, it suffices to show that any
versions requested by RAMP-H second-round reads that would not have been requested
by RAMP-F second-round reads (call this set v f alse) do not compromise the validity of
RAMP-H’s returned companion set. Any versions in v f alse do not exist: timestamps are
unique, so for each version xi, there are no versions xj of nonsibling items with the
same timestamp as xi (i.e., where i = j). Therefore, requesting versions in v f alse do not
change the set of results collected in the second round.

RAMP-H Scalability and Independence. RAMP-H provides coordination-free execu-
tion and partition independence. We omit full proofs, which closely resemble those of
RAMP-F. The only significant difference from RAMP-F is that second-round GET requests
may return ⊥, but as we showed previously, these empty responses correspond to false
positives in the Bloom filter and therefore do not affect correctness.

ACKNOWLEDGMENTS

The authors would like to thank Peter Alvaro, Rick Branson, Neil Conway, Aaron Davidson, Jonathan Ellis,
Mike Franklin, Tupshin Harper, T. Jake Luciani, Aurojit Panda, Nuno Preguiça, Edward Ribeiro, Mehul
Shah, Shivaram Venkataraman, and the SIGMOD and TODS reviewers for their insightful feedback.

REFERENCES

Daniel J. Abadi. 2012. Consistency tradeoffs in modern distributed database system design: CAP is only part
of the story. IEEE Computer 45, 2 (2012), 37–42.

Atul Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed
Transactions. Ph.D. Dissertation. MIT.

Divyant Agrawal and Vasudha Krishnaswamy. 1991. Using multiversion data for non-interfering execution
of write-only transactions. In SIGMOD.

Hagit Attiya and Jennifer Welch. 2004. Distributed Computing: Fundamentals, Simulations and Advanced
Topics. (2nd. ed.). John Wiley Interscience.

Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2014a. Highly
available transactions: Virtues and limitations. In VLDB.

Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2014b. Highly
available transactions: Virtues and limitations (extended version). arXiv:1302.0309.

Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2015.
Coordination avoidance in database systems. In VLDB.

Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2012. The potential dangers of
causal consistency and an explicit solution. In SOCC.

Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2014c. Scalable atomic visibility
with RAMP transactions. In SIGMOD.

Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. Bolt-on causal consistency. In SIGMOD.
Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, and Ion Stoica. 2014d.

Quantifying eventual consistency with PBS. The VLDB Journal 23, 2 (2014d), 279–302.

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

15:44 P. Bailis et al.

Jason Baker, Chris Bond, James Corbett, J. J. Furman, and others. 2011. Megastore: Providing scalable,
highly available storage for interactive services. In CIDR.

H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. 1995. A critique of ANSI SQL isolation
levels. In SIGMOD.

Phillip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, New York.

Ken Birman, Gregory Chockler, and Robbert van Renesse. 2009. Toward a cloud computing research agenda.
SIGACT News 40, 2 (June 2009), 68–80.

Jose A. Blakeley, Per-Ake Larson, and Frank Wm. Tompa. 1986. Efficiently updating materialized views. In
SIGMOD.

Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. CACM 13, 7 (1970),
422–426.

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chukka, Peter Dimov, and others. 2013. TAO:
Facebook’s distributed data store for the social graph. In USENIX ATC.

A. Chan and R. Gray. 1985. Implementing distributed read-only transactions. IEEE Transactions on Software
Engineering 2 (1985), 205–212.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, and
others. 2006. Bigtable: A distributed storage system for structured data. In OSDI.

Bernadette Charron-Bost. 1991. Concerning the size of logical clocks in distributed systems. Information
Processing Letters 39, 1 (July 1991), 11–16. DOI:http://dx.doi.org/10.1016/0020-0190(91)90055-M

Rada Chirkova and Jun Yang. 2012. Materialized views. Foundations and Trends in Databases 4, 4 (2012),
295–405.

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon, and others.
2008. PNUTS: Yahoo!’s hosted data serving platform. In VLDB.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmark-
ing cloud serving systems with YCSB. In ACM SOCC.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, and others.
2012. Spanner: Google’s globally-distributed database. In OSDI.

Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: A workload-driven approach to
database replication and partitioning. In VLDB.

Sudipto Das, Divyant Agrawal, and Amr El Abbadi. 2010. G-store: A scalable data store for transactional
multi key access in the cloud. In ACM SOCC.

K. Daudjee and K. Salem. 2004. Lazy database replication with ordering guarantees. In ICDE. 424–435.
S. B. Davidson, H. Garcia-Molina, and D. Skeen. 1985. Consistency in partitioned networks. Computing

Surveys 17, 3 (1985), 341–370.
Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Communications in ACM 56, 2 (2013), 74–80.
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, and

others. 2007. Dynamo: Amazon’s highly available key-value store. In SOSP.
Jose Faleiro, Alexander Thomson, and Daniel J. Abadi. 2014. Lazy evaluation of transactions in database

systems. In SIGMOD.
Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch, and Alex Shvartsman. 1996. Eventually-

serializable data services. In PODC.
Seth Gilbert and Nancy Lynch. 2002. Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. SIGACT News 33, 2 (2002), 51–59. DOI:http://dx.doi.org/10.1145/
564585.564601

Jim Gray and Leslie Lamport. 2006. Consensus on transaction commit. ACM TODS 31, 1 (March 2006),
133–160.

J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. 1976. Granularity of Locks and Degrees of Consistency
in a Shared Data Base. Technical Report. IBM.

Pat Helland. 2007. Life beyond distributed transactions: An apostate’s opinion. In CIDR.
Sean Hull. 2013. 20 obstacles to scalability. Communications of the ACM 56, 9 (2013), 54–59.
Nam Huyn. 1998. Maintaining global integrity constraints in distributed databases. Constraints 2, 3/4 (Jan.

1998), 377–399.
Evan P. C. Jones, Daniel J. Abadi, and Samuel Madden. 2010. Low overhead concurrency control for parti-

tioned main memory databases. In SIGMOD.
Robert Kallman, H. Kimura, J. Natkins, A. Pavlo, and others. 2008. H-store: A high-performance, distributed

main memory transaction processing system. In VLDB.

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

http://dx.doi.org/10.1016/0020-0190(91)90055-M
http://dx.doi.org/10.1145/ ignorespaces 564585.564601
http://dx.doi.org/10.1145/ ignorespaces 564585.564601

Scalable Atomic Visibility with RAMP Transactions 15:45

Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. 1992. Providing high availabil-
ity using lazy replication. ACM Transactions on Computer Systems 10, 4 (Nov. 1992), 360–391.
DOI:http://dx.doi.org/10.1145/138873.138877

Avinash Lakshman and Prashant Malik. 2008. Cassandra+—A decentralized structured storage system. In
LADIS.

Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Communications of
the ACM 21, 7 (July 1978), 558–565. DOI:http://dx.doi.org/10.1145/359545.359563

Richard J. Lipton and Jonathan S. Sandberg. 1988. PRAM: A Scalable Shared Memory. Technical Report
TR-180-88. Princeton University.

Francois Llirbat, Eric Simon, Dimitri Tombroff, and others. 1997. Using versions in update transactions:
Application to integrity checking. In VLDB.

Wyatt Lloyd, Michael J. Freedman, and others. 2011. Don’t settle for eventual: Scalable causal consistency
for wide-area storage with COPS. In SOSP.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2013. Stronger semantics
for low-latency geo-replicated storage. In NSDI.

Dahlia Malkhi, Michael K. Reiter, Avishai Wool, and Rebecca N. Wright. 2001. Probabilistic quorum systems.
Information and Computation 170, 2 (2001), 184–206.

C. Mohan. 2013. History repeats itself: Sensible and NonsenSQL aspects of the NoSQL hoopla. In EDBT.
Moni Naor and Avishai Wool. 1998. The load, capacity, and availability of quorum systems. SIAM Journal

on Computing 27, 2 (1998), 423–447.
Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-aware automatic database partitioning in

shared-nothing, parallel OLTP systems. In SIGMOD.
Daniel Peng and Frank Dabek. 2010. Large-scale incremental processing using distributed transactions and

notifications. In OSDI.
Shirish Hemant Phatak and B. R. Badrinath. 1999. Multiversion reconciliation for mobile databases. In

ICDE.
Lin Qiao, Kapil Surlaker, Shirshanka Das, Tom Quiggle, and others. 2013. On brewing fresh Espresso:

LinkedIn’s distributed data serving platform. In SIGMOD.
Nicolas Schiper, Pierre Sutra, and Fernando Pedone. 2010. P-store: Genuine partial replication in wide area

networks. In IEEE SRDS.
Marc Shapiro and others. 2011. A Comprehensive Study of Convergent and Commutative Replicated Data

Types. Technical Report 7506. INRIA.
Jeff Shute and others. 2013. F1: A distributed SQL database that scales. In VLDB.
Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transactional storage for geo-

replicated systems. In SOSP.
Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. 2001. Chord: A scalable

peer-to-peer lookup service for internet applications. In SIGCOMM.
Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M. Theimer, and Brent B.

Welch. 1994. Session guarantees for weakly consistent replicated data. In PDIS.
A. Thomson, T. Diamond, S. C. Weng, K. Ren, P. Shao, and D. J. Abadi. 2012. Calvin: Fast distributed

transactions for partitioned database systems. In SIGMOD.
Kevin Weil. 2011. Rainbird: Real-time analytics at Twitter. (2011). Strata Conference, http://slidesha.re/

hjMOui.
Stanley B. Zdonik. 1987. Object-oriented type evolution. In DBPL. 277–288.
Jingren Zhou and others. 2007. Lazy maintenance of materialized views. In VLDB.

Received February 2015; revised February 2016; accepted March 2016

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 15, Publication date: July 2016.

http://dx.doi.org/10.1145/138873.138877
http://dx.doi.org/10.1145/359545.359563
http://slidesha.re/ ignorespaces hjMOui
http://slidesha.re/ ignorespaces hjMOui

