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ABSTRACT
Interactive analytics increasingly involves querying for quan-
tiles over sub-populations of high cardinality datasets. Data
processing engines such as Druid and Spark use mergeable
summaries to estimate quantiles, but summary merge times
can be a bottleneck during aggregation. We show how a
compact and efficiently mergeable quantile sketch can sup-
port aggregation workloads. This data structure, which
we refer to as the moments sketch, operates with a small
memory footprint (200 bytes) and computationally efficient
(50ns) merges by tracking only a set of summary statistics,
notably the sample moments. We demonstrate how we can
efficiently estimate quantiles using the method of moments
and the maximum entropy principle, and show how the use
of a cascade further improves query time for threshold pred-
icates. Empirical evaluation shows that the moments sketch
can achieve less than 1 percent quantile error with 15× less
overhead than comparable summaries, improving end query
time in the MacroBase engine by up to 7× and the Druid
engine by up to 60×.
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1. INTRODUCTION
Performing interactive multi-dimensional analytics over

data from sensors, devices, and servers increasingly requires
computing aggregate statistics for specific subpopulations
and time windows [4, 29, 65]. In applications such as A/B
testing [38,42], exploratory data analysis [8,74], and opera-
tions monitoring [2,14], analysts perform aggregation queries
to understand how specific user cohorts, device types, and
feature flags are behaving. In particular, computing quan-
tiles over these subpopulations is an essential part of debug-
ging and real-time monitoring workflows [26].
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Figure 1: Given a data cube with pre-aggregated sum-
maries, we can compute roll-ups along specific dimensions
by merging the relevant summaries. Efficiently mergeable
summaries enable scalable aggregations.

As an example of this quantile-driven analysis, our collab-
orators on a Microsoft application monitoring team collect
billions of telemetry events daily from millions of heteroge-
neous mobile devices. Each device tracks multiple metrics
including request latency and memory usage, and is associ-
ated with dimensional metadata such as application version
and hardware model. Engineers issue quantile queries on a
Druid-like [82] in-memory data store, aggregating across dif-
ferent dimensions to monitor their application (e.g., examine
memory trends across device types) and debug regressions
(e.g., examine tail latencies across versions). Querying for a
single percentile in this deployment can require aggregating
hundreds of thousands of dimension value combinations.

When users wish to examine the quantiles of specific slices
of a dataset, OLAP engines such as Druid and Spark support
computing approximate quantiles using compressed repre-
sentations (summaries) of the data values [39, 67, 82, 83].
By pre-aggregating a summary for each combination of di-
mension values, Druid and similar engines can reduce query
times and memory usage by operating over the relevant sum-
maries directly, effectively constructing a data cube [33,65].

Given a time interval and a metric with d associated di-
mensions, Druid maintains one pre-aggregated summary for
each d-tuple of dimension values. These summaries are kept
in RAM across a number of nodes, with each node scanning
relevant summaries to process subsets of the data specified
by a user query. Figure 1 illustrates how these mergeable [3]
summaries can be aggregated to compute quantile roll-ups
along different dimensions without scanning over the raw
data.

More concretely, a Druid-like data cube in our Microsoft
deployment with 6 dimension columns, each with 10 distinct
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values, is stored as a set of up to 106 summaries per time
interval. On this cube, computing the 99-th percentile la-
tency for a specific app version can require 100,000 merges,
or even more for aggregation across complex time ranges.
When there are a limited number of dimensions but enor-
mous data volumes, it is cheaper to maintain these sum-
maries than scan over billions of raw datapoints.

Many quantile summaries support the merge operation [3,
28,34], but their runtime overheads can lead to severe perfor-
mance penalties on high-cardinality datasets. Based on our
experiments (Section 6.2.1), one million 1KB GK-sketches
[34] require more than 3 seconds to merge sequentially, lim-
iting the types of queries users can ask interactively. The
merging can be parallelized, but additional worker threads
still incur coordination and resource usage overheads. Ma-
terialized views [37,44,51,61], sliding window sketches [25],
and dyadic intervals can also reduce this overhead. How-
ever, dyadic intervals only apply to ordered dimensions and
maintaining materialized views for multiple dimension roll-
ups can be prohibitively expensive in a real-time stream, so
merge time remains a relevant bottleneck.

In this paper, we enable interactive quantile queries over
high-cardinality aggregates by introducing a compact and
efficiently mergeable quantile sketch and associated quantile
estimation routines. We draw a connection between the clas-
sic method of moments for parameter estimation in statis-
tics [79] and the need for efficient summary data structures.
We show that storing the sample moments µi = 1

n

∑
xi and

log-moments νi = 1
n

∑
logi (x) can enable accurate quantile

estimation over a range of real-world datasets while utilizing
fewer than 200 bytes of memory and incurring merge times
of less than 50 nanoseconds. In the context of quantile es-
timation, we refer to our proposed summary data structure
as the moments sketch.

While constructing the moments sketch is straightforward,
the inverse problem of estimating quantiles from the sum-
mary is more complex. The statistics in a moments sketch
provide only loose constraints on the distribution of values
in the original dataset: many distributions might match the
moments of a moments sketch but fail to capture the dataset
structure. Therefore, we make use of the principle of max-
imum entropy [41] to compute a “least-biased” quantile es-
timate for a moments sketch. On continuous real-valued
datasets, we find that this approach yields more accurate
estimates than alternative methods, achieving ε ≤ 1% error
with 200 bytes of memory. To achieve this, we also describe
a series of practical optimizations to standard entropy max-
imization that allow us to compute quantile estimates in
under 1 millisecond on a range of real-world datasets.

These query times make the moments sketch a suitable
summary when many merges (hundreds of thousands) are
required, memory per-summary may be limited to less than
1 kilobyte, and ε = .01 error is acceptable. The moments
sketch and our maximum entropy estimate is most useful in
datasets without strong discretization and when very small
< 10−4 error is not required. The maximum entropy prin-
ciple is less accurate when there are clusters of discrete val-
ues in a dataset (Section 6.2.3), and floating point stability
(Section 4.3.2) limits the minimum achievable error using
this approach.

Moving beyond simple quantile queries, many complex
queries depend on the quantile estimates of multiple sub-
populations. For example, data exploration systems such

as MacroBase [8] are interested in finding all subpopula-
tions that match a given threshold condition (e.g., subpop-
ulations where the 95th percentile latency is greater than
the global 99th percentile latency). Given a large number
of subpopulations, the cost of millisecond-level quantile es-
timates on thousands of subgroups will accumulate. There-
fore, to support threshold queries over multiple populations,
we extend our quantile estimator with a cascade [75], or se-
quence of increasingly precise and increasingly expensive es-
timates based on bounds such as the Markov inequalities.
For queries with threshold conditions, the cascades dramat-
ically reduce the overhead of quantile estimation in a mo-
ments sketch, by up to 25×.

We implement the moments sketch both as a reusable li-
brary and as part of the Druid and MacroBase analytics
engines. We empirically compare its accuracy and efficiency
with alternative mergeable quantile summaries on a variety
of real-world datasets. We find that the moments sketch
offers 16 to 50× faster merge times than alternative sum-
maries with comparable accuracy. This enables 15 to 50×
faster query times on real datasets. Moreover, the moments
sketch enables up to 7× faster analytics queries when inte-
grated with MacroBase and 60× faster end-to-end queries
when integrated with Druid.

In summary, we make the following contributions:

• We illustrate how statistical moments are useful as ef-
ficient mergeable quantile sketches in aggregation and
threshold-based queries over high-cardinality data.

• We demonstrate how statistical and numerical tech-
niques allow us to solve for accurate quantile estimates
in less than 1 ms, and show how the use of a cascade
further improves estimation time on threshold queries
by up to 25×.

• We evaluate the use of moments as quantile summaries
on a variety of real-world datasets and show that the
moments sketch enables 15 to 50× faster query times
in isolation, up to 7× faster queries when integrated
with MacroBase and up to 60× faster queries when in-
tegrated with Druid over comparably-accurate quan-
tile summaries.

The remainder of this paper proceeds as follows. In Sec-
tion 2, we discuss related work. In Section 3, we review
relevant background material. In Section 4, we describe
the proposed moments sketch. In Section 5, we describe a
cascade-based approach for efficiently answering threshold-
based queries. In Section 6, we evaluate the moments sketch
in a series of microbenchmarks. In Section 7, we evaluate
the moments sketch as part of the Druid and MacroBase sys-
tems, and benchmark its performance in a sliding window
workflow. We conclude in Section 8. We include supplemen-
tal appendices in an extended technical report [30].

2. RELATED WORK
High-performance aggregation. The aggregation sce-
narios in Section 1 are found in many existing streaming
data systems [8, 16, 24, 65, 82], as well as data cube [33, 69],
data exploration [2], and visualization [17] systems. In par-
ticular, these systems are can perform interactive aggrega-
tions over time windows and along many cube dimensions,
motivating the design of our sketch. Many of these systems
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use approximate query processing, sampling, and summaries
to improve query performance [4,35,59], but do not develop
data structures specific to quantiles. We believe the mo-
ments sketch serves as a useful primitive in these engines.

Sensor networking is a rich source of algorithms for heav-
ily resource-constrained settings. Sensor network aggrega-
tion systems [53] support large scale roll-ups, but work in
this area is largely focused on the complementary problem of
communication plans over a network [21,45,54]. Mean, min,
max, and standard deviation in particular are used in [53]
as functions amenable to computation-constrained environ-
ments, but the authors do not consider higher moments or
their application to quantile estimation.

Several database systems make use of summary statistics
in general-purpose analytics. Muthukrishan et al [60] ob-
serve that the moments are a convenient statistic in stream-
ing settings and use it to fill in missing integers. Data
Canopy [78] uses first and second moments as an efficiently
mergeable statistic for computing standard deviations and
linear regressions. Similarly, systems on probabilistic data
cubes such as [81] use the first and second moments to prune
queries over cube cells that store distributions of values. In
addition, many methods use compressed data representa-
tions to perform statistical analyses such as linear regres-
sion, logistic regression, and PCA [19,63,70,80]. We are not
aware of prior work utilizing higher moments to efficiently
estimate quantiles for high-dimensional aggregation queries.

Quantile summaries. There are a variety of summary
data structures for the ε-approximate quantile estimation
problem [18, 23, 34, 71]. Some of these summaries assume
values from a fixed universe [23,71], while others operate us-
ing only comparisons [3,34]. Our proposed moments sketch
and others [12,28] operate on real values. Agarwal et al. [3]
provide the initial motivation for mergeable summaries, as
well as a proposed mergeable quantile sketch. The authors
in [52, 77] benchmark a variety of quantile summaries but
do not directly evaluate merge time. Zhuang [84] evaluates
merge performance of a variety of quantile summaries in a
distributed setting, finding the Random summary to be the
fastest. To our knowledge we are the first to introduce and
evaluate the moments sketch for fast merge times and low
space overhead.

Method of moments. The method of moments is a well-
established statistical technique for estimating the parame-
ters of probability distributions [79]. The main idea behind
this approach is that the parameters of a distribution of in-
terest P can be related to the expectations of functions of
the random variable X ∼ P . As a general method for con-
sistent statistical parameter estimation, the method of mo-
ments is used across a wide range of fields, including econo-
metrics [36], physics [32,57], and machine learning [7,11,43].
In this work, we demonstrate how the method of moments,
applied in conjunction with practical performance optimiza-
tions, can scale to support real-world latency-sensitive query
processing workloads.

Maximum entropy principle. The maximum entropy
principle prescribes that one should select the least informa-
tive distribution that is consistent with the observed data.
In the database community, this principle has been applied
to estimating cardinality [73] and predicate selectivity [55].
Mead and Papanicolaou [57] apply the maximum entropy
principle to the problem of estimating distributions subject

to moment constraints; follow-up work proposes the use of
Chebyshev polynomials for stability [10, 72] and faster ap-
proximation algorithms [9], though we have not seen any
practical implementations suitable for use in a database.
The maximum entropy principle is also used in machine
learning, notably in the context of maximum entropy mod-
els [13]. For example, in natural language processing, max-
imum entropy models are a popular choice for tasks such as
text classification [62] and sequence tagging [48].

3. BACKGROUND
In this section, we review the approximate quantile es-

timation problem, mergeable quantile summaries, and our
target query cost model.

3.1 Quantile Queries
Given a dataset D with n elements, for any φ ∈ (0, 1), the

φ-quantile of D is the item x ∈ D with rank r(x) = bφnc,
where the rank of an element x is the number of elements
in D smaller than x.

An ε-approximate φ-quantile is an element with rank be-
tween (φ − ε)n and (φ + ε)n [3]. Given an estimated φ-
quantile q̂φ, we can also define its quantile error ε [52] as
the following:

ε =
1

n
|rank (q̂φ)− bφnc| , (1)

such that an ε-approximate quantile has error at most ε. For
example, given a dataset D = {1, . . . , 1000}, an estimate
q̂0.5 = 504 for the φ = 0.5 quantile would have error ε =
0.003. In this paper, we consider datasets D represented by
collections of real numbers D ⊂ R.

Quantile summaries are data structures that provide ap-
proximate quantile estimates for a dataset given space sub-
linear in n. These summaries usually have a parameter kε
that trades off between the size of the summary and the
accuracy of its estimates. An ε-approximate quantile sum-
mary provides ε approximate φ-quantiles, where ε can be a
function of space usage and the dataset [18,23,34,71].

3.2 Mergeable Summaries
Agarwal et al. [3] introduce the concept of mergeability to

accurately combine summaries in distributed settings. For-
mally, for a summary with parameter kε, we use S(D, kε)
to denote a valid summary for a dataset D. For any pair of
datasets D1 and D2, the summarization routine S is merge-
able if there exists an algorithm (i.e., the “merge” procedure)
that produces a combined summary

S(D1 ]D2, kε) = merge(S(D1, kε), S(D2, kε))

from any two input summaries, where ] denotes multiset
addition.

Intuitively, a summary is mergeable if there is no accuracy
cost to combining pre-computed summaries compared with
constructing a summary on the raw data. Thus, mergeable
summaries are algebraic aggregate functions in the data cube
literature [33]. As an example, an equi-depth histogram
[22] on its own is not mergeable because there is no way
to accurately combine two overlapping histogram buckets
without access to additional data.

Mergeable summaries can be incorporated naturally into a
variety of distributed systems. In the MapReduce paradigm,
a “map” function can construct summaries over shards while
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a “reduce” function merges them to summarize a complete
dataset [3]. In the GLADE system [68], mergeable sum-
maries are an example of a Generalized Linear Aggregate
(GLA), a user-defined computation that can be incremen-
tally aggregated across nodes.

3.3 Query Model
As described in Section 1, we focus on improving the per-

formance of quantile queries over aggregations on high car-
dinality datasets. Given a dataset with d categorical dimen-
sions, we consider data cubes that maintain summaries for
every d-way dimension value tuple as one natural setting for
high performance aggregations, and many other settings are
also applicable [78]. In these settings, query time is heavily
dependent on the number of merges and the time per merge.

We consider two broad classes of queries in this paper.
First, single quantile queries ask for quantile estimates for a
single specified population. For example, we can query the
99th percentile of latency over the last two weeks for a given
version of the application:

SELECT percentile(latency , 99) FROM requests
WHERE time > date_sub(curdate(), 2 WEEK)
AND app_version = "v8.2"

To process this query in time tquery, we would need to merge
nmerge summaries, each with runtime overhead tmerge, and
then estimate the quantile from the merged summary with
runtime cost test. This results in total query time:

tquery = tmerge · nmerge + test. (2)

We evaluate the different regimes where queries are bottle-
necked on merges and estimation in Figure 6 in Section 6.2.2:
merge time begins to dominate at around nmerge ≥ 104.

We also consider threshold queries which are conditioned
on sub-groups or windows with percentiles above a specified
threshold. For example, we may be interested in combina-
tions of application version and hardware platform for which
the 99th percentile latency exceeds 100ms:

SELECT app_version , hw_model ,
PERCENTILE(latency , 99) as p99

FROM requests
GROUP BY app_version , hw_model
HAVING p99 > 100

Such queries are very useful for debugging and data explo-
ration [8], but have additional runtime cost that depends
on the number of groups ngroups since test can be significant
when one is searching for high quantiles over thousands of
sub-groups. This results in total query time:

tquery = tmerge · nmerge + test · ngroups. (3)

4. THE MOMENTS SKETCH
In this section, we describe how we perform quantile esti-

mation using the moments sketch. First, we review the sum-
mary statistics stored in the moments sketch and describe
how they comprise an efficiently mergeable sketch. Second,
we describe how we can use the method of moments and
the maximum entropy principle to estimate quantiles from
the moments sketch, with details on how we resolve practical
difficulties with numerical stability and estimation time. We
conclude with a discussion of theoretical guarantees on the
approximation error of quantiles estimated from the sketch.

min max count
P

ln(x)
P

x
P

x2 … …

Momentsk k Log	Moments

Figure 2: The moments sketch is an array of floating point
values.

Algorithm 1: Moments sketch operations

input: number of moments k
function Init(x)

xmin, xmax ←∞,−∞
~µ, ~ν, n← ~0,~0, 0

function Accumulate(x)
xmin, xmax ← min{x, xmin},max{x, xmax}
n← n+ 1
for i ∈ {1, . . . , k} do

µi ← n−1
n
µi + 1

n
xi . Standard moments

if x > 0 then
νi ← n−1

n
νi + 1

n
logi(x) . Log-moments

function Merge(o) . o another sketch
xmin ← min{o.xmin, xmin}
xmax ← max{o.xmax, xmax}
~µ, ~ν, n← ~µ+ o.~µ, ~ν + o.~ν, n+ o.n

4.1 Moments Sketch Statistics
The moments sketch of a dataset D is a set of floating

point values: the minimum value xmin, the maximum value
xmax, the count n, the sample moments µi = 1

n

∑
x∈D x

i

and the sample logarithmic moments νi = 1
n

∑
x∈D logi (x)

for i ∈ {1, . . . , k} (Figure 2). The moments sketch has
an integer parameter k, which describes the highest power
used in the moments. We refer to k as the order of a mo-
ments sketch. Each sample moment provides additional in-
formation about the distribution, so higher-order moments
sketches are more precise but have higher space and compu-
tation time overheads.

The moments sketch supports a number of basic opera-
tions: init creates an empty sketch, accumulate updates
the sketch via point-wise additions, and merge updates the
sketch by merging it with another moments sketch. One
can construct a moments sketch over a dataset using either
accumulate or merge. When accumulating elements point-
wise, we update the minimum and maximum, then add to
the counts and moments. As an implementation detail, we
can accumulate the unscaled sums

∑
xi and

∑
logi(x) in-

stead of the µi, νi. We merge two moments sketches by com-
bining the minimum, maximum, count, and the moments via
comparison and potentially vectorized addition. This merge
operation preserves the property that a moments sketch con-
structed using only accumulate is identical (up to floating
point precision) to a moments sketch constructed from merg-
ing existing sketches of partitions of the data, so there is no
accuracy loss in pre-aggregating. We provide pseudocode for
these in Algorithm 1. The moments sketch additionally sup-
ports quantile estimation routines described in Section 4.2
in order to answer end-user queries. The moments sketch
thus supports all of the basic user-defined aggregate oper-
ations [20, 68] and can be incorporated into data systems
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using this API.

Log-moments. The moments sketch records logarithmic
moments (log-moments) in order to recover better quantile
estimates for long-tailed datasets. In particular, taking the
logarithm of data points is useful when values in the dataset
can vary over several orders of magnitude. In general, when
updating a moments sketch in a streaming manner or when
maintaining multiple moments sketches in a distributed set-
ting, we cannot know a priori whether standard moments
or log-moments are more appropriate for the given dataset.
Therefore, our default approach is to store both sets of mo-
ments up to the same order k. Given additional prior knowl-
edge of the data distribution, we may choose to maintain a
moments sketch with only a single set of moments.

Data points with negative values pose a potential problem
for the log-moments since the logarithm is undefined for
these points. There are several strategies for addressing this,
including storing separate sums for positive and negative
values and shifting all values so that they are positive. In
this paper, we adopt the simple approach of ignoring the log
sums when there are any negative values, and computing
estimates using the remaining statistics.

Remark on pathological distributions. The moments
of certain “pathological” distributions may be undefined; for

example, the Cauchy distribution f(x) = π−1
(
1 + x2

)−1

does not have finite moments of any order. However, the
moments sketch tracks the moments of an empirical dataset,
which are always well-defined. This suits our goal of estimat-
ing quantiles of a finite dataset, rather than an underlying
distribution.

4.2 Estimating Quantiles
Method of moments. To estimate quantiles from a
moments sketch, we apply the method of moments [7,11,43,
79] to construct a distribution f(x) whose moments match
those recorded in the sketch. Specifically, given a moments
sketch with minimum xmin and maximum xmax, we solve for
a pdf f(x) supported on [xmin, xmax] with moments equal to
the values in the moments sketch.∫ xmax

xmin

xif(x) dx = µi

∫ xmax

xmin

logi(x)f(x) dx = νi

We can then report the quantiles of f(x) as estimates for
the quantiles of the dataset.

In general, a finite set of moments does not uniquely de-
termine a distribution [5]. That is, there are often many pos-
sible distributions with varying quantiles that each match a
given set of sample moments. Therefore, we must disam-
biguate between them.

Maximum entropy. In this work, we use the principle of
maximum entropy [41] to select a unique distribution that
satisfies the given moment constraints. Intuitively, the dif-
ferential Shannon entropy H of a distribution with pdf f(x),
defined as H[f ] = −

∫
X f(x) log f(x) dx, is a measure of the

degree of uninformativeness of the distribution. For exam-
ple, a uniform distribution has higher entropy than a point
mass distribution. Thus, the maximum entropy distribution
can be seen as the distribution that encodes the least addi-
tional information about the data beyond that captured by
the given moment constraints.

Applying the maximum entropy principle to the moments

sketch, we estimate quantiles by solving for the pdf f that
maximizes the entropy while matching the moments in the
sketch. Following, we estimate quantiles using numeric in-
tegration and the Brent’s method for root finding [64] .

In practice, we find that the use of maximum entropy dis-
tributions yields quantile estimates with comparable accu-
racy to alternative methods on a range of real-world datasets,
unless the datasets are more discrete than continuous. We
discuss our empirical results further in Section 6.2.3.

Optimization. We now describe how to solve for the
maximum entropy distribution f . We trade off between ac-
curacy and estimation time by solving for f subject to the
first k1 standard moments and k2 log-moments stored in the
sketch; incorporating more moments leads to more precise
estimates but more computationally expensive estimation.
As previously noted, for datasets with non-positive values
(i.e., xmin ≤ 0), we set k2 = 0. Therefore, our goal is to find
the solution f to the following optimization problem:

maximize
f∈F[xmin,xmax]

H[f ] (4)

subject to

∫ xmax

xmin

xif(x) dx = µi, i ∈ {1, . . . , k1}∫ xmax

xmin

logi(x)f(x) dx = νi, i ∈ {1, . . . , k2}

where F [xmin, xmax] denotes the set of distributions sup-
ported on [xmin, xmax].

It is well known that the solution to Problem (4) is a
member of the class of exponential family distributions [41]:

f(x; θ) = exp

(
θ0 +

k1∑
i=1

θix
i +

k2∑
i=1

θk1+i logi(x)

)
,

where θ0 is a normalization constant such that f(x; θ) in-
tegrates to 1 over the domain [xmin, xmax]. The maximum
entropy distribution is determined by the parameter θ such
that f(x; θ) satisfies the moment constraints in Problem (4).

In order to solve for θ, we define the potential function
L(θ) from [57]:

L(θ) =

∫ xmin

xmin

exp

(
k1∑
i=0

θix
i +

k2∑
i=1

θk1+i logi x

)
dx (5)

− θ0 −
k1∑
i=0

θiµi −
k2∑
i=1

θk1+iνi

L(θ) is a convex function over θ and is constructed so that
the minimizing solution θopt = arg minθ∈Rk1+k2−1 L(θ) is
exactly the set of coefficients which satisfy the constraints
in Problem (4). Equation (5) thus transforms the con-
strained optimization problem in (4) into an unconstrained
convex optimization problem which we solve using New-
ton’s method [15]. We show the explicit formulas for the
gradient and Hessian that of Equation (5) in Appendix A
in [30]. First-order optimization routines such as SGD and
BFGS [50] are also viable: they do not use the Hessian but
require more steps to achieve convergence. As we will de-
scribe in Section 4.3, each additional entry in our Hessian
can be computed efficiently using Chebyshev approxima-
tions, making second order methods more efficient overall.
We provide a lesion study comparison in Section 6.3.
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4.3 Practical Implementation
In this section, we outline implementation concerns that

are important for querying the moments sketch in practice.
We include a number of optimizations to improve the stabil-
ity and performance of Newton’s method, and also discuss
the stability of the moments sketch under floating point pre-
cision. Due to space constraints, some equations are omitted
and provided in Appendix A and B in [30].

4.3.1 Optimizing Newton’s Method
The primary source of difficulties in implementing New-

ton’s method is the Hessian ∇2L of our objective L. In our
case:

∇2L(θ)ij =

∫ xmax

xmin

mi(x)mj(x)f(x; θ) dx, (6)

where the functions mi(x) range over the set of functions

{xi : i ∈ {1, . . . , k1}} ∪ {logi(x) : i ∈ {1, . . . , k2}}.

There are two main challenges in performing a Newton step
using this Hessian. First, ∇2L can be nearly singular and
cause numerical instabilities in Newton’s method that pre-
vent or slow down convergence. Second, since the integral
in Eq. (6) has no closed form, the cost of performing O(k2)
numerical integrations to compute∇2L in each iteration can
be expensive.

Conditioning. To quantify the degree of numerical in-
stability, we use the condition number of the Hessian ∇2L.
The condition number κ(A) of a matrix A describes how
close a matrix is to being singular: matrices with high con-
dition number are close to being singular, and log10 κ pro-
vides an estimate of how many digits of precision are lost
when inverting A. In particular, the use of the powers
mi(x) ∈ {xi : i ∈ {1, . . . , k1}} can result in ill-conditioned
Hessians [31]. For example, when solving for a maximum
entropy distribution with k1 = 8, k2 = 0, xmin = 20, and
xmax = 100, we encountered κ(∇2L) ≈ 3 · 1031 at θ = 0,
making even the very first Newton step unstable.

We mitigate this issue by using a change of basis from
the functions mi(x) = xj and mi(x) = logj(x) to the basis
of Chebyshev polynomials Ti(x). Chebyshev polynomials
are bounded polynomials supported on [−1, 1] and are often
used for polynomial approximation [10, 64]. Using them we
define the new basis m̃i as follows:

m̃i(x) =

{
Ti(s1(x)), i ∈ {1, . . . , k1}
Ti−k1(s2(log(x))), i ∈ {k1 + 1, . . . , k1 + k2}

where s1, s2 are linear scaling functions that map to [−1, 1].
The new basis functions m̃i(x) can be expressed in terms
of xj and logj(x) using standard formulae for Chebyshev
polynomials and the binomial expansion [56]. Using this
new basis for mi Equation (6), we found that the condition
number for the above example is reduced to κ ≈ 11.3, mak-
ing precision loss during each Newton step less of a concern.

On certain datasets, if ill-conditioned matrices are still an
issue at query time we further limit ourselves to using the
first k1 ≤ k moments and k2 ≤ k log moments by selecting
k1, k2 such that the condition number of the Hessian is less
than a threshold κmax. Our heuristics select k1, k2 by greed-
ily incrementing k1 and k2 and favoring moments which are
closer to the moments expected from a uniform distribution.

Efficient Integration. Näıvely computing the Hessian in
Equation (6) requires evaluating O(k2) numerical integrals
per iteration, which can lead to prohibitively slow estimation
time. We reduce this computational overhead by using poly-
nomial approximations of the functions appearing in the in-
tegrands. If the integrands m̃i(x)m̃j(x)f(x; θ) were express-
ible as polynomials in x, then each integral can be evaluated
in closed form. The factors in the integrand that do not ap-
pear as polynomials in x are m̃i(x), i ∈ {k1 +1, . . . , k1 +k2},
which are polynomials in log(x), and the pdf f(x; θ). There-
fore, we compute Chebyshev polynomial approximations of
these factors and replace each instance in the integrands
with its corresponding approximation.1

Approximating each of the factors with a degree nc poly-
nomial takes O(nc · lognc) using a fast cosine transform [64],
so computing the Hessian can be done in O(k2nc lognc +
nck1k2). This is not an asymptotic improvement over naive
numeric integration, but the number of complex function
evaluations (i.e. cos(x), ex) is reduced substantially. As we
show in our empirical evaluation (Section 6.3), polynomial
approximations reduce solve times 20× compared to numer-
ically integrating each entry of the Hessian independently.
We find in our experiments that the major bottleneck dur-
ing maximum entropy optimization is the cosine transform
used to construct the polynomial approximations.

4.3.2 Floating point stability
Numeric floating point stability limits the range of useful

k in a moments sketch. Both our estimation routine and
error bounds (Section 4.4) use moments corresponding to
data shifted onto the range [−1, 1]. On scaled data with
range [c− 1, c+ 1], this leads to numeric error εk in the k-th

shifted moment, bounded by εk ≤ 2k (|c|+ 1)k εs where εs
is the relative error in the raw moments sketch power sums.
This shift is the primary source of precision loss. We relate
the loss to the error bounds in Section 4.4 to show that when
using double precision floating point moments up to

k ≤ 13.06

0.78 + log10(|c|+ 1)
(7)

provide numerically useful values. Data centered at 0 (c = 0)
have stable higher moments up to k = 16, and in practice
we encounter issues when k ≥ 16. We provide derivations
and evaluations of this formula in Appendix B and C in [30]

4.4 Quantile Error Bounds
Recall that we estimate quantiles by constructing a maxi-

mum entropy distribution subject to the constraints recorded
in a moments sketch. Since the true empirical distribution is
in general not equal to the estimated maximum entropy dis-
tribution, to what extent can the quantiles estimated from
the sketch deviate from the true quantiles? In this sec-
tion, we discuss worst-case bounds on the discrepancy be-
tween any two distributions which share the same moments,
and relate these to bounds on the quantile estimate errors.
In practice, error on non-adversarial datasets is lower than
these bounds suggest.

We consider distributions supported on [−1, 1]: we can
scale and shift any distribution with bounded support to
match. By Proposition 1 in Kong and Valiant [47], any
two distributions supported on [−1, 1] with densities f and

1Compare with Clenshaw-Curtis integration [64].
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g and standard moments µf , µg, the Wasserstein distance
(or Earth Mover’s distance) W1(f, g) between f and g is
bounded by:

W1(f, g) ≤ O
(

1

k
+ 3k‖µf − µg‖2

)
.

For univariate distributions f and g, the Wasserstein dis-
tance between the distributions is equal to the L1 distance
between their respective cumulative distribution functions
F and G (see Theorem 6.0.2 in [6]). Thus:

W1(f, g) =

∫ +1

−1

|F (x)−G(x)| dx.

If f is the true dataset distribution, we estimate q̂φ by
calculating the φ-quantile of the maximum entropy distri-
bution f̂ . The quantile error ε(q̂φ) is then equal to the gap

between the CDFs: ε(qφ) = |F (q̂φ)− F̂ (q̂φ)|. Therefore, the
average quantile error over the support [−1, 1] is bounded
as follows:∫ +1

−1

ε(x) dx ≤ O
(

1

k
+ 3k‖µf − µf̂‖2

)
. (8)

Since we can run Newton’s method until the moments µf
and µf̂ match to any desired precision, the 3k‖µf − µf̂‖2
term is negligible.

Equation (8) does not directly apply to the εavg used in
Section 6, which is averaged over φ for uniformly spaced φ-
quantiles rather than over the support of the distribution.
Since φ = F̂ (q̂φ), we can relate εavg to Eq. (8) using our

maximum entropy distribution f̂ :

εavg =

∫ 1

0

ε(q̂φ) dφ =

∫ +1

−1

ε(x)f̂(x) dx ≤ O

(
f̂max

k

)

where f̂max is the maximum density of our estimate. Thus,
we expect the average quantile error εavg to have a decreas-
ing upper bound as k increases, with higher potential error
when f̂ has regions of high density relative to its support.
Though these bounds are too conservative to be useful in
practice, they provide useful intuition on how worst case
error can vary with k and f̂ (Figure 23).

5. THRESHOLD QUERIES
We described in Section 3.3 two types of queries: single

quantile queries and threshold queries over multiple groups.
The optimizations in Section 4.3 can bring quantile estima-
tion overhead down to ≤ 1ms, which is sufficient for interac-
tive latencies on single quantile queries. In this section we
show how we can further reduce quantile estimation over-
heads on threshold queries. Instead of computing the quan-
tile on each sub-group directly, we compute a sequence of
progressively more precise bounds in a cascade [75], and only
use more expensive estimators when necessary. We first de-
scribe a series of bounds relevant to the moments sketch in
Section 5.1 and then show how they can be used in end-to-
end queries in Section 5.2.

5.1 Moment-based inequalities
Given the statistics in a moments sketch, we apply a va-

riety of classical inequalities to derive bounds on the quan-
tiles. These provide worst-case error guarantees for quantile

Algorithm 2: Threshold Query Cascade

macro CheckBound(rlower, rupper, rt)
if rlower > rt then

return true
else if rupper < rt then

return false
function Threshold(threshold t, quantile φ)

if t > xmax then
return false

if t < xmin then
return true

rlower, rupper ← MarkovBound(t) . Markov Bound
CheckBound(rlower, rupper, nφ)
rlower, rupper ← RTTBound(t) . RTT Bound
CheckBound(rlower, rupper, nφ)
qφ ← MaxEntQuantile(φ) . Maximum Entropy
return qφ > t

estimates, and enable faster query processing for threshold
queries over multiple groups.

One simple inequality we make use of is Markov’s in-
equality. Given a non-negative dataset D with moments µi
Markov’s inequality tells us that for any value t, rank(t) ≥
n
(
1− µk

tk

)
where the rank is the number of elements in D

less than t. We can apply Markov’s inequality to moments of
transformations of D including T+(D) = {x−xmin : x ∈ D},
T−(D) = {xmax − x : x ∈ D}, and T l(D) = {log(x) : x ∈
D} to bound rank(t) and thus also the error ε for quan-
tile estimates t = q̂φ. We refer to this procedure as the
MarkovBound procedure.

The authors in [66] provide a procedure (Section 3, Figure
1 in [66]) for computing tighter but more computationally
expensive bounds on the CDF F (t) of a distribution given its
moments. We refer to this procedure as the RTTBound pro-
cedure, and as with the MarkovBound procedure, use it to
bound the error of a quantile estimate q̂φ. The RTTBound
procedure does not make use of the standard moments and
log moments simultaneously, so we run RTTBound once on
the standard moments and once on log moments and take
the tighter of the bounds.

5.2 Cascades for Threshold queries
Given a moments sketch, Algorithm 2 shows how we cal-

culate Threshold(t, φ): whether the dataset has quantile
estimate q̂φ above a fixed cutoff t. We use this routine when-
ever we answer queries on groups with a predicate q̂φ > t,
allowing us to check whether a subgroup should be included
in the results without computing q̂φ directly. The threshold
check routine first performs a simple filter on whether the
threshold t falls in the range [xmin, xmax]. Then, we can use
the Markov inequalities MarkovBound to calculate lower and
upper bounds on the rank of the threshold rank(t) in the
subpopulation. Similarly the RTTBound routine uses more
sophisticated inequalities in [66] to obtain tighter bounds
on the rank. These bounds are used to determine if we
can resolve the threshold predicate immediately. If not, we
solve for the maximum entropy distribution as described in
Section 4.2 (MaxEntQuantile) and calculate q̂φ.

The Markov and RTTBound bounds are cheaper to com-
pute than our maximum entropy estimate, making thresh-
old predicates cheaper to evaluate than explicit quantile es-
timates. The bounds apply to any distribution or dataset
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that matches the moments in a moments sketch, so this rou-
tine has no false negatives and is consistent with calculating
the maximum entropy quantile estimate up front.

6. EVALUATION
In this section we evaluate the efficiency and accuracy

of the moments sketch in a series of microbenchmarks, and
then show how the moments sketch provides end-to-end per-
formance improvements in the Druid and Macrobase data
analytics engines [8, 82].

This evaluation demonstrates that:

1. The moments sketch supports 15 to 50× faster query
times than comparably accurate summaries on quan-
tile aggregations.

2. The moments sketch provides εavg ≤ 0.01 estimates
across a range of real-world datasets using less than
200 bytes of storage.

3. Maximum entropy estimation is more accurate than
alternative moment-based quantile estimates, and our
solver improves estimation time by 200× over naive
solutions.

4. Integrating the moments sketch as a user-defined sketch
provides 7× faster quantile queries than the default
quantile summary in Druid workloads.

5. Cascades can provide 25× higher query throughput
compared to direct moments sketch usage in Macrobase
threshold queries.

Throughout the evaluations, the moments sketch is able
to accelerate a variety of aggregation-heavy workloads with
minimal space overhead.

6.1 Experimental Setup
We implement the moments sketch and its quantile esti-

mation routines in Java2. This allows for direct comparisons
with the open source quantile summaries [1,67] and integra-
tion with the Java-based Druid [82] and MacroBase [8] sys-
tems. In our experimental results, we use the abbreviation
M-Sketch to refer to the moments sketch.

We compare against a number of alternative quantile sum-
maries: a mergeable equi-width histogram (EW-Hist) using
power-of-two ranges [65], the ‘GKArray’ (GK) variant of the
Greenwald Khanna [34, 52] sketch, the AVL-tree T-Digest
(T-Digest) [28] sketch, the streaming histogram (S-Hist)
in [12] as implemented in Druid, the ‘Random’ (RandomW)
sketch from [52,77], reservoir sampling (Sampling) [76], and
the low discrepancy mergeable sketch (Merge12) from [3],
both implemented in the Yahoo! datasketches library [1].
The GK sketch is not usually considered mergeable since its
size can grow upon merging [3], this is especially dramatic
in the production benchmarks in Appendix D.4 in [30]. We
do not compare against fixed-universe quantile summaries
such as the Q-Digest [71] or Count-Min sketch [23] since
they would discretize continuous values.

Each quantile summary has a size parameter controlling
its memory usage, which we will vary in our experiments.
Our implementations and benchmarks use double precision
floating point values. During moments sketch quantile esti-
mation we run Newton’s method until the moments match
to within δ = 10−9, and select k1, k2 using a maximum

2https://github.com/stanford-futuredata/msketch

Table 1: Dataset Characteristics

milan hepmass occupancy retail power expon

size 81M 10.5M 20k 530k 2M 100M
min 2.3e−6 −1.961 412.8 1 0.076 1.2e−7
max 7936 4.378 2077 80995 11.12 16.30
mean 36.77 0.0163 690.6 10.66 1.092 1.000
stddev 103.5 1.004 311.2 156.8 1.057 0.999
skew 8.585 0.2946 1.654 460.1 1.786 1.994

condition number κmax = 104. We construct the moments
sketch to store both standard and log moments up to order
k, but choose at query time which moments to make use of
as described in Section 4.3.2.

We quantify the accuracy of a quantile estimate using the
quantile error ε as defined in Section 3.1. Then, as in [52,
77] we can compare the accuracies of summaries on a given
dataset by computing their average error εavg over a set of
uniformly spaced φ-quantiles. In the evaluation that follows,
we test on 21 equally spaced φ between 0.01 and 0.99.

We evaluate each summary via single-threaded experi-
ments on a machine with an Intel Xeon E5-4657L 2.40GHz
processor and 1TB of RAM, omitting the time to load data
from disk.

6.1.1 Datasets
We make use of six real-valued datasets in our exper-

iments, whose characteristics are summarized in Table 1.
The milan dataset consists of Internet usage measurements
from Nov. 2013 in the Telecom Italia Call Data Records [40].
The hepmass dataset consists of the first feature in the
UCI [49] HEPMASS dataset. The occupancy dataset con-
sists of CO2 measurements from the UCI Occupancy Detec-
tion dataset. The retail dataset consists of integer purchase
quantities from the UCI Online Retail dataset. The power
dataset consists of Global Active Power measurements from
the UCI Individual Household Electric Power Consumption
dataset. The exponential dataset consists of synthetic values
from an exponential distribution with λ = 1.

6.2 Performance Benchmarks
We begin with a series of microbenchmarks evaluating the

moments sketch query times and accuracy.

6.2.1 Query Time
Our primary metric for evaluating the moments sketch

is total query time. We evaluate quantile aggregation query
times by pre-aggregating our datasets into cells of 200 values
and maintaining quantile summaries for each cell. Then we
measure the time it takes to performing a sequence of merges
and estimate a quantile. In this performance microbench-
mark, the cells are grouped based on their sequence in the
dataset, while the evaluations in Section 7 group based on
column values. We divide the datasets into a large num-
ber of cells to simulate production data cubes, while in Ap-
pendix D.3 and D.4 in [30] we vary the cell sizes. Since the
moments sketch size and merge time are data-independent,
the results generalize as we vary cell size.

Figure 3 shows the total query time to merge the sum-
maries and then compute a quantile estimate when each
summary is instantiated at the smallest size sufficient to
achieve εavg ≤ .01 accuracy. We provide the parameters
we used and average observed space usage in Table 2. On
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Figure 3: Total query time using different summaries to
estimate quantiles with εavg ≤ .01. The moments sketch
enables significantly faster queries at this accuracy.

Table 2: Summary size parameters for εavg ≤ .01.

dataset milan hepmass
sketch param size (b) param size (b)

M-Sketch k = 10 200 k = 3 72
Merge12 k = 32 5920 k = 32 5150
RandomW ε = 1

40
3200 ε = 1

40
3375

GK ε = 1
60

720 ε = 1
40

496
T-Digest δ = 5.0 769 δ = 1.5 93
Sampling 1000 samples 8010 1000 8010
S-Hist 100 bins 1220 100 1220
EW-Hist 100 bins 812 15 132

the long-tailed milan dataset, the S-Hist and EW-Hist sum-
maries are unable to achieve εavg ≤ .01 accuracy with less
than 100 thousand buckets, so we provide timings at 100
buckets for comparison. The moments sketch provides 15
to 50× faster query times than RandomW, the next fastest
accurate summary. As a baseline, sorting the milan dataset
takes 7.0 seconds, selecting an exact quantile online takes
880ms, and streaming the data pointwise into a RandomW

sketch with ε = 1/40 takes 220ms. These methods do not
scale as well as using pre-aggregated moments sketches as
dataset density grows but the number of cells remains fixed.

6.2.2 Merge and Estimation Time
Recall that for a basic aggregate quantile query tquery =

tmerge · nmerge + test. Thus we also measure tmerge and test
to quantify the regimes where the moments sketch performs
well. In these experiments, we vary the summary size pa-
rameters, though many summaries have a minimum size,
and the moments sketch runs into numeric stability issues
past k ≥ 15 on some datasets (see Section 4.3.2).

In Figure 4 we evaluate the average time required to merge
one of the cell summaries. Larger summaries are more ex-
pensive to merge, and the moments sketch has faster (<
50ns) merge times throughout its size range. When com-
paring summaries using the parameters in Table 2, the mo-
ments sketch has up to 50× faster merge times than other
summaries with the same accuracy.

One can also parallelize the merges by sharding the data
and having separate nodes operate over each partition, gen-
erating partial summaries to be aggregated into a final re-
sult. Since each parallel worker can operate independently,
in these settings the moments sketch maintains the same rel-
ative performance improvements over alternative summaries
when we can amortize fixed overheads, and we include sup-
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Figure 4: Per-merge latencies. The moments sketch pro-
vides faster merge times than alternative summaries at the
same size.

102 103 104

Size (Bytes)

10 4

10 2

100

102

Qu
er

y 
Ti

m
e 

(m
s)

milan

102 103 104

Size (Bytes)

hepmass

102 103 104

Size (Bytes)

exponential

M-Sketch
Merge12

RandomW
GK

T-Digest
Sampling

S-Hist
EW-Hist

Figure 5: Quantile Estimation time. Estimation time on
the moments sketch is slower than other sketches but under
3ms for k = 10.

plemental parallel experiments in Appendix F in [30]. The
other major contributor to query time is estimation time. In
Figure 5 we measure the time to estimate quantiles given an
existing summary. The moments sketch provides on average
2 ms estimation times, though estimation time can be higher
when our estimator chooses higher k1, k2 to achieve better
accuracy. This is the cause for the spike at k = 4 in the milan
dataset and users can can mitigate this by lowering the con-
dition number threshold κmax. Other summaries support
microsecond estimation times. The moments sketch thus
offers a tradeoff of better merge time for worse estimation
time. If users require faster estimation times, the cascades
in Section 5.2 and the alternative estimators in Section 6.3
can assist. We show how the merge time and estimation
time tradeoff define regimes where each component domi-
nates depending on the number of merges. In Figure 6 we
measure how the query time changes as we vary the num-
ber of summaries (cells of size 200) we aggregate. We use
the moments sketch with k = 10 and compare against the
mergeable Merge12 and RandomW summaries with parame-
ters from Table 2. When nmerge ≥ 104 merge time domi-
nates and the moments sketch provides better performance
than alternative summaries. However, the moments sketch
estimation times dominate when nmerge ≤ 100.

6.2.3 Accuracy
The moments sketch accuracy is dataset dependent, so in

this section we compare the average quantile error on our
evaluation datasets.

Figure 7 illustrates the average quantile error εavg for sum-
maries of different sizes constructed using pointwise accu-
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Figure 7: Average error for summaries of different sizes.
The moments sketch delivers consistent εavg ≤ 0.015 with
fewer than 200 bytes.

mulation on the complete dataset. The moments sketch
achieves ε ≤ 10−4 accuracy on the synthetic exponential
dataset, and ε ≤ 10−3 accuracy on the high entropy hepmass
dataset. On other datasets it is able to achieve εavg ≤ 0.01
with fewer than 200 bytes of space. On the integer retail
dataset we round estimates to the nearest integer. The
EW-Hist summary, while efficient to merge, provides less ac-
curate estimates than the moments sketch, especially in the
long-tailed milan and retail datasets.

We provide further experiments in [30] showing how the
moments sketch worst-case error bounds are comparable to
other summaries (Appendix E), that the moments sketch is
robust to changes in skew and the presence of outliers (Ap-
pendix D), and that the moments sketch generalizes to a
production workload (Appendix D.4). However, on datasets
with low-entropy, in particular datasets consisting of a small
number of discrete point masses, the maximum entropy prin-
ciple provides poor accuracy. In the worst case, the maxi-
mum entropy solver can fail to converge on datasets with too
few distinct values. Figure 8 illustrates how the error of the
maximum entropy estimate increases as we lower the cardi-
nality of a dataset consisting of uniformly spaced points in
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Figure 8: Accuracy of maximum entropy estimates on dis-
tributions with varying cardinality. The moments sketch is
less accurate on discretized datasets, and fails to converge
for cardinalities n < 5.
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Figure 9: Accuracy with and without log moments. Given
the same total space budget, log moments improve accu-
racy on the long-tailed milan and retail datasets, and do
not affect accuracy significantly on other datasets such as
occupancy

the range [−1, 1], eventually failing to converge on datasets
with fewer than five distinct values. If users are expecting
to run queries on primarily low-cardinality datasets, fixed-
universe sketches or heavy-hitters sketches may be more ap-
propriate.

6.3 Quantile Estimation Lesion Study
To evaluate each component of our quantile estimator de-

sign, we compare the accuracy and estimation time of a
variety of alternative techniques on the milan and hepmass
datasets. We evaluate the impact of using log moments,
the maximum entropy distribution, and our optimizations
to estimation.

To examine effectiveness of log moments, we compare
our maximum entropy quantile estimator accuracy with and
without log moments. For a fair comparison, we compare
the estimates produced from k standard moments and no log
moments with those produced from up to k

2
of each. Fig-

ure 9 illustrates how on some long-tailed datasets, notably
milan and retail, log moments reduce the error from ε > .15
to ε < .015. On other datasets, log moments do not have a
significant impact.

We compare our estimator (opt) with a number of other
estimators that make use of the same moments. The gaus-
sian estimator fits a Gaussian distribution to the mean and
standard deviation. The mnat estimator uses the closed
form discrete CDF estimator in [58]. The svd estimator dis-
cretizes the domain and uses singular value decomposition
to solve for a distribution with matching moments. The cvx-
min estimator also discretizes the domain and uses a convex
solver to construct a distribution with minimal maximum
density and matching moments. The cvx-maxent estimator
discretizes the domain and uses a convex solver to maximize
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Figure 10: Lesion study comparing our optimized maxi-
mum entropy solver to other estimators. Our opt estimator
provides at least 5× less error than estimators that do not
use maximum entropy, and up to 200× faster estimation
times than naive maximum entropy solvers.

the entropy, as described in Chapter 7 in [15]. The newton
estimator implements our estimator without the integration
techniques in Sec. 4.3, and uses adaptive Romberg inte-
gration instead [64]. The bfgs estimator implements maxi-
mum entropy optimization using the first-order L-BFGS [50]
method as implemented in a Java port of liblbfgs [46].

Figure 10 illustrates the average quantile error and esti-
mation time for these estimators. We run these experiments
with k = 10 moments. For uniform comparisons with other
estimators, on the milan dataset we only use the log mo-
ments, and on the hepmass dataset we only use the standard
moments. We perform discretizations using 1000 uniformly
spaced points and make use of the ECOS convex solver [27].
Solvers that use the maximum entropy principle provides at
least 5× less error than estimators that do not. Further-
more, our optimizations are able to improve the estimation
time by a factor of up to 200× over an implementation us-
ing generic solvers, and provide faster solve times than naive
Newton’s method or BFGS optimizers. As described in Sec-
tion 4.3, given the computations needed to calculate the
gradient, one can compute the Hessian relatively cheaply, so
our optimized Newton’s method is faster than BFGS.

7. APPLYING THE MOMENTS SKETCH
In this section, we evaluate how the moments sketch af-

fects performance when integrated with other data systems.
We examine how the moments sketch improves query per-
formance in the Druid analytics engine, as part of a cascade
in the Macrobase feature selection engine [8], and as part of
exploratory sliding window queries.

7.1 Druid Integration
To illustrate the utility of the moments sketch in a mod-

ern analytics engine, we integrate the moments sketch with
Druid [82]. We do this by implementing moments sketch as
an user-defined aggregation extension, and compare the to-
tal query time on quantile queries using the moments sketch
with the default S-Hist summary used in Druid and intro-
duced in [12]. The authors in [12] observe on average 5%
error for an S-Hist with 100 centroids, so we benchmark a
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Figure 11: Druid end-to-end query benchmark. The mo-
ments sketch allows for faster query times than the compa-
rable S-Hist summary with 100 bins. Runtime for a native
sum operation is a lower bound on query time.

moments sketch with k = 10 against S-Hists with 10, 100,
and 1000 centroids.

In our experiments, we deploy Druid on a single node –
the same machine described in section 6.1 – with the same
base configuration used in the default Druid quickstart. In
particular, this configuration dedicates 2 threads to process
aggregations. Then, we ingest 26 million entries from the
milan dataset at a one hour granularity and construct a
cube over the grid ID and country dimensions, resulting in
10 million cells.

Figure 11 compares the total time to query for a quan-
tile on the complete dataset using the different summaries.
The moments sketch provides 7× lower query times than
a S-Hist with 100 bins. Furthermore, as discussed in Sec-
tion 6.2.1, any S-Hist with fewer than 10 thousand buckets
provides worse accuracy on milan data than the moments
sketch. As a best-case baseline, we also show the time taken
to compute a native sum query on the same data. The 1
ms cost of solving for quantile estimates from the moments
sketch on this dataset is negligible here.

7.2 Threshold queries
In this section we evaluate how the cascades described in

Section 5.2 improve performance on threshold predicates.
First we show in Section 7.2.1 how the MacroBase analytics
engine can use the moments sketch to search for anoma-
lous dimension values. Then, we show in Section 7.2.2 how
historical analytics queries can use the moments sketch to
search and alert on sliding windows.

7.2.1 MacroBase Integration
The MacroBase engine searches for dimension values with

unusually high outlier rates in a dataset [8]. For exam-
ple, given an overall 2% outlier rate, MacroBase may report
when a specific app version has an outlier rate of 20%. We
integrate the moments sketch with a simplified deployment
of MacroBase where all values greater than the global 99th
percentile t99 are considered outliers. We then query Mac-
roBase for all dimension values with outlier rate at least
r = 30× greater than the overall outlier rate. This is
equivalent to finding subpopulations whose 70th percentile
is greater than t99.

Given a cube with pre-aggregated moments sketches for
each dimension value combination and no materialized roll-
ups, MacroBase merges the moments sketches to calculate
the global t99, and then runs Algorithm 2 on every dimension-
value subpopulation, searching for subgroups with q.7 > t99.
We evaluate the performance of this query on 80 million
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Figure 12: Runtime of MacroBase queries: the final mo-
ments sketch cascade outperforms queries using alternate
sketches.
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Figure 13: Cascades in MacroBase: (a) as we incremen-
tally add cascade stages, threshold query throughput in-
creases. (b) The cascade proceeds from faster to slower es-
timates. (c) Each stage of the cascade processes a smaller
fraction of queries.

rows of the milan internet usage data from November 2013,
pre-aggregated by grid ID, country, and at a four hour gran-
ularity. This resulted in 13 million cube cells, each with its
own moments sketch.

Running the MacroBase query produces 19 candidate di-
mension values. We compare the total time to process this
query using direct quantile estimates, our cascades, and
the alternative Merge12 quantile sketch. In the first ap-
proach (Merge12a), we merge summaries during MacroBase
execution as we do with a moments sketch. In the sec-
ond approach (Merge12b), we calculate the number of val-
ues greater than the t99 for each dimension value combi-
nation and accumulate these counts directly, instead of the
sketches. We present this as an optimistic baseline, and is
not always a feasible substitute for merging summaries.

Figure 12 shows the query times for these different meth-
ods: the baseline method calculates quantile estimates di-
rectly, we show the effect of incrementally adding each stage
of our cascade ending with +RTTBound. Each successive
stage of the cascade improves query time substantially. With
the complete cascade, estimation time is negligible compared
to merge time. Furthermore, the moments sketch with cas-
cades has 7.9× lower query times than using the Merge12

sketch, and even 3.7× lower query times than the Merge12b

baseline.
In Figure 13 we examine the impact the cascade has on

estimation time directly. Each additional cascade stage im-
proves threshold query throughput and is more expensive
than the last. The complete cascade is over 250× faster
than this baseline, and 25× faster than just using a simple
range check.

7.2.2 Sliding Window Queries
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Figure 14: Sliding window query: moments sketch with
cascades runs 13× faster than Merge12.

Threshold predicates are broadly applicable in data explo-
ration queries. In this section, we evaluate how the moments
sketch performs on sliding window alerting queries. This is
useful when, for instance, users are searching for time win-
dows of unusually high CPU usage spikes.

For this benchmark, we aggregated the 80 million rows
of the milan dataset at a 10-minute granularity, which pro-
duced 4320 panes that spanned the month of November. We
augmented the milan data with two spikes corresponding to
hypothetical anomalies. Each spike spanned a two-hour time
frame and contributed 10% more data to those time frames.
Given a global 99th percentile of around 500 and a maxi-
mum value of 8000, we added spikes with values x = 2000
and x = 1000

We then queried for the 4-hour time windows whose 99th
percentile was above a threshold t = 1500. When process-
ing this query using a moments sketch, we can update slid-
ing windows using turnstile semantics, subtracting the val-
ues from the oldest pane and merging in the new one, and
use our cascade to filter windows with quantiles above the
threshold.

Figure 14 shows the runtime of the sliding window query
using both the moments sketch and Merge12. Faster mo-
ments sketch merge times and the use of turnstile semantics
then allow for 13× faster queries than Merge12.

8. CONCLUSION
In this paper, we show how to improve the performance of

quantile aggregation queries using statistical moments. Low
merge overhead allows the moments sketch to outperform
comparably accurate existing summaries when queries ag-
gregate more than 10 thousand summaries. By making use
of the method of moments and the maximum entropy prin-
ciple, the moments sketch provides εavg ≤ 0.01 accuracy on
real-world datasets, while the use of numeric optimizations
and cascades keep query times at interactive latencies.
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APPENDIX
A. MAXIMUM ENTROPY ESTIMATION

A.1 Newton’s Method Details
Recall that we wish to solve the following optimization

problem:

maximize
f∈F[xmin,xmax]

H[f ]

subject to

∫ xmax

xmin

xif(x) dx = µi, i ∈ {1, . . . , k1}∫ xmax

xmin

logi(x)f(x) dx = νi, i ∈ {1, . . . , k2}

.
Throughout this section it is easier to reformulate this

problem in more general terms, using the functions

mi(x) =

{
xi 0 ≤ i ≤ k1
h(x)i−k1 k1 + 1 ≤ i ≤ k1 + k2.

(9)

where h(x) = log(x) or h(x) = ex depending on whether
we work using the x or log-transformed x′ = log(x) as our
primary metric. Letting kt = k1 + k2, and folding the νi
into a larger ~µ vector, our optimization problem is then:

maximize
f∈F[xmin,xmax]

H[f ] (10)

subject to

∫ xmax

xmin

mi(x)f(x) dx = µi, i ∈ {0, . . . , kt}

.
Functional analysis [41] tells us that a maximal entropy

solution to Eq. (10) has the form:

f(x; θ) = exp

(
kt∑
i=0

θimi(x)

)
,

Then if we define the potential function L(θ) from [57]:

L(θ) =

∫ xmin

xmin

exp

(
kt∑
i=0

θimi(x)

)
−

kt∑
i=0

θiµi (11)

We can calculate the gradient and Hessian of L(θ) as fol-
lows:

∂L

∂θi
=

∫ xmin

xmin

mi(x) exp

(
kt∑
i=0

θimi(x)

)
− µi (12)

∂2Γ

∂θi∂θj
=

∫ xmin

xmin

mi(x)mj(x) exp

(
kt∑
i=0

θimi(x)

)
(13)

Note that when the gradient given in Eq. (12) is zero then
the constraints in Eq. (10) are satisfied. Since L(θ) is con-
vex and has domain Rkd , this means that by solving the
unconstrained minimization problem over L(θ) we can find
a solution θ we can find a solution to the constrained maxi-
mum entropy problem. Since Newton’s method is a second
order method, we can use Equations (11), (12), (13) are to
execute Newton’s method with backtracking line search [15].

A.2 Practical Implementation Details
Chebyshev Polynomial Basis Functions.

As described in Section 4.3, we can improve the stability of
our optimization problem by using Chebyshev polynomials.
To do so, we must redefine our mi(x)

mi(x) =

{
Ti(s1(x)), i ∈ {1, . . . , k1}
Ti−k1(s2(h(x))), i ∈ {k1 + 1, . . . , k1 + k2}

where Ti(x) are Chebyshev polynomials of the first kind [64]
and the s1, s2 are linear scaling functions to map onto [−1, 1]
defined as:

s1(x) =
(
x− xmax + xmin

2

)
/
(xmax − xmin

2

)
s2(x) =

(
x− h(xmax) + h(xmin)

2

)
/

(
h(xmax)− h(xmin)

2

)
.

The formulae for µi,Γ,∇Γ,∇2Γ still hold, but now the µi
are

µi =
1

n

{∑
x Ti(s1(x)) 0 ≤ i ≤ k1∑
x Ti−ka(s2(h(x))) k1 + 1 ≤ i ≤ k1 + k2.

.

(14)
These can be computed from the quantities µi =

∑
x x

i,

νi =
∑
x h(x)i originally stored in the moments sketch by

using the binomial expansion and standard formulae for ex-
pressing Chebyshev polynomials in terms of standard mono-
mials [56].

Chebyshev Polynomial Integration.
In this section we will show how Chebyshev approximation

provides for efficient ways to compute the gradient and Hes-
sian. Here it is easier to work with the change of variables
u = s1(x) so that fu(u) = f(s−1

1 (u)) has domain [−1, 1].
First, we will examine the case when k2 = 0. If we can
approximate f(u; θ) as a linear combination of chebyshev
polynomials:

fu(u; θ) = exp

(
kt∑
i=0

θimi(u)

)
(15)

≈
nc∑
j=0

cjTj(u) (16)

Then using polynomial identities such as Ti(x)Tj(x) =
1
2
(Ti+j(x) + T|i−j|(x)) we can evaluate the Gradient and

Hessian in Eqs. (12), (13) using O(k1nc) algebraic opera-
tions.

We can approximate fu(u; θ) using the Clenshaw Curtis
quadrature formulas to approximate a function f supported
on [−1, 1] (Eq. 5.9.4 in [64]):

aj =
2

nc

(
f(1)

2
− f(−1)

2
+

nc−1∑
i=1

f

[
cos

(
πi

nc

)]
cos

(
πi

nc

))
(17)

Then

f(x) ≈ 1

2
T0(x) +

nc∑
i=1

aiTi(x) (18)

where Eq. (17) can be evaluated in nc lognc time using the
Fact Cosine Transform [64]. The case when k2 > 0 is similar
except we need to approximate not just fu(u; θ) but also
Ti(s2(h(s−1

1 (u)))fu(u; θ) for i ≤ k2.

B. NUMERIC STABILITY OF MOMENTS
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As mentioned in Section 4.3.2, floating point arithmetic
limits the usefulness of higher moments. This is because the
raw moments 1

n

∑
xi are difficult to optimize over and an-

alyze: both maximum entropy estimation (Section 4.3) and
theoretical error bounds (Section 4.4) apply naturally to mo-
ments on data in the range [−1, 1]. In particular, shifting the
data improves the conditoning of the optimization problem
dramatically. However, when merging sketches from differ-
ent datasets, users may not know the full range of the data
ahead of time, so the power sums stored in a moments sketch
correspond to data in an arbitrary range [a, b]. Thus, we will
analyze how floating point arithmetic affects the process of
scaling and shifting the data so that it is supported in the
range [−1, 1]. This is similar to the process of calculating a
variance by shifting the data so that it is centered at zero.

We can calculate the moments of scaling data xscale = k·x
with error only in the last digit, so we can assume we have
data in the range [c − 1, c + 1]. Let µi be the moments of
the xscale, and let µsi be the moments of the shifted data
xshift = xscale − c. Using the binomial expansion

µsk =
1

n

∑
x∈xscale

(x− c)k

=

k∑
i=0

(
k

i

)
µi(−c)k−i

Using numerically stable addition, we can calculate µk to
a relative precision δ close to machine precision δ ≈ 2−53.
Then, the absolute error δk in estimating µsk is bounded by:

δk ≤
k∑
i=0

(
k

i

)
|µi||c|k−iδ

δk ≤
k∑
i=0

(
k

i

)
(|c|+ 1)kδ

≤ 2k(|c|+ 1)kδ

We know that the average quantile error (Equation 8 in
Section 4.4) is bounded by

εavg ≤ O
(

1

k
+ 3k‖µf − µf̂‖2

)
,

so if we can calculate all of the µsi to within precision

δk ≤ 3−k
(

1

k − 1
− 1

k

)
then we have enough precision to bound the quantile esti-

mate by O
(

1
k−1

)
. This way, we can show that the error

bound from using the first k moments will be at least as
tight as the bound from using the first k − 1 moments. As
k and |c| grow, achieving this precision becomes more and
more difficult, and we can solve for the cutoff point using
base-10 log.

2k(|c|+ 1)kδ ≤ 3−k
(

1

k − 1
− 1

k

)
(19)

k (log 6 + log (|c|+ 1)) ≤ log
1

δ
− log (k2 − k)) (20)
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Figure 15: Highest order usable moments for data cen-
tered at different locations. Our data-independent bound is
conservative compared to values on a uniform dataset.
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Figure 16: Precision loss from shifting and converting
higher moments to chebyshev moments. The occupancy
dataset exhibits more precision loss because it is centered
further away from zero.

Plugging in double precision for δ into Eq. (20), we know
that k ≤ 53 log 2

log 6
≤ 20, so log (k2 − k) ≤ 2.58

k ≤ 53 log 2− 2.58

log 6 + log (|c|+ 1)
(21)

≤ 13.35

.78 + log (|c|+ 1)
(22)

Equation 22 is a conservative bound on the number of nu-
merically stable moments we can extract from an moments
sketch, and suggests that when our data is centered at 0,
we have at least 17 stable moments. When the raw data
have range [xmin, 3xmin], then c = 2, and we have at least 10
stable moments. In our evaluations, 10 stable moments are
enough to achieve quantile error ≈ .01. Figure 15 describes
how the bound in Equation 22 varies with c, and compares
it with the highest order stable moment of a uniform distri-
bution supported on [c − 1, c + 1]. This confirms that our
formula is a conservative bound on the true precision loss
due to the shift. If the raw data are centered even further
from 0, users can consider pre-shifting all of their data to
make better use of numeric precision.

As a measure of the downstream impact of this effect on
some of our evaluation datasets, Figure 16 shows the pre-
cision loss during Chebyshev polynomial calculation ∆µ =
|µi − µ̂i| where µi is the true Chebyshev moment and µ̂i
is the value calculated from the moments sketch. Precision
loss is more severe on the occupancy dataset which is cen-
tered away from zero (c ≈ 1.5) compared with the hepmass
dataset (c ≈ 0.4). See Table 1.

C. LOW-PRECISION STORAGE
In Appendix B we discussed how floating point precision

limits the usability of higher moments. Conversely, in set-
tings where space is heavily constrained, the data is well-
centered, and we only need a limited number of moments,
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Figure 17: Average error for low-precision moments
sketches after 100 thousand merges. Twenty bits of pre-
cision is sufficient to maintain accuracy for both datasets.

the moments sketch can be compressed by reducing the pre-
cision of the sketch contents using randomized rounding.

As a proof-of-concept of this approach, we created an en-
coder that compresses the double precision floating point
values in a moments sketch using reduced floating point pre-
cision, quantizing the significand and removing unused bits
in the exponent. This low-precision representation has a
negligible impact on merge times since we can convert them
to and from native double precision using simple bit manip-
ulation.

We evaluate the encoding by constructing 100 thousand
pre-aggregated moments sketches, reducing their precision,
and then merging them and querying for quantiles on the
aggregation. Figure 17 illustrates how the quality of the final
estimate remains stable as the precision is decreased until we
reach a minimum threshold, after which accuracy degrades.
On the milan dataset, a moments sketch with k = 10 can be
stored with 20 bits per value without noticeably affecting
our quantile estimates, representing a 3× space reduction
compared to standard double precision floating point.

These results are consistent with the bounds in Section B
and show how higher moments require more bits of preci-
sion. However, the bounds are conservative since they only
consider the midpoint c of a dataset and are otherwise both
dataset-independent and agnostic to the maximum entropy
principle.

D. ADDITIONAL WORKLOADS
The moments sketch accuracy and performance general-

izes across a range of workloads. In this section we evaluate
its performance on datasets with varying skew, in the pres-
ence of outlier values, under a coarser pre-aggregation policy,
and on a production workload.

D.1 Data Skew
Our usage of log-moments greatly reduces the impact of

data skew on the accuracy of moments sketch quantile es-
timates. In Figure 18 we vary the shape parameter ks of
a Gamma distribution with scale factor θ = 1. The skew
of this distribution is 2√

ks
so ks = 0.1 corresponds to very

high skew. For ks = 0.1, 1.0, 10.0, our estimator can achieve
εavg ≤ 10−3 error. The accuracy regressions on orders 3 and
7 occur when the solver stops making use of all available mo-
ments to reduce the condition number of the Hessian (Sec-
tion 4.3). In this specific case, our solver uses a heuristic to
decide that given a maximum condition number, optimizing
using 3 log moments is more valuable than 2 log moments
and 2 standard moments. This choice leads to worse accu-
racy on a Gamma distribution, but in general it is difficult to
know which subset of moments will yield the most accurate
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Figure 18: Accuracy of estimates on Gamma distributions
with varying shape parameter ks. The maximum entropy
principle is able to construct an accurate estimate across a
range of parameters.
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Figure 19: Mean error on a Gaussian dataset with out-
liers of different magnitudes added. The moments sketch
remains accurate for large outliers, but the EW-Hist accu-
racy degrades.

estimate. More effective heuristics for choosing subsets of
moments that do not exceed a condition number threshold
is an open direction for future research.

D.2 Outlier Values
The moments sketch, unlike histogram-based sketches, is

also somewhat robust to the presence of large outlier values
in a dataset. In Figure 19 we evaluate the effect of adding
a fixed fraction δ = 0.01 of outlier values from a Gaussian
with mean µo and standard deviation σ = 0.1 to a dataset
of 10 million standard Gaussian points. As we increase the
magnitude µo of the outliers, the EW-Hist summaries with
20 and 100 bins lose accuracy though a moments sketch with
k = 10 remains accurate. The Merge12 sketch is agnostic to
value magnitudes and is unaffected by the outliers. If ex-
tremely large outliers are expected, floating point precision
suffers and the moments sketch can be used in conjunction
with standard outlier removal techniques.

D.3 Varying Aggregation
In our main evaluations, we group our datasets into cells

of 200 elements and construct sketches for each cell to main-
tain a pre-aggregated collection of data summaries. We do
not target deployments where very few elements can be pre-
aggregated per summary: in these cases merging moments
sketches is relatively expensive. On the other hand produc-
tion data systems can have much larger data volumes and
opportunities to pre-aggregate more elements per cell. Since
the moments sketch is fixed-size regardless of the data, in-
creasing the number of elements per cell does not affect its
merge time performance, while other sketches which which
have not reached their maximum capacity will be corre-
spondingly larger and slower to merge.

In Figure 20 we measure the time taken per merge for
different summaries constructed on cells of 2000 elements
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Figure 20: Merge times on with sketches on cells of 2000
elements, and on a Gaussian dataset with cells of 10000
elements. Since the moments sketch has a fixed size, its
per-merge times remain faster than alternative sketches with
comparable accuracy.
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Figure 21: Microsoft data values and cell sizes.

for the milan, hepmass, and exponential dataset, and cells
of 10000 elements on a synthetic Gaussian dataset with 1
billion points. The relative performance of different sketches
matches closely with Figure 4, except that larger Sampling

and Merge12 summaries are now slower when constructed
on more than 200 elements.

D.4 Production workload
In this section we evaluate merge time and accuracy on a

production workload from Microsoft that contains 165 mil-
lion rows of application telemetry data for an integer-valued
performance metric. We group and pre-aggregate based on
four columns that encode information about application ver-
sion, network type, location, and time, resulting in 400 thou-
sand cells. Notably, these cells do not correspond to equal
sized partitions, but have a minimum size of 5 elements, a
maximum size of 722044 elements, and an average size of
2380 elements. Figure 21 illustrates the distribution of inte-
ger data values and the cell sizes.

Then, we measure the performance and accuracy of merg-
ing the cells to perform a quantile aggregation query. Fig-
ure 22 illustrates that on this workload with variable sized
cells, the moments sketch still provides faster merge times
than comparably accurate summaries (c.f. Appendix D.3).
The moments sketch achieves εavg < .01 error when we
round estimates to the nearest integer on this integral dataset.
Since the GK sketch is not strictly mergeable [3], it grows con-
siderably when merging the heterogenous summaries in this
workload to preserve its accuracy.

E. ERROR UPPER BOUNDS
Thus far we have evaluated observed accuracy. For com-

parison, Figure 23 shows the average guaranteed upper bound
error provided by different summaries constructed using point-
wise accumulation on the datasets (no merging). These are
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Figure 22: Merge times and accuracy on the Microsoft
dataset. The merge performance of the moments sketch gen-
eralizes to workloads with variable sized cells, and exhibits
an error rate of εavg < .01.
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Figure 23: Average bound size for summaries of different
sizes. No summary is able to provide εbound ≤ .01 guarantees
with less than 1000 bytes.

in general higher than the observed errors. We use the RT-
TBound routine in Section 5.1 to bound the moments sketch
error. We omit the S-Hist since it does not provide upper
bounds. When merging is not a concern, the GK summary
provides the best guaranteed error.

F. PARALLEL MERGES
In Section 6.2.1, we evaluated merge time through single-

threaded experiments. We evaluate how well throughput
generalizes to parallel aggregation by sharding pre-computed
summaries into equal sized batches, and merging the sum-
maries in each batch on an independent worker thread. Af-
ter all threads have completed, we combine the merged re-
sult from each batch using a sequential merge to obtain a
final summary for the complete dataset.

In Figure 24 we evaluate strong scalability by measuring
the total throughput in merging 400 thousand summaries
(constructed from blocks of 200 elements) as we increase
the number of threads. In our experiments we needed to
duplicate the hepmass dataset to yield 400 thousand sum-
maries, and initialized summaries using the parameters in
Table 2. The moments sketch remains faster than alter-
nate summaries as we increase the amount of parallelism,
though thread overheads and variance in stragglers limits
parallelism on these datasets past 8 threads when there
is less work per thread. In Figure 25 we evaluate weak
scalability by performing a similar experiment but increase
the dataset size alongside thread count, keeping number of
merges per thread constant. Under these conditions, the
moments sketch and other summaries achieve even better
scalability.

These experiments confirm our intuition that since merges
can be performed independently, single-threaded performance
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Figure 24: Strong scaling of parallel merging. For fixed
number of merges, the throughput of the moments sketch
scales with the number of threads available up to 8-way par-
allelism, and remains faster than alternatives. The solid line
shows ideal moments sketch scaling.
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Figure 25: Weak scaling of parallel merging. For fixed
number of merges per thread, the moments sketch and other
summaries scale nearly linearly with parallelism.

is indicative of parallel performance, and the relative speedup
provided by the moments sketch remains stable in parallel
settings. The moments sketch and other summaries can be
used in more sophisticated distributed aggregation plans as
well, such as in [17, 68], though since the moments sketch
is so compact and cheap to merge, multi-level hierarchical
aggregation is only profitable when enormous numbers of
cores are available.

19


