
NoScope: Optimizing Neural Network Queries
over Video at Scale

Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, Matei Zaharia
Stanford InfoLab

noscope@cs.stanford.edu

ABSTRACT
Recent advances in computer vision—in the form of deep neural
networks—have made it possible to query increasing volumes of
video data with high accuracy. However, neural network inference is
computationally expensive at scale: applying a state-of-the-art object
detector in real time (i.e., 30+ frames per second) to a single video
requires a $4000 GPU. In response, we present NOSCOPE, a system
for querying videos that can reduce the cost of neural network video
analysis by up to three orders of magnitude via inference-optimized
model search. Given a target video, object to detect, and reference
neural network, NOSCOPE automatically searches for and trains a
sequence, or cascade, of models that preserves the accuracy of the
reference network but is specialized to the target video and are there-
fore far less computationally expensive. NOSCOPE cascades two
types of models: specialized models that forego the full generality of
the reference model but faithfully mimic its behavior for the target
video and object; and difference detectors that highlight temporal
differences across frames. We show that the optimal cascade architec-
ture differs across videos and objects, so NOSCOPE uses an efficient
cost-based optimizer to search across models and cascades. With
this approach, NOSCOPE achieves two to three order of magnitude
speed-ups (265-15,500× real-time) on binary classification tasks
over fixed-angle webcam and surveillance video while maintaining
accuracy within 1-5% of state-of-the-art neural networks.

1. INTRODUCTION
Video represents a rich source of high-value, high-volume data:

video comprised over 70% of all Internet traffic [2] in 2015 and over
300 hours of video are uploaded to YouTube every minute [3]. We
can leverage this video data to answer queries about the physical
world, our lives and relationships, and our evolving society.

It is increasingly infeasible—both too costly and too slow—to rely
on manual, human-based inspection of large-scale video data. Thus,
automated analysis is critical to answering these queries at scale. The
literature offers a wealth of proposals for storing and querying [6,7,36,
38,48,57,59,73,94,101] videos, largely based on classical computer
vision techniques. In recent times, however, deep neural networks
(NNs) [40, 44, 58, 66, 67] have largely displaced classical computer

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 2150-8097/17/07.

Cascade Architecture Search via Cost-Based Optimization

NoScope: Inference-Optimized Model Search

Difference Detector
100K fps

bus present?

Specialized Model
27K fps

reference
frame

Reference NN
30-60 fps

bus
present?

0s 30s 60s 90s

Query output

Query:

“bus”
+

target video

…

Reference NN 30-60 fps

Query:

“bus”
+

target video

Traditional Deep Neural Network Inference (Frame by Frame)

short-circuit evaluation
! !

! !

Figure 1: NOSCOPE is a system for accelerating neural network analysis over
videos via inference-optimized model search. Given an input video, target
object, and reference neural network, NOSCOPE automatically searches for
and trains a cascade of models—including difference detectors and specialized
networks—that can reproduce the binarized outputs of the reference network
with high accuracy—but up to three orders of magnitude faster.

vision methods due to their incredible accuracy—often rivaling or ex-
ceeding human capabilities—in visual analyses ranging from object
classification [82] to image-based cancer diagnosis [31, 95].

Unfortunately, applying NNs to video data is prohibitively expen-
sive at scale. The fastest NNs for accurate object detection run at
30-80 frames per second (fps), or 1-2.5× real time (e.g., 50 fps on
an NVIDIA K80 GPU, ~$4000 retail, $0.70-0.90 per hour on cloud;
80 fps on an NVIDIA P100, ~$4600 retail) [79–81].1 Given con-
tinued decreases in image sensor costs (e.g., < $0.65 for a 640x480
VGA CMOS sensor), the computational overheads of NNs lead to
a three order-of-magnitude imbalance between the cost of data ac-
quisition and the cost of data processing. Moreover, state-of-the-art
NNs continue to get deeper and more costly to evaluate; for example,
Google’s winning NN in the 2014 ImageNet competition had 22
layers; Microsoft’s winning NN in 2015 had 152 layers [44].

In response, we present NOSCOPE, a system for querying videos
that can reduce the cost of NN-based analysis by up to three orders of
magnitude via inference-optimized model search. Our NOSCOPE pro-
totype supports queries in the form of the presence or absence of a par-
ticular object class. Given a query consisting of a target video, object
to detect, and reference pre-trained neural network (e.g., webcam in
Taipei, buses, YOLOv2 [79]), NOSCOPE automatically searches for
and trains a sequence, or cascade [90], of models that preserves the ac-
curacy of the reference network but are specialized to the target query

1In this work, we focus on multi-scale object detection, or identify-
ing objects regardless of their scale in the image [79–81]. Object
detection models are more costly than classification models, which
process images pre-centered on an object of interest, but are required
to find objects in most realistic video applications.

and are therefore far less computationally expensive. That is, instead
of simply running the reference NN over the target video, NOSCOPE
searches for, learns, and executes a query-specific pipeline of cheaper
models that approximates the reference model to a specified target ac-
curacy. NOSCOPE’s query-specific pipelines forego the generality of
the reference NN—that is, NOSCOPE’s cascades are only accurate in
detecting the target object in the target video—but in turn execute up
to three orders of magnitude faster (i.e., 265-15,500× real-time) with
1-5% loss in accuracy for binary detection tasks over real-world fixed-
angle webcam and surveillance video. To do so, NOSCOPE leverages
both new types of models and a new optimizer for model search:

First, NOSCOPE’s specialized models forego the full generality of
the reference NN but faithfully mimic its behavior for the target query.
In the context of our example query of detecting buses, consider the
following buses that appeared in a public webcam in Taipei:

In this video stream, buses only appear from a small set of perspec-
tives. In contrast, NNs are often trained to recognize thousands of
objects, from sheep to apples, and from different angles; this leads
to unnecessary computational overhead. Thus, NOSCOPE instead
performs model specialization, using the full NN to generate labeled
training data (i.e., examples) and subsequently training smaller NNs
that are tailored to a given video stream and to a smaller class of
objects. NOSCOPE then executes these specialized models, which
are up to 340× faster than the full NN, and consults the full NN only
when the specialized models are uncertain (i.e., produce results with
confidence below an automatically learned threshold).

Second, NOSCOPE’s difference detectors highlight temporal differ-
ences across frames. Consider the following frames, which appeared
sequentially in our Taipei webcam:

These frames are nearly identical, and all contain the same bus. There-
fore, instead of running the full NN (or a specialized NN) on each
frame, NOSCOPE learns a low-cost difference detector (based on
differences of frame content) that determines whether the contents
have changed across frames. NOSCOPE’s difference detectors are
fast and accurate—up to 100k frames per second on the CPU.

A key challenge in combining the above insights and models is that
the optimal choice of cascade is data-dependent. Individual model
performance varies across videos, with distinct trade-offs between
speed, selectivity, and accuracy. For example, a difference detector
based on subtraction from the previous frame might work well on
mostly static scenes but may add overhead in a video overseeing a
busy highway. Likewise, the complexity (e.g., number of layers) of
specialized NNs required to recognize different object classes varies
widely based on both the target object and video. Even setting the
thresholds in the cascade represents trade-off: should we make a dif-
ference detector’s threshold less aggressive to reduce its false negative
rate, or should we make it more aggressive to eliminate more frames
early in the pipeline and avoid calling a more expensive model?

To solve this problem, NOSCOPE performs inference-optimized
model search using a cost-based optimizer that automatically finds
a fast model cascade for a given query and accuracy target. The op-
timizer applies candidate models to training data, then computes the
optimal thresholds for each combination of models using an efficient
linear parameter sweep through the space of feasible thresholds. The
entire search requires time comparable to labeling the sample data
using the reference NN (an unavoidable step in obtaining such data).

We evaluate a NOSCOPE prototype on binary classification tasks
on cameras that are in a fixed location and at a fixed angle; this in-
cludes pedestrian and automotive detection as found in monitoring
and surveillance applications. NOSCOPE demonstrates up to three
order of magnitude speedups over general-purpose state-of-the-art
NNs while retaining high—and configurable—accuracy (within 1-
5%) across a range of videos, indicating a promising new strategy for
efficient inference and analysis of video data. In summary, we make
the following contributions in this work:

1. NOSCOPE, a system for accelerating neural network queries
over video via inference-optimized model search.

2. New techniques for a) neural network model specialization
based on a given video and query; b) fast difference detection
across frames; and c) cost-based optimization to automatically
identify the fastest cascade for a given accuracy target.

3. An evaluation of NOSCOPE on fixed-angle binary classifica-
tion demonstrating up to three orders of magnitude speedups
on real-world data.

The remainder of this paper proceeds as follows. Section 2 pro-
vides additional background on NNs and our target environment.
Section 3 describes the NOSCOPE architecture. Section 4 describes
NOSCOPE’s use of model specialization, Section 5 describes NO-
SCOPE’s difference detectors, and Section 6 describes NOSCOPE’s
inference-optimized model search via cost-based optimization. Sec-
tion 7 describes the NOSCOPE prototype implementation and Sec-
tion 8 describes limitations of the current system. Section 9 exper-
imentally evaluates NOSCOPE, Section 10 discusses related work,
and Section 11 concludes.

2. BACKGROUND
Given an input image or video, a host of computer vision methods

can extract valuable semantic information about objects and their
occurrences. In this section, we provide background on these meth-
ods, focusing on object detection tasks: given an image, what objects
does it contain? Readers familiar with computer vision may wish to
proceed to the next section.

Object Detection History and Goals. Automated object detection,
or the task of extracting object occurrences and their locations from
image data, dates to at least the 1960s [74]. Classic techniques [64,
86, 99] combine machine learning methods such as classification
and clustering with image-specific featurization techniques such as
SIFT [63]. More recent and advanced methods such as HOG [100],
deformable parts model [34] and selective search [88] are among the
most sophisticated of these classic approaches.

Following these early successes, artificial neural networks have im-
proved in accuracy to near-human or better-than-human levels in the
past five years. Now, these “deep” models (with millions to billions
of parameters) have become not only feasible but also the preferred
method for computer vision tasks spanning image classification [82],
pedestrian detection [98], and automatic captioning [29]. To under-
stand why, consider the PASCAL VOC 2012 [32] leaderboard, in
which classical methods were employed: the top three methods (in ac-
curacy) were NNs, and the winning entry, YOLOv2, runs at 80 fps. In
comparison, the top three classical methods take several seconds per
image to run and are 20% less accurate. NNs power image processing
tasks at online services including Google, Facebook, Instagram, and
Amazon as well as real-world tasks including autonomous driving.

NN Architecture. A neural network [40] consists of a series of con-
nected layers that can process a high-dimensional input image and
output a simpler representation. Each layer of a convolutional NN cor-

responds to a step in computation: these layers include convolutional
layers (that “combine” nearby pixels via convolution operators), pool-
ing layers (that reduce the dimensionality of the subsequent layers),
rectified linear unit (ReLU) layers (that perform a non-linear transfor-
mation), and a fully connected layer (that outputs the actual prediction
based on prior layers). As illustrated below [1], combining multiple
such layers in a “deep” architecture and by fitting the appropriate
weights of the computation (i.e., the “neurons”) between stages, NNs
can learn the structure of common objects and detect their presence
and absence in a given image.

Depending on the task, the best model architecture (e.g., configura-
tion of layers) varies, but the overwhelming trend has been to build
deeper models given more training data.

NN Training. Training NNs consists of fitting appropriate weights
to a given architecture such that the overall empirical error on a given
set of labeled training data is minimized. This process is computa-
tionally expensive, but is now supported by a wide range of software
frameworks such as Google TensorFlow, Torch and Caffe. To train
an object detector on video, we would first label a portion of a video
(or set of videos) by hand, marking which frames contained people
and which did not. Subsequently, we would feed each frame to a
NN training framework. Conceptually, compared to prior computer
vision approaches that relied heavily on manually designed features
(e.g., gradients and edges [63, 86]), NNs automatically learn both
low-level and high-level features from the training dataset. Due to the
computational cost of training NNs, companies and researchers have
also published hundreds of pre-trained models, each representing
thousands of hours of CPU and GPU training time. From an engi-
neering perspective, these off-the-shelf, high-quality models are easy
to apply on new data, as we do (but faster) in NOSCOPE.

NN Inference. Applying NNs to video—i.e., inference on video—
consists almost exclusively of passing individual video frames to
a NN, one frame at a time. That is, to detect objects in video, we
evaluate the NN repeatedly, once per frame. This is for several
reasons. First, NNs are almost always trained on static images, not
on moving video. Therefore, evaluating them on video by converting
them to a series of static images is easy (if expensive). Second,
historically, the resurgence of interest in NNs has been driven by
competitions such as ImageNet, in which the only metric of interest
is accuracy, not inference speed. The difference between the first-
and second-place in ImageNet 2016’s object recognition competition
was 0.72% (2.99% vs. 3.71% top-5 classification error; in contrast,
humans achieve approximately 5.1% error). Therefore, with few
exceptions [37], accelerated methods are not favored by the most
prestigious competitions in the field. Finally, the handful of object
recognition CNNs that are optimized for inference time primarily
use “real time” (i.e., 30 fps) as a target [79–81], aiming to evaluate
one video in real time on a GPU. In contrast, we are interested in
scaling to thousands of hours of video, possibly from thousands of
data feeds, for the purposes of large-scale video classification; real
time performance is not nearly fast enough for our target scale.

3. NOSCOPE ARCHITECTURE
NOSCOPE is a system for accelerating inference over video at

scale. NOSCOPE performs inference-optimized model search to au-
tomatically identify and learn a computationally efficient cascade,
or pipeline of models, that approximate the behavior of a reference

neural network over a given video and target object and to a desired
accuracy. In this section, we introduce the NOSCOPE system query
interface and system architecture.

NOSCOPE Queries and Goal. In this work, we target binary
classification queries—i.e., presence or absence of a given class of
object in a video over time. In NOSCOPE, users input queries by
selecting a target object class (e.g., one of the 9000 classes recognized
by YOLO9000, such as humans, cars, and buses [79]) as well as a
target video. Subsequently, NOSCOPE outputs the time intervals in
the video when an object of the specified class was visible according to
a given reference model, or full-scale NN trained to recognize objects
in images. NOSCOPE allows users to specify a target accuracy in the
form of false positive and false negative rates and aims to maximize
throughput subject to staying within these rates.2 In summary, given
these inputs, NOSCOPE’s goal is to produce the same classification
output as applying the target model on all frames of the video, at a
substantially lower computational cost and while staying within the
specified accuracy target.

System Components. NOSCOPE is comprised of three components,
as shown in Figure 1: a) specialized models, b) difference detectors,
and c) an inference-optimized cost-based optimizer. When first pro-
vided a new video, NOSCOPE applies the reference model to a subset
of the video, generating labeled examples. Using these examples,
NOSCOPE searches for and learns a cascade of cheaper models to ac-
celerate the query on the specific video. NOSCOPE subsequently runs
the cascade over the remainder of the video, stopping computation at
the cheapest layer of the cascade as soon as it is confident.

NOSCOPE uses two types of models. First, NOSCOPE trains spe-
cialized models (Section 4) that perform classification tasks. For
example, while detecting humans with perfect accuracy in all frames
may require running the full reference model, we show that a much
smaller NN can output a confidence value c that lets us safely label
a frame as “no human” if it is below some threshold clow, label it as
“human” if c>chigh, and pass the frame to the full NN if it is unsure
(i.e., clow<c<chigh). Second, NOSCOPE uses difference detectors
(Section 5) to check whether the current frame is similar to a recent
frame whose label is known (e.g., for a camera looking at a hallway,
this could be an image where the hallway is empty).

Finally, to automatically search for and configure these models
NOSCOPE includes a cost-based optimizer (Section 6) that learns an
efficient configuration of filters for each query to achieve the target
accuracy level (i.e., false positive and false negative rates). As dis-
cussed in Section 1, we have found (and empirically demonstrate)
that customizing cascades for each video is critical for performance.

In the next sections, we discuss each of these components in detail.
We begin with specialized models and difference detectors in Sec-
tions 4 and 5. We then present our cost-based optimizer in Section 6.
Finally, we describe our prototype implementation in Section 7 and
current limitations in Section 8.

4. MODEL SPECIALIZATION
The first key technique in NOSCOPE is the use of specialized mod-

els: smaller models that faithfully mimic the behavior of a reference
model on a particular task. Generic NNs can classify or detect thou-
sands of classes, and the generality of these methods naturally leads
to costly inference. Specialized models forego the full generality of
a generic, reference model but mimic its behavior on a subset of tasks
the generic model can perform. In query systems such as NOSCOPE,
2A false positive is a case where NOSCOPE reports an object but
running the reference model would have reported no object. A false
negative is a case where NOSCOPE reports no object but the reference
model would have reported one.

we are generally only interested in identifying a small number of
objects—as opposed to the thousands of classes a generic NN can
classify—and, in video inference, such objects may only appear from
a small number of angles or configurations.

NOSCOPE performs model specialization by applying a larger, ref-
erence model to a target video and using the output of the larger model
to train a smaller, specialized model. Given sufficient training data
from the reference model for a specific video, the specialized model
can be trained to mimic the reference model on the video while requir-
ing fewer computational resources (e.g., NN layers) compared to the
reference model. However, unlike the reference model, the special-
ized model learns from examples from the target video and is unlikely
to generalize to other videos or queries. Thus, by sacrificing general-
ization and performing both training and inference on a restricted task
and input data distribution, we can substantially reduce inference cost.

Critically, in contrast with related approaches to model compres-
sion [8, 41, 45], the goal of model specialization is not to provide a
model that is indistinguishable from the reference model on all tasks;
rather, the goal of model specialization is to provide a model that is in-
distinguishable (to a given accuracy target) for a restricted set of tasks.
This strategy allows efficient inference at the expense of generality.

NOSCOPE uses shallow NNs as its specialized models. Shal-
low NNs have been shown to be effective in other compression
routines [45], are efficient at inference time, and naturally output
a confidence in their classification. NOSCOPE uses this confidence
to defer to the reference model when the specialized model is not
confident (e.g., when no loss in accuracy can be tolerated).

NOSCOPE implements specialized NNs based on the AlexNet
architecture [56] (filter doubling, dropout), using ReLU units for all
the hidden layers and a softmax unit at the end to return a confidence
for the class we are querying. However, to reduce inference time,
NOSCOPE’s networks are significantly shallower than AlexNet. As
we discuss in Section 6, NOSCOPE performs automated model search
by varying several parameters of the specialized models, including
the number of convolutional layers (2 or 4), number of convolution
units in the base layer (32 or 64), and number of neurons in the dense
layer (32, 64, 128 or 256). As these models provide different tradeoffs
between speed and accuracy, NOSCOPE’s optimizer automatically
searches for the best model for each video stream and query.

Beyond configuring and learning a specialized model, NOSCOPE
also selects two thresholds on the specialized model’s confidence
c: clow is the threshold at below which NOSCOPE outputs no object
in frame, and chigh is the threshold above which NOSCOPE out-
puts object detected. For output values of c between clow and chigh,
NOSCOPE calls the full reference NN on the frame.

The choice of threshold and the choice of model both determine
speed and accuracy. For example, a specialized NN with many layers
and convolution units might be much more accurate (resulting in a
smaller [clow,chigh]) but more expensive to compute per frame. In
some cases, we should choose the less accurate NN that passes more
frames to our full model but is faster to evaluate on most input frames;
NOSCOPE’s optimizer automates this decision.

To train specialized NNs, NOSCOPE uses standard NN training
practices. NOSCOPE uses a continuous section of video for training
and cross-validation and learns NNs using RMSprop [46] for 1-5
epochs, with early stopping if the training loss increases. In addition,
during model search, NOSCOPE uses a separate evaluation set that
is not part of the training and cross-validation sets for each model.

As we illustrate in Section 9, specialized models trained using a
large model such as YOLOv2 deliver substantial speedups on many
datasets. By appropriately setting clow and chigh, NOSCOPE can reg-
ularly eliminate 90% of frames (and sometimes all frames) without
calling the full reference model while still preserving its accuracy

(a) empty frame (b) frame with a car (c) subtracted frames

Figure 2: Example of difference detection. The subtracted frame highlights
the car that entered the scene.

to a desired target. We also show that training these small models
on scene-specific data (frames from the same video) leads to better
performance than training them on generic object detection datasets.

While we have evaluated model specialization in the context of
binary classification on video streams, ongoing work suggests this
technique is applicable to other tasks (e.g., bounding box regression)
and settings (e.g., generic image classification).

5. DIFFERENCE DETECTION
The second key technique in NOSCOPE is the use of difference

detectors: extremely efficient models that detect changes in labels.
Given a labeled video frame (e.g. this frame does not have a car—a
“false” in our binary classification setting) and an unlabeled frame, a
difference detector determines whether the unlabeled frame has the
same or different label compared to the labeled frame. Using these
difference detectors, NOSCOPE can quickly determine when video
contents have changed. In videos where the frame rate is much higher
than the label change rate (e.g., a 30 frame per second video capturing
people walking across a 36 foot crosswalk), difference detectors can
provide up to 90× speedups at inference time.

In general, the problem of determining label changes is as difficult
as the binary classification task. However, as we have hinted above,
videos contain a high degree of temporal locality, making the task
of detecting redundant frames much easier. Figure 2 demonstrates
this: subtracting a frame containing an empty scene from a frame
containing a car distinctly highlights the car. In addition, since NO-
SCOPE uses efficient difference detectors (i.e., much more efficient
than even specialized models), only a small fraction of frames need to
be filtered for difference detectors to be worth the cost of evaluation.

NOSCOPE leverages two forms of difference detectors:

1. Difference detection against a fixed reference image for the
video stream, that contains no objects. For example, for a
video of a sidewalk, the reference image might be a frame of an
empty sidewalk. NOSCOPE computes the reference image by
averaging frames where the reference model returns no labels.

2. Difference detection against an earlier frame a pre-configured
time tdiff seconds into the past. In this case, if there are no
significant differences, NOSCOPE returns the same labels that
it output for the previous frame. NOSCOPE’s optimizer learns
tdiff based on the input data.

The optimal choice of method is video-dependent, so NOSCOPE’s
optimizer performs selection automatically. For example, a video of
a mostly empty sidewalk might have a natural empty reference image
that one can cheaply and confidently compare with to skip many
empty frames. In contrast, a video of a city park might always contain
mobile objects (e.g., people lying down in the grass), but the objects
might move slowly enough that comparing with frames 1 second ago
can still eliminate many calls to the expensive reference model.

Given the two frames to compare, NOSCOPE’s difference detector
computes the Mean Square Error (MSE) between them as a measure
of distance. NOSCOPE either performs a comparison on the whole
image, or a blocked comparison where it subdivides each image into

a grid and computes the metric on every grid block. In the blocked
version, NOSCOPE then trains a logistic regression (LR) classifier to
weigh each block when evaluating whether two images are different.
The blocked version is more expensive to compute, but it is useful
when part of the image does not contain relevant information. For
example, in a street view, the signal will change colors frequently but
this is not useful for detecting cars.

Using this distance metric, NOSCOPE determines whether the
frame contents have changed. The appropriate firing threshold for
the metric, or the difference in metric at which we say that the two
frames differ), which we will denote δdiff , also depends on the video
and the query. For example, a lower MSE threshold might be needed
to detect light objects against a light background than dark ones.

We also considered alternative metrics including Normalized Root
Mean Square Error, Peak Signal to Noise Ratio, and Sum of Absolute
Differences. While different methods performed differently, MSE
and blocked MSE were generally within a few percent of the best
method, so NOSCOPE currently only uses these two methods.

Finally, the difference detector has a configurable time interval
tskip that determines how often to perform a difference check. For ex-
ample, objects of interest may appear in a scene for much longer than
a second, so NOSCOPE can test for differences every 15 frames in a 30
fps video. We refer to this behavior as frame skipping, and the frame
skipping parameter directly creates a trade-off between accuracy and
speed. Section 9.4 demonstrates that frame skipping is effective but
is not responsible for all performance gains offered by NOSCOPE.

As may be apparent, various configurations of the difference detec-
tor will give varying tradeoffs between execution speed, false positive
rate and false negative rate depending on the video and query in ques-
tion. NOSCOPE’s optimizer, described below, selects and adjusts the
difference detector automatically based on frames labeled using the
expensive reference model to navigate this trade-off.

6. COST-BASED MODEL SEARCH
NOSCOPE combines model specialization and difference detectors

using inference-optimized model search. NOSCOPE uses a cost-based
optimizer (CBO) to find a high-quality cascade of models (e.g., two vs
four layer specialized model) and thresholds (δdiff , clow, and chigh).
The CBO takes as input a video as well as target accuracy values,
FP∗ and FN∗, for the false positive rate and false negative rate,
respectively. Formally, the CBO solves the following problem:

maximize E(throughput)
subject to false positive rate<FP∗

and false negative rate<FN∗

This problem is similar to traditional cost-based estimation for user-
defined functions [21] and streaming filter processing [9, 11], but
NOSCOPE must also perform cost estimation of each candidate model
and set model-specific parameters for each together to achieve a target
accuracy goal. That is, NOSCOPE’s problem is not simply a matter of
ordering a set of commutative filters, but also requires searching the
model architectures, learning the models, and setting their parameters
together to achieve an overall end-to-end cascade accuracy.

To solve this problem, NOSCOPE uses a combination of combinato-
rial search for model architectures and efficient linear sweeps for the
firing thresholds δdiff , clow, and chigh. NOSCOPE’s CBO only consid-
ers plans involving up to one difference detector and one specialized
model because we found that stacking more such models did not help
significantly. For such plans, the CBO can search the complete space
of combinations of difference detectors and specialized models at a
fraction of the cost of labeling all of the input video using a full NN
such as YOLOv2. We now describe the key components of the CBO.

6.1 Training Data Generation
NOSCOPE runs the full reference model on a subset of the video

frames to generate labeled data. For example, NOSCOPE could run
the full NN over the first few days of a new stream, and maintain
this set using reservoir sampling thereafter. Given this labeled data,
NOSCOPE’s CBO begins by splitting the input data into a training
set and an evaluation set that will only be used for model selection.

6.2 Cost Model
To determine which combination of difference detector and spe-

cialized model to use, the CBO estimates the inference cost of each.
NOSCOPE models execution time per frame using the pass-through
rates of the detector and specialized model in question on the training
data, and static measurements of the execution time of each model
on the target hardware. For example, consider a configuration with
the following two filters:

1. A Mean Squared Error (MSE) difference detector that is config-
ured to check frames every tskip seconds and fire if the frame’s
MSE with a reference image is higher than δdiff .

2. A two-layer NN with 64 convolutional units and 64 neurons
in the dense layer, with detection thresholds clow and chigh.

NOSCOPE’s cost model determines the expected time per frame by
first measuring what fraction of frames remain after the skipping done
by tskip; call this fraction fs. Next, it computes the fraction of these
frames in the training data that pass the MSE filter, fm. Finally, it com-
putes the fraction of these difference detector passing frames whose
confidence under the specialized NN lies between clow and chigh –
call this fc. The selectivities (fs, fm, and fc) are estimated from a
sample of the data. The expected execution time per frame is then

fsTMSE+fsfmTSpecializedNN+fsfmfcTFullNN

where TMSE, TSpecializedNN and TFullNN are the execution times per
frame for the MSE filter, specialized NN and reference NN respec-
tively. These execution times are data-independent, so they can be
measured once per hardware platform.

6.3 Model Search
Given input data and the above cost model, NOSCOPE must find

a suitable cascade. There are three main challenges in finding an
optimal configuration. First, models may be complex and exhibit non-
linearity with respect to the cascade architecture and input parameters:
their selectivities will not be known a priori. Second, models are not
independent (cf. [11]): one specialized model may complement one
difference detector but not another, and the viable combinations of
thresholds for each pair of models will differ across scenes. Third,
the full search space for model configurations is very large because
the firing thresholds δdiff , clow and chigh are continuous values.

NOSCOPE addresses these challenges via a three-stage process.
First, it trains each filter individually on our training set. Second,
it examines each filter in isolation to determine the scores for each
frame. Finally, it explores all combinations of difference detectors
and specialized models and use an efficient linear sweep of the viable
combinations of thresholds to determine the lowest-cost way to com-
bine these models. In detail, NOSCOPE’s search proceeds as follows:

1.) Train filters: First, NOSCOPE trains each model (e.g., special-
ized NNs and LR based blocked difference detectors) on the training
data. For the NNs, we consider a grid of combinations of model
architectures (e.g., 2 or 4 layers, 32 or 64 convolutional units, etc).
Currently, this is 24 distinct configurations. When training these
models, NOSCOPE subdivides the original training data to create a
cross-validation set that is not part of training, for parameter selection.

2.) Profile individual filters: Next, NOSCOPE performs selectivity
estimation by profiling individual filters on its evaluation set (the
input data that the CBO set aside at the beginning for evaluation)
to determine their selectivity and sensitivity. These quantities are
difficult to infer beforehand because they depend significantly on the
video, so NOSCOPE runs each trained model on every frame of the
evaluation set. NOSCOPE then logs the score that the filter gives to
each frame (e.g., MSE or specialized NN output confidence), which
it uses to set the thresholds δdiff , clow and chigh.

3.) Examine filter combinations: Filter parameters are not inde-
pendent because the thresholds for a pair of filters may influence
one another and therefore need to be set together. For example, if
NOSCOPE uses MSE as our difference detection metric, the threshold
δdiff that it sets for difference detection directly affects which frames
are passed to the downstream specialized NN and which thresholds
clow and chigh it can set (e.g., if the difference detector induces many
false negatives, the specialized model must be more conservative).

NOSCOPE solves the problem of dependencies in filter selection
via an efficient algorithm to sweep feasible combinations of thresh-
olds. Specifically, for each difference detector D, NOSCOPE first
sorts the frames of the training data in decreasing order of the de-
tector’s difference metric (δ). This yields a list of framesLD where
we can easily sweep through firing thresholds δdiff . Next, for each
prefix of the listLD , NOSCOPE computes the false positive and false
negative rate for the given δdiff threshold (i.e., frames that we will
mislabel due to the difference detector not firing).

Next, for each specialized NN,C, NOSCOPE sorts the unfiltered
frames by confidence. Given this list, we can set clow and chigh to ob-
tain the desired false positive and false negative rates FP∗ and FN∗:
NOSCOPE begins with thresholds at the extreme (0 and maximum
confidence), then moves clow up until the false negative rate of the
combined difference detector and NN reaches FN∗, and moves chigh

down until the combined false positive rate reaches FP∗. Finally, for
each such combination of detectorD, NNC, δdiff , clow, and chigh,
NOSCOPE computes the expected throughput using our cost model
(Section 6.2) and outputs the best result. Note that because the CBO is
only able to access training data, false positive and false negative rates
are only guaranteed insofar as the training data reflects the testing
data. Our experimental results demonstrate that this optimization
strategy is sound for many real-world video feeds.

Running Time. The overall complexity of NOSCOPE’s CBO is
O(ndncnt), where nd is the total number of difference detector con-
figurations considered, nc is the total number of specialized model
configurations, and nt is the total number of firing thresholds consid-
ered during the sweep down LD . In addition, we need to run each
of the nd difference detectors and nc specialized model configura-
tions on the training data once (but not each pair of filters together).
Overall, the running time of the algorithm is often just a few seconds
because each of nd, nc and nt is small (less than 100). Even training
and testing the specialized models we will test is faster than obtaining
the “ground truth” labels for the training data using a full-scale NN
like YOLOv2. As we show in Section 9.3.1, all steps of the CBO
together run faster than labeling hours-long videos using a full NN.

7. IMPLEMENTATION
We implemented a NOSCOPE prototype in C++ and TensorFlow

(for the actual inference tasks), and Python (for the NOSCOPE CBO).
We optimized the code by parallelizing many of the CPU-intensive
operations over multiple cores, using vectorized libraries, and batch-
ing data for computations on the GPU; we provide our code as open

source3. These optimizations make a large difference in performance
for many configurations of NOSCOPE because the bulk of the video
frames are eliminated by the difference detector and specialized NN.

At a high level, given a video, NOSCOPE performs the following
four steps: 1) perform model search, 2) run the resulting difference de-
tector, 3) run the resulting specialized NN on the frames that pass the
difference detector, and 4) run the reference model such as YOLOv2
on the remaining frames that are not confidently labeled by the spe-
cialized model. We next describe each of these steps in turn.

Model Search Implementation. Our CBO is written in Python, and
calls our C++ code for difference detectors and NNs when obtaining
training data. As described in Section 6, the cost of the CBO itself
is relatively small. The bulk of the runtime is spent training the
specialized NN models on its input data.

We used YOLOv2 [80] as our reference model. We pre-load the
YOLOv2 NN parameters onto the GPU and keep it in memory across
evaluations to avoid reloading this large model both at optimization
time and at inference time.

NOSCOPE loads video frames either directly from memory or from
OpenCV for video decoding. After loading frames, it resizes them for
downstream processing if needed using OpenCV (our NNs require a
specific size for input images, such as 416x416 pixels for YOLOv2).

Difference Detectors.
We implemented difference detectors in OpenCV and C++. For the

MSE computation, we wrote hand-tuned C++ code to fuse together
the required operations: MSE requires computing sum

(
(a−b)2

)
,

where a and b are two images, which would require materializing a-b
in memory using OpenCV’s standard array operators. Finally, we
parallelized the difference detector at the level of frames—that is, we
process multiple decoded frames in parallel using different threads.

We used scikit-learn to train the logistic regression weights for
the blocked difference detectors that weigh different portions of the
image differently. We then evaluate the resulting logistic regression
models at runtime using C++ code.

Specialized Models. We train our specialized NNs using the Ten-
sorFlow framework. As discussed in Section 4, we used standard
practices for NN training such as cross-validation and early stopping,
and our CBO selects which NN to run using an evaluation set that is
distinct from the training data.

During evaluation, we evaluate the specialized NNs on the GPU
using TensorFlow’s C++ interface. We batch input images before
passing them to the GPU due to the high cost of communication.

Finally, a key pre-processing step is to mean-center the pixel values
and change the dynamic range in each color channel to [-1, 1]. We
implemented this step on the CPU using OpenCV and multithreading
in a similar manner to difference detection.

8. LIMITATIONS
While NOSCOPE demonstrates significant promise in accelerating

NN inference, we wish to highlight several important limitations:

Fixed-Angle Video. We designed the current prototype for the task
of object classification in fixed-angle video (e.g., traffic cameras),
which we believe represents an important subset of all video data
processing. Therefore, our current difference detectors only work on
video shot by static cameras, and our results for specialized CNNs are
also obtained on fixed-angle videos. The video processing commu-
nity has also developed techniques to track objects when the camera
is moving [70], so these techniques present a promising approach to
extend NOSCOPE to moving cameras.

3https://github.com/stanford-futuredata/noscope

Table 1: Video streams and object labels queried in our evaluation.

Video Name Object Resolution FPS # Eval frames Length
(hrs)

taipei bus 1000x570 30 1296k 12.0
coral person 1280x720 30 1188k 11.0
amsterdam car 680x420 30 1296k 12.0
night-street car 1000x530 30 918k 8.5
store person 1170x1080 30 559k 5.2
elevator person 640x480 30 592k 5.5
roundabout car 1280x720 25 731k 8.1

(a) coral without a person (b) coral with a person

Figure 3: Example query, with and without the object of interest.

Binary Classification Task. We have only evaluated NOSCOPE
on the binary classification task; the techniques we present could
already be used for more complex boolean queries. We believe the
same techniques may apply elsewhere.

Model Drift. Our current implementation assumes that the training
data obtained in NOSCOPE’s optimizer is from the same distribution
as the subsequent video observed. If the scene changes dramatically
after a certain point of time, NOSCOPE needs to be called again to
re-optimize for the new data distribution. Likewise, if the scene
changes periodically during the video (e.g., by cycling between day
and night), the training data needs to contain frames representative
of all conditions. We believe this is reasonable for many fixed-angle
camera scenarios, such as traffic or security cameras, which observe
a similar scene over a period of months or years. For these types of
videos, a sample of training data spread throughout the year should
be sufficient to produce good training data for a model that can be
applied continuously. However, it would be interesting to address
this limitation automatically (e.g., by tracking model drift).

Image Batching. Our implementation batches video frames for
greater efficiency. While acceptable for historical video that is avail-
able all at once, batching can introduce a short delay for live video,
proportional to the number of frames batched. For example, batching
together 100 frames at a time in a 30 fps video can add a delay of 3.3
seconds. Alternatively, a system monitoring 100 streams might be
able to batch together data from different streams, applying different
NN models to each one, allowing a range of optimizations [69] we
have not yet explored in the context of streaming video.

9. EVALUATION
We evaluate NOSCOPE on binary classification for real-world

webcam and surveillance videos. We illustrate that:

1. NOSCOPE achieves 40-5400× higher throughput (i.e. frames
processed per second) than state-of-the-art NN models while
maintaining 99% of their accuracy, and 100-10000× higher
throughput while maintaining 90+% accuracy (§ 9.2).

2. The configuration of filters dramatically affects NOSCOPE’s
overall performance. Moreover, the optimal cascade for one
video will almost always provide poor performance if used on
another video (§ 9.3).

3. NOSCOPE’s CBO consistently sets filter parameters that pro-
vide large performance improvements while maintaining spec-
ified accuracy. Difference detection and specialized models
improve the throughput up to 3× and 340× respectively (§ 9.3).

4. Specializing models for a given video provides a 1.25-25×
improvement over training models for the same detection task
across multiple environments (§ 9.5).

5. NOSCOPE’s outperforms both classical computer vision base-
lines as well as small, binary-classification NNs that are not
specialized to a given video (§ 9.6).

9.1 Experimental Setup
Evaluation Queries. We evaluate NOSCOPE on a fixed set of
queries depicted in Table 1. We use YOLOv2 [80], a state-of-the-
art multi-scale NN, as our reference model. YOLOv2 operates on
416x416 pixel images (resizing larger or smaller images). YOLOv2
achieves 80 fps on the Tesla P100 GPU installed on our measurement
machine. We obtain videos from seven webcams—six from YouTube
Live, and one that we manually obtained. We split each video into two
parts: training and evaluation. Five videos have two days worth of
video, with 8-12 hours of footage per day due to lighting conditions;
for these videos, we use the first day of video for training and the
second day for evaluation. For two videos, we use the first 2.3 hours
for training and separate an evaluation set (5-8 hours) by a minimum
of 30 minutes. Figure 3 illustrates an example. By default, we set a
target of 1% false positive and 1% false negative rates.

Evaluation Metrics. We measure throughput by timing the com-
plete end-to-end system excluding the time taken to decode video
frames. We omit video decode times for three reasons. First, it is
standard to omit video decode time in computer vision [79–81]. Sec-
ond, both GPUs and CPUs can decode video at a high rate because
of built-in hardware decoders [75]. For example, our Tesla P100 can
decode 400x400 H.264 video at 4000 fps and 400x400 MPEG video
at 5600 fps with a single hardware decoder; some processors have
multiple decoders. Third, for some visual sensors, we can directly
obtain a raw stream of frames from the hardware.

We measure accuracy by comparing frames labeled by the refer-
ence model and NOSCOPE in 30 frame windows. For a window to
be considered labeled correctly, both systems must agree on the pres-
ence of the target object in 28 of the 30 frames in a window. We use
this somewhat permissive accuracy measure because YOLOv2 often
intermittently fails to label objects that are clearly visible in the frame.

Hardware Environment. We perform our experiments on an
NVIDIA DGX-1 server, using at most one Tesla P100 GPU and 32
Intel Xeon E5-2698 v4 cores during each experiment. The complete
system had 80 cores and multiple GPUs, but we limited our testing
to a subset of these so our results would be representative of a less
costly server. The system also had a total of 528 GB of RAM.

9.2 End-to-End Performance
Figure 4 illustrates the overall range of performance that NO-

SCOPE achieves on our target queries. For each dataset, we obtained
the points in the plot by running NOSCOPE’s CBO with increasing
false positive and false negative thresholds (FP∗ and FN∗, with
FP∗ = FN∗) and measuring the resulting speedup. NOSCOPE
demonstrates several orders of magnitude speedup across all the
datasets, with magnitude depending on the desired accuracy levels.
In all cases, NOSCOPE achieves a 30× speedup with at least 98% ac-
curacy. In many cases, this level of accuracy is retained even at a 100×
speedup, and NOSCOPE can obtain 1000× to 10,000× speedups at
90+% accuracy. The video with the lowest peak speedup at the 90%
accuracy mark is taipei, which shows a busy intersection—thus, the
difference detectors cannot eliminate many frames. However, even
in this video, NOSCOPE can offer an 30× speedup over YOLOv2
with no loss in accuracy.

1x 100x 10
4
x

Speedup

0.8

0.9

1.0

Ac
cu

ra
cy

(a) taipei

1x 100x 10
4
x

Speedup

0.8

0.9

1.0

Ac
cu

ra
cy

(b) coral

1x 100x 10
4
x

Speedup

0.8

0.9

1.0

Ac
cu

ra
cy

(c) amsterdam

1x 100x 10
4
x

Speedup

0.8

0.9

1.0

Ac
cu

ra
cy

(d) night-street

1x 100x 10
4
x

Speedup

0.8

0.9

1.0

Ac
cu

ra
cy

(e) store

1x 100x 10
4
x

Speedup

0.8

0.9

1.0

Ac
cu

ra
cy

(f) elevator

1x 100x 10
4
x

Speedup

0.8

0.9

1.0

Ac
cu

ra
cy

(g) roundabout

Figure 4: Accuracy vs. speedup achieved by NOSCOPE on each dataset.
Accuracy is the percent of correctly labeled time windows, and speedup is
over YOLOv2. Note the y-axis starts at 80%.

Table 2: Filter types and thresholds chosen by NOSCOPE’s CBO for each
video at 1% target false positive and false negative rates. Both the filter types
(e.g., global or blocked MSE) and their thresholds (e.g., the difference in MSE
that is considered significant, or the upper and lower detection thresholds for
the specialized models) vary significantly across videos. For the specialized
models (denoted SM), L denotes the number of layers, C the number of
convolutional units, and D the dimension of the dense layers.

Video
Name DD δdiff

SM
(L)

SM
(C)

SM
(D) clow chigh

taipei global 37.5 2 64 32 0.114 0.994
coral blocked 147.3 2 16 128 0.0061 0.998
amsterdam global 0.0019 2 64 256 0.128 0.998
night-street global 0.441 2 16 128 2.2e-7 0.176
store blocked 336.7 2 32 128 0.010 0.998
elevator global 0.0383 2 32 256 0.004 0.517
roundabout global 0.115 4 32 32 0.0741 0.855

9.3 Impact of the CBO
To better understand the source of speedups, we explored the im-

pact of NOSCOPE’s CBO on performance. We begin by showing that
the filter types and thresholds chosen by the CBO differ significantly
across videos based on the characteristics of their contents. We also
show that choosing other settings for these parameters would greatly
decrease speed or accuracy in many cases, so parameters cannot be
transferred across videos.

Configurations Chosen Across Datasets. Table 2 shows the differ-
ence detectors, specialized models, and detection thresholds chosen
by the CBO across our sample datasets for a 1% target false posi-
tive and false negative rate. We observe that these are substantially
different across videos, even when the CBO selects the same filter

CNN 1 CNN 2 NoScope
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

night-street taipei

Figure 5: Normalized performance of NOSCOPE with two different spe-
cialized NN models on the night-street and taipei videos. We see that
choosing a different NN architecture for each video, even though this archi-
tecture performed well on another dataset, reduces throughput. NOSCOPE
automatically selects the best-performing NN.

class (e.g., difference detection based on global MSE). We make a
few observations about these results:

First, the best type of MSE chosen depend on the video. For exam-
ple, coral and store are scenes with a dynamic background (e.g.,
coral shows an aquarium with colorful fish swimming in the back-
ground, and NOSCOPE is asked to detect people in the scene). In
these scenes, computing MSE against several frames past instead of
against a single “empty” reference frame is more effective.

Second, the chosen thresholds also differ significantly. For exam-
ple, taipei has a high difference detection threshold due to high
levels of small-scale activity in the background, but the target objects,
buses, are generally large and change more of the frame. The upper
and lower thresholds for NNs also vary even across the same target
object class, partly due to varying difficulty in detecting the objects in
different scenes. For example, in some videos, the clow threshold for
declaring that there is no object in a frame is extremely low because
increasing it would lead to too many false negatives.

Third, the best specialized model architectures also varied by video
and query. In particular, we found that in many videos, the larger
NNs (with 4 layers or with more convolutional units and dense layer
neurons) would overfit given the fairly small training set we used
(150,000 frames out of the 250,000 frames set aside for both train-
ing and evaluation). However, the best combination of the model
architecture parameters varied across videos, and NOSCOPE’s train-
ing routine that selects models based on an unseen evaluation set
automatically chose an accurate model that did not overfit.

Non-Transferability Across Datasets. As the best filter configu-
rations varied significantly across datasets, transferring parameters
from one dataset to another leads to poor performance:

Specialized Model Architectures. We used the specialized model
architecture from night-street (a NN with parameters L=2, C=16,
D=128) on the taipei dataset (whose optimal NN had L=2, C=64,
D=32), and vice-versa. We transferred only the architecture, not
the learned model from each dataset and trained a new model with
each architecture for the new dataset to evaluate its performance
there. Although these architectures have similar properties (e.g., two
layers), they required significantly different parameters to achieve
our 1% target false positive and false negative rates on each dataset.
This resulted in a 1.25× to 3× reduction in throughput for the overall
NOSCOPE pipeline, as depicted in Figure 5.

Detection Thresholds. We plotted the range of feasible thresholds
for the difference detector (δdiff), as well as the actual threshold
chosen, in Figure 6. Feasible thresholds here are the ones where the
system can stay within the 1% false positive and false negative rates
we had requested for the CBO. Beyond a certain upper limit, the
difference detector alone will introduce too many incorrect labels (on

10 3 10 2 10 1 100 101 102

Difference Detection Threshold

taipei
amsterdam

elevator
coral

roundabout
store

night-street

Figure 6: Firing thresholds δdiff chosen by the CBO for each video (blue
dots), along with the range of thresholds that can achieve 1% false positive
and false negative rate for that video (black lines).

0 20 40 60 80 100

Time (min)

taipei

store

YOLOv2 Model training Optimizer

Figure 7: Breakdown of training and optimization time on taipei dataset.
Passing all the training frames through YOLOv2 to obtain their true labels
dominates the cost, followed by training all variants of our specialized models
and then the rest of the steps in the CBO.

the validation set). As we see in the plot, the range of values for each
video is different and the best-performing threshold is often near the
top of this range, but not always. For example, coral is near the top,
but amsterdam is lower, this is due to the downstream performance of
the specialized models. Thus, attempting to use a common threshold
between videos would either result in failing to achieve the accuracy
target (if the threshold is too high) or lower performance than the
threshold NOSCOPE chose (if the threshold is too low).

9.3.1 Running Time of the CBO
We measured the time it takes to run our CBO across several

datasets, showing the most time-consuming one in Figure 7. In all
cases, initializing NOSCOPE requires labeling all the frames in the
training data with YOLOv2, followed by training all supported spe-
cialized models and difference detectors on this data, then selecting
a combination of them using the algorithm in Section 6. The CBO
is efficient in the number of samples required: only 250k samples are
required to train the individual filters and set the thresholds. For the
longer videos, we randomly sample from the training set and for the
shorter videos we use the first 250k frames. As shown in the figure,
YOLOv2 application takes longer than all the other steps combined,
meaning that NOSCOPE’s CBO could run in real time on a second
GPU while the system is first observing a new stream. Training of
the specialized NNs takes the next longest amount of time; in this
case, we trained 24 different model architectures. We have not yet
optimized this step or tried to reduce the search space of models, so
it may be possible to improve it.

9.4 Impact of Individual Models
To analyze the impact of each of our model types on NOSCOPE’s

performance, we ran a factor analysis and lesion study on two videos,
with results shown in Figures 8a and 8b.

elevator roundabout

YOLOv2
+ Diff.

(sk
ip)

+ Diff.

(m
etric

)
+ Spec.

10 1

101

103

Th
ro

ug
hp

ut
 (f

ps
)

(a) Factor analysis

Norm
al

No Spec.

No Diff.

(m
etric

)
No Diff.

(sk
ip)

10 3

10 2

10 1

100

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

(b) Lesion study

Figure 8: Factor analysis and lesion study of NOSCOPE’s filters. The factor
analysis shows the impact of adding different filters for two videos; from
left to right, we add each of the filters in turn over YOLOv2. The lesion
study shows the impact of removing filters; the leftmost bars show normalized
performance with all of NOSCOPE’s features enabled, and the remaining bars
to the right show the effect of removing each filter from NOSCOPE. (Note the
logarithmic scale on the y-axes of both plots.)

night-street
store

roundabout
coral

elevator

amsterdam taipei
103

104

105

Th
ro

ug
hp

ut
 (f

ps
) Generic CNN

NoScope

Figure 9: Throughput, Generic NN vs. NOSCOPE. Substituting the special-
ized NN model in NOSCOPE with an equivalent model trained on MS-COCO
(a general-purpose training set of images used by YOLOv2) results in a
decrease in the end-to-end throughput of the system across all videos.

In the factor analysis, we started by running all frames through
YOLOv2 and gradually added: difference detection’s frame skip-
ping, difference detection on the skipped frames, and specialized
model evaluation. Each filter adds a nontrivial speedup: skipping
contributes up to 30×, content-based difference detection contributes
up to 3×, and specialized models contribute up to 340×.

In the lesion study, we remove one element at a time from the com-
plete NOSCOPE cascade. As shown in Figure 8b, each element con-
tributes to the overall throughput of the pipeline, showing that each
component of NOSCOPE’s cascades are important to its performance.

9.5 Impact of Model Specialization
Finally, we evaluate the benefit of video-specific model specializa-

tion compared to training on general computer vision datasets. Our
hypothesis in designing NOSCOPE was that we can achieve much
higher accuracy by training models on past frames from the same
video to leverage the characteristics of that particular scene (e.g., fixed
perspective on the target object, fixed background, etc.). To evaluate
this hypothesis, we trained three deep NNs for binary classification
on the classes of objects we evaluate NOSCOPE on: people, buses,
and cars using the more general MS-COCO dataset [62], a recent
high-quality object detection dataset. For each class, we selected
the best model from the same model family as NOSCOPE’s CBO.
Figure 9 shows the resulting throughput across our videos. In all
cases, the specialized models trained by NOSCOPE outperform the
generic model of the same size trained on MS-COCO (up to 20×),
showing that scene-specific specialization has a significant impact
on designing models for efficient inference.

9.6 Comparison Against Baselines
We also compared to classic methods in computer vision, including

a deformable parts model (which performed favorably in the Ima-

100 1000 104 105

Throughput (FPS)

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y
 NoScope Classical NN

Figure 10: Comparison against classical and NN baselines. Experiments are
run on elevator with frame skipping enabled for all models.

geNet 2012 [82]), a variety of SIFT-based bag-of-words classifiers
(varying the SIFT parameters), and selective search with a SIFT-
based classifier [63] (which performed well on PASCAL VOC [32]).
We use implementations from OpenCV, a reference standard op-
timized computer vision library. Additionally, we trained several
classification deep networks on the MS-COCO [62] dataset, varying
hyper-parameters (2-10 convolutional layers and 1-2 fully connected
layers). Figure 10 illustrates the resulting accuracy-speedup trade-
offs for these models combined with frame skipping. NOSCOPE is
nearly a thousand times faster than several classical baselines while
achieving higher accuracy. Additionally, non-specialized deep net-
works also fail to achieve comparable accuracy. Thus, specialization
is key to accurate and efficient inference, and NOSCOPE provides a
means of smoothly trading accuracy for speed.

10. RELATED WORK
NOSCOPE builds on a long tradition of data management for mul-

timedia and video and upon recent advances in computer vision,
machine learning, and computer architecture. We outline several
major related thrusts below.

Visual Data Management. Data management researchers have
long recognized the potential of computer vision techniques for or-
ganizing and querying visual data—starting with early systems such
as Chabot [72] and QBIC [36], and followed by a range of “multi-
media” databases for storing [7, 59], querying [6, 57, 73, 101], and
managing [38, 48, 94] video data. Similar techniques are deployed in
commercial software such as Oracle Multimedia and Google Image
Search. Many of these systems use classic computer vision tech-
niques such as low-level image features (e.g., colors, textures), and
many of them rely on augmenting video with text for richer semantic
queries; however, with the advent of neural networks, we believe it is
worthwhile to revisit many of these system architectures.

Computer Vision Tasks. In the design of its CBO and model
cascade, NoScope draws on a range of computer vision techniques:

Model Cascades. The concept of combining a sequence of classifiers
to improve inference speed is known as a cascade. One of the first
cascades, the Viola-Jones detector [90], cascades traditional image
processing features; if any classifier is confident about the output, the
Viola-Jones cascade short-circuits evaluation, improving execution
speed. Recent work has focused on learning cascades for pedestrian
detection [18] and facial recognition [60, 85] image tasks. In NO-
SCOPE, we design a cascade architecture for use in video, specifically
adapted to account for temporal locality (via difference detectors) and
query simplicity (via model specialization). Similar to NOSCOPE,
several NNs specialized for video take multiple frames as input to im-
prove accuracy [33, 91], but again, these NNs focus on accuracy, not

inference speed. Finally, NOSCOPE’s use of a cost-based optimizer
to optimize the end-to-end cascade (i.e., selecting different filters and
choosing different thresholds for each filter based on the video stream
and a reference NN) is novel compared to work in the computer vision
literature that uses the same cascade of filters (or that optimize solely
for accuracy, not computational cost; cf. [89]). In this way, NOSCOPE
acts as a system for model search [14, 23, 102] for efficient inference
and is inspired by conventional database cost optimization [83] and
related efforts on self-adapting query processing engines [20, 47].

Video Object Detection/Extraction and Tracking. The overall task of
object detection and extraction is a core task in computer vision. As
we have discussed, the explosion of recent interest in deep networks
for this task have largely focused on improving accuracy. Object
detection in video is becoming increasingly popular: since 2015, the
ImageNet competition has had a video detection task [82]. State-of-
the-art methods [43, 50, 51] follow a common pattern: run still image
detection over every frame of the video and post-process the result.
As still image detection is a building block of these methods, they
are not optimized to exploit forms of temporal locality and instead
primarily focus on accuracy; in contrast, NOSCOPE focuses on the
trade-off between accuracy and inference speed.

Beyond object detection, object tracking refers to the task of track-
ing an object through a video and is a vital tool in video analysis [93].
There are many such methods for tracking, including NN-based meth-
ods [24, 71] and traditional methods [27, 30], that all performed well
on the VOT2016 challenge [55]. In a recent survey of object tracking
methods, the fastest method runs at only 3.2k fps [92], and the above
methods run much slower. NOSCOPE solves the simpler task of
binary classification, and we see extending NOSCOPE to detection
as a valuable area for future work.

Video Monitoring. Video monitoring captures a variety of tasks [52],
ranging from object detection [53] to vehicle tracking [87]. His-
torically, these systems have been tailored to a specific task (e.g.
license plate detection [5], counting cars [97], tracking pedestrians
or cars [10]). Our goal in this work is to provide an automatic and
generic framework for tailoring reference NNs to new tasks.

Scene Change Detection. NOSCOPE leverages difference detectors
to determine when labels for video contents have likely changed. This
task is closely related to the task of scene change detection, in which
computer vision techniques highlight substantial changes in video
(e.g., cuts or fades in movies) [16, 49]. NOSCOPE’s use of difference
detection is inspired by these techniques but differs in two critical
respects. First, NOSCOPE’s difference detectors highlight changes in
label (e.g., bus enters), not just changes in scene. Second, NOSCOPE
works over fixed-angle cameras. We expect many of these prior
techniques to be useful in adapting NOSCOPE to moving cameras.

Image Retrieval. Image retrieval is closely related to image clas-
sification. Retrieval typically takes one of two forms. The first is
to associate images with a specific object or place of interest (e.g.,
this image is a photograph of a specific building on Stanford’s cam-
pus [76]). This first class of techniques are not directly applicable
to our target setting: for example, in the night-street query, our task
is to identify the presence of any car, not a specific car. The second
class of techniques allows retrieval of similar images from a large
corpus that are similar to a query image [61,96] (e.g., Google Reverse
Image search). One could use retrieval techniques such as k-nearest
neighbors to perform binary classification. However, in this work,
we leverage state of the art models—i.e., deep neural networks—that
are specifically trained for the binary classification task.

Improving Deep Network Speed. Two recent directions in related
work study the problem of accelerating deep network inference time:

Model Compression and Distillation. Model compression/distil-
lation, i.e. producing a smaller, equivalent model from a larger
model, has been proposed to reduce the size and evaluation time of
NNs. One strategy for model compression is to use the behavior of a
larger model (e.g., its output confidences) to train a smaller model,
either distilling an ensemble of models into a smaller model [17], or
distilling one large network into one smaller network [8, 45]. An-
other strategy is to modify the network weights directly, either via
hashing [22] or pruning and literal compression of the weights them-
selves [41, 77]. These networks are almost always more amenable
to hardware acceleration—a related line of research [42, 78]. The
key difference between this related work and our model specializa-
tion method is that this related work is designed to produce smaller
models preserve the full generality of the large model: that is, the
small model can perform all of the tasks as the large model, without
any loss in accuracy. In contrast, NOSCOPE explicitly specializes
NNs that were trained on a large variety of input images and target
objects to instead operate over a specific video with a smaller number
of target objects; this specialization is key to improving performance.

Model Specialization. We are not aware of any other work acceler-
ating NN inference time via task specialization on video. However,
related strategies for specialization have been shown to boost ac-
curacy (but not runtime) [65, 68], and there are a range of models
designed for detecting specific classes of objects in video. One of
the most popular video-based object detection tasks is pedestrian
detection [15, 28], with a range of NN-based approaches (e.g., [84]).
In NOSCOPE, our goal is to specialize to a range of inputs automati-
cally, using a large general NN as guidance. We evaluate a handful
of different labels based on available datasets, but theoretically any
class recognized by NNs today could be specialized.

ML Model Management and Stream Processing Systems. While
we have provided an overview of related multimedia query engines
and a comparison with several filter- and UDF-based query proces-
sors in Section 6, NOSCOPE also draws inspiration from a number of
recent machine learning model management systems. Velox [25] pro-
vides a high-performance platform for serving personalized models
at scale, while MLBase [54] provides a declarative interface for spec-
ifying modeling tasks, and MacroBase [12, 13] provides a platform
for executing classification and data aggregation tasks on fast data.
Similarly, a range of systems from academia and industry provide
stream processing functionality [4, 19, 26, 39]; here, we specifically
focus on video stream processing. Like Bismarck [35], NOSCOPE
is structured as a sequence of dataflow operators, but for perform-
ing video classification. Of these systems, MacroBase is the most
closely related; however, in NOSCOPE, we focus specifically on video
classification and develop new operators and a CBO for that task.
Looking forward, we are eager to integrate NOSCOPE’s classifiers
into MacroBase and similar systems.

11. CONCLUSIONS
Video is one of the richest and most abundant sources of data

available. At the same time, neural networks (NNs) have dramat-
ically improved our ability to extract semantic information from
video. However, naïvely applying NNs to detect objects in video
is prohibitively expensive at scale, currently requiring a dedicated
GPU to run at real-time. In response, we presented NOSCOPE, a
system for accelerating inference over video at scale by up to three or-
ders of magnitude via inference-optimized model search. NOSCOPE
leverages two types of models: specialized models that forego the
generality of standard NNs in exchange for much faster inference, and
difference detectors that identify temporal differences across frames.
NOSCOPE combines these model families in a cascade by performing

efficient cost-based optimization to select both model architectures
(e.g., number of layers) and thresholds for each model, thus maximiz-
ing throughput subject to a specified accuracy target. Our NOSCOPE
prototype demonstrates speedups of two- to three orders of magnitude
for binary classification on fixed-angle video streams, with 1-5% loss
in accuracy. These results suggest that by prioritizing inference time
in model architecture search, state-of-the-art NNs can be applied to
large datasets with orders of magnitude lower computational cost.

Acknowledgements
We thank the many members of the Stanford InfoLab for their valu-
able feedback on this work. This research was supported in part
by affiliate members and other supporters of the Stanford DAWN
project—Intel, Microsoft, Teradata, and VMware—as well as in-
dustrial gifts and support from Toyota Research Institute, Juniper
Networks, Visa, Keysight Technologies, Hitachi, Facebook, Northrop
Grumman, and NetApp and the NSF Graduate Research Fellowship
under grant DGE-1656518.

12. REFERENCES
[1] Typical cnn architecture. Creative

Commons Attribution-Share Alike 4.0 International, Wikimedia Commons.
[2] Cisco VNI forecast and methodology, 2015-2020. Technical report, 2016.
[3] 2017. https://fortunelords.com/youtube-statistics/.
[4] D. J. Abadi

et al. The design of the Borealis stream processing engine. In CIDR, 2005.
[5] C.-N. E.

Anagnostopoulos et al. License plate recognition from still images and video
sequences: A survey. IEEE Trans. on intelligent transportation systems, 2008.

[6] W. Aref et al. Video query processing
in the VDBMS testbed for video database research. In ACM-MMDB, 2003.

[7] F. Arman et al. Image
processing on compressed data for large video databases. In ACMMM, 1993.

[8] J. Ba and R. Caruana. Do deep nets really need to be deep? In NIPS, 2014.
[9] B. Babcock et al. Operator scheduling in data stream systems. VLDBJ, 2004.

[10] B. Babenko et al. Robust object tracking with online multiple instance
learning. IEEE trans. on pattern analysis and machine intelligence, 2011.

[11] S. Babu et al. Adaptive ordering of pipelined stream filters. In SIGMOD, 2004.
[12] P. Bailis et al. Macrobase: Prioritizing attention in fast data. In SIGMOD, 2017.
[13] P. Bailis, E. Gan, K. Rong, and S. Suri.

Prioritizing attention in fast data: Principles and promise. In CIDR, 2017.
[14] M. G. Bello. Enhanced training algorithms, and integrated training/architecture

selection for multilayer perceptron networks. IEEE Trans. on Neural networks.
[15] R. Benenson

et al. Ten years of pedestrian detection, what have we learned? In ECCV, 2014.
[16] R. Brunelli, O. Mich, and C. M. Modena. A survey on the automatic indexing

of video data. Journal of visual communication and image representation, 1999.
[17] C. Bucilua et al. Model compression. In KDD, 2006.
[18] Z. Cai et al. Learning

complexity-aware cascades for deep pedestrian detection. In ICCV, 2015.
[19] S. Chandrasekaran et al. TelegraphCQ:

Continuous dataflow processing for an uncertain world. In CIDR, 2003.
[20] S. Chaudhuri and V. Narasayya.

Self-tuning database systems: a decade of progress. In VLDB, 2007.
[21] S. Chaudhuri and K. Shim. Optimization

of queries with user-defined predicates. TODS, 24(2):177–228, 1999.
[22] W. Chen

et al. Compressing neural networks with the hashing trick. In ICML, 2015.
[23] Y. Cheng et al. An exploration of parameter

redundancy in deep networks with circulant projections. In ICCV, 2015.
[24] Z. Chi et al.

Dual deep network for visual tracking. IEEE Trans. on Image Processing, 2017.
[25] D. Crankshaw et al. The missing piece in complex analytics:

Low latency, scalable model management and serving with Velox, 2015.
[26] C. Cranor et al.

Gigascope: a stream database for network applications. In SIGMOD, 2003.
[27] M. Danelljan et al. Beyond correlation filters:

Learning continuous convolution operators for visual tracking. In ECCV, 2016.
[28] P. Dollar et al. Pedestrian

detection: An evaluation of the state of the art. TPAMI, 34(4):743–761, 2012.
[29] J. Donahue et al. Long-term recurrent

convolutional networks for visual recognition and description. In CVPR, 2015.

[30] D. Du et al. Online deformable object tracking
based on structure-aware hyper-graph. IEEE Trans. on Image Processing, 2016.

[31] A. Esteva et al. Dermatologist-level classification
of skin cancer with deep neural networks. Nature, 542(7639):115–118, 2017.

[32] M. Everingham
et al. The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.

[33] C. Feichtenhofer et al.
Spatiotemporal residual networks for video action recognition. In NIPS, 2016.

[34] P. F. Felzenszwalb et al. Object
detection with discriminatively trained part-based models. IEEE TPAMI, 2010.

[35] X. Feng et al.
Towards a unified architecture for in-RDBMS analytics. In SIGMOD, 2012.

[36] M. Flickner
et al. Query by image and video content: The QBIC system. Computer, 1995.

[37] A. Geiger, P. Lenz, and R. Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark suite. In CVPR, 2012.

[38] S. Gibbs
et al. Audio/video databases: An object-oriented approach. In ICDE, 1993.

[39] L. Girod et al.
Wavescope: a signal-oriented data stream management system. In ICDE, 2006.

[40] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
[41] S. Han et al. Deep compression: Compressing deep neural networks

with pruning, trained quantization and huffman coding. In ICLR, 2016.
[42] S. Han et al. EIE:

efficient inference engine on compressed deep neural network. In ISCA, 2016.
[43] W. Han et al. Seq-nms for video object detection. CoRR, abs/1602.08465, 2016.
[44] K. He et al. Deep residual learning for image recognition. In CVPR, 2016.
[45] G. Hinton et al. Distilling the knowledge in a neural network. NIPS, 2014.
[46] G. Hinton and T. Tieleman. Lecture 6.5 - rmsprop. Technical report, 2012.
[47] S. Idreos, M. L. Kersten, S. Manegold, et al. Database cracking. In CIDR, 2007.
[48] R. Jain and A. Hampapur. Metadata in video databases. In SIGMOD, 1994.
[49] H. Jiang et al. Scene change

detection techniques for video database systems. Multimedia systems, 1998.
[50] K. Kang et al. Object detection from video

tubelets with convolutional neural networks. In CVPR, pages 817–825, 2016.
[51] K. Kang et al. T-cnn: Tubelets with convolutional neural networks

for object detection from videos. arXiv preprint arXiv:1604.02532, 2016.
[52] V. Kastrinaki, M. Zervakis, and K. Kalaitzakis. A survey of video processing

techniques for traffic applications. Image and vision computing, 2003.
[53] J. B. Kim and H. J. Kim. Efficient region-based motion segmentation for

a video monitoring system. Pattern Recognition Letters, 24(1):113–128, 2003.
[54] T. Kraska et al. Mlbase: A distributed machine-learning system. In CIDR, 2013.
[55] M. Kristan

et al. The visual object tracking vot2016 challenge results. ECCV, 2016.
[56] A. Krizhevsky et al. Imagenet

classification with deep convolutional neural networks. In NIPS, 2012.
[57] M. La Cascia and E. Ardizzone.

Jacob: Just a content-based query system for video databases. In ICASSP, 1996.
[58] Y. LeCun et al. Deep learning. Nature, 521(7553):436–444, 2015.
[59] J. Lee, J. Oh, and S. Hwang. Strg-index: Spatio-temporal

region graph indexing for large video databases. In SIGMOD, 2005.
[60] H. Li et al. A conv. neural network cascade for face detection. In CVPR, 2015.
[61] K. Lin et al.

Deep learning of binary hash codes for fast image retrieval. In CVPR, 2015.
[62] T.-Y. Lin et al. Microsoft coco: Common objects in context. September 2014.
[63] D. G.

Lowe. Object recognition from local scale-invariant features. In ICCV, 1999.
[64] D. Lu and Q. Weng. A survey

of image classification methods and techniques for improving classification
performance. International journal of Remote sensing, 28(5):823–870, 2007.

[65] H. Maâmatou et al. Sequential
Monte Carlo filter based on multiple strategies for a scene specialization
classifier. EURASIP Journal on Image and Video Processing, 2016.

[66] J. Malik. Technical perspective: What led computer
vision to deep learning? Communications of the ACM, 60(6):82–83, 2017.

[67] C. Metz. AI is about to learn more
like humans—with a little uncertainty. Wired, 2017. https://goo.gl/yCvSSz.

[68] A. Mhalla et al. Faster R-CNN scene
specialization with a sequential Monte-Carlo framework. In DICTA, 2016.

[69] K. Munagala et al. Optimization
of continuous queries with shared expensive filters. In SIGMOD, 2007.

[70] D. Murray and A. Basu. Motion tracking with an active
camera. IEEE Trans. Pattern Anal. Mach. Intell., 16(5):449–459, May 1994.

[71] H. Nam et al. Modeling and propagating
cnns in a tree structure for visual tracking. arXiv:1608.07242, 2016.

[72] V. E. Ogle and M. Stonebraker. Chabot:
Retrieval from a relational database of images. Computer, 28(9):40–48, 1995.

[73] J. Oh and K. A. Hua. Efficient and cost-effective
techniques for browsing and indexing large video databases. In SIGMOD, 2000.

[74] S. A. Papert. The summer vision project. 1966.
[75] A. Patait and E. Young. High performance video encoding with NVIDIA

GPUs. 2016 GPU Technology Conference (https://goo.gl/Bdjdgm), 2016.
[76] J. Philbin et al. Object retrieval with

large vocabularies and fast spatial matching. In CVPR, pages 1–8. IEEE, 2007.
[77] M. Rastegari et al. Xnor-net: Imagenet

classification using binary convolutional neural networks. In ECCV, 2016.
[78] B. Reagen et al. Minerva: Enabling

low-power, highly-accurate deep neural network accelerators. In ISCA, 2016.
[79] J. Redmon

et al. You only look once: Unified, real-time object detection. CVPR, 2016.
[80] J. Redmon and A. Farhadi.

Yolo9000: Better, faster, stronger. arXiv preprint arXiv:1612.08242, 2016.
[81] S. Ren et al. Faster r-cnn: Towards

real-time object detection with region proposal networks. In NIPS, 2015.
[82] O. Russakovsky et al. Imagenet large

scale visual recognition challenge. IJCV, 2015. http://image-net.org/.
[83] P. G. Selinger et al. Access

path selection in a relational database management system. In SIGMOD, 1979.
[84] P. Sermanet et al. Pedestrian

detection with unsupervised multi-stage feature learning. In CVPR, 2013.
[85] Y. Sun

et al. Deep conv. network cascade for facial point detection. In CVPR, 2013.
[86] R. Szeliski. Computer

vision: algorithms and applications. Springer Science & Business Media, 2010.
[87] B. Tian, Q. Yao, Y. Gu, K. Wang, and Y. Li.

Video processing techniques for traffic flow monitoring: A survey. IEEE, 2011.
[88] J. R. Uijlings et al. Selective search for object recognition. IJCV, 2013.
[89] R. Verschae et al. A

unified learning framework for object detection and classification using nested
cascades of boosted classifiers. Machine Vision and Applications, 19(2), 2008.

[90] P. Viola and M. Jones. Rapid
object detection using a boosted cascade of simple features. In CVPR, 2001.

[91] P. Weinzaepfel
et al. Learning to track for spatio-temporal action localization. In ICCV, 2015.

[92] Y. Wu, J. Lim, and M.-H.
Yang. Online object tracking: A benchmark. In CVPR, pages 2411–2418, 2013.

[93] A. Yilmaz et al. Object tracking: A survey. CSUR, 2006.
[94] A. Yoshitaka and T. Ichikawa. A survey

on content-based retrieval for multimedia databases. TKDE, 11(1):81–93, 1999.
[95] K.-H. Yu et al. Predicting non-small cell lung cancer prognosis by

fully automated microscopic pathology image features. Nature Comm., 2016.
[96] J. Yue-Hei Ng, F. Yang, and L. S. Davis. Exploiting local

features from deep networks for image retrieval. In CVPR, pages 53–61, 2015.
[97] H. Zhang et al. Live

video analytics at scale with approximation and delay-tolerance. NSDI, 2017.
[98] S. Zhang et al. How far are we from solving pedestrian detection? In CVPR, 2016.
[99] W. Zhao et al. Face recognition: A literature survey. CSUR, 2003.

[100] Q. Zhu et al. Fast human detection
using a cascade of histograms of oriented gradients. In CVPR. IEEE, 2006.

[101] X. Zhu et al. Video data mining: Semantic indexing and
event detection from the association perspective. TKDE, 17(5):665–677, 2005.

[102] B. Zoph and Q. V.
Le. Neural architecture search with reinforcement learning. In ICLR, 2017.

https://goo.gl/yCvSSz
https://goo.gl/Bdjdgm
http://image-net.org/

	Introduction
	Background
	NOSCOPE Architecture
	Model Specialization
	Difference Detection
	Cost-Based Model Search
	Training Data Generation
	Cost Model
	Model Search

	Implementation
	Limitations
	Evaluation
	Experimental Setup
	End-to-End Performance
	Impact of the CBO
	Running Time of the CBO

	Impact of Individual Models
	Impact of Model Specialization
	Comparison Against Baselines

	Related Work
	Conclusions
	References

