
MacroBase: Prioritizing Attention in Fast Data

Peter Bailis, Edward Gan, Samuel Madden

†
, Deepak Narayanan, Kexin Rong, Sahaana Suri

Stanford InfoLab and

†
MIT CSAIL

ABSTRACT
As data volumes continue to rise, manual inspection is becoming
increasingly untenable. In response, we present MacroBase, a data
analytics engine that prioritizes end-user attention in high-volume
fast data streams. MacroBase enables efficient, accurate, and mod-
ular analyses that highlight and aggregate important and unusual
behavior, acting as a search engine for fast data. MacroBase is
able to deliver order-of-magnitude speedups over alternatives by
optimizing the combination of explanation and classification tasks
and by leveraging a new reservoir sampler and heavy-hitters sketch
specialized for fast data streams. As a result, MacroBase delivers
accurate results at speeds of up to 2M events per second per query
on a single core. The system has delivered meaningful results in
production, including at a telematics company monitoring hundreds
of thousands of vehicles.

1. INTRODUCTION
Data volumes are quickly outpacing human abilities to process

them. Today, Twitter, LinkedIn, and Facebook each record over
12M events per second [10, 63, 79]. These volumes are growing
and are becoming more common: machine-generated data sources
such as sensors, processes, and automated systems are projected
to increase data volumes by 40% each year [50]. However, human
attention remains limited; it is becoming increasingly impossible to
rely on manual inspection and analysis of these large data volumes.
They are simply too large. Due to this combination of immense
data volumes and limited human attention, today’s best-of-class
application operators anecdotally report accessing less than 6% of
data they collect [11], primarily in reactive root-cause analyses.

While humans cannot manually inspect these fast data streams,
machines can [11]. Machines can filter, highlight, and aggregate
fast data, winnowing and summarizing data before it reaches a user.
As each result shown to the end-user consumes their attention [74],
we can help prioritize this attention by leveraging computational
resources to maximize the utility of each result shown. That is, fast
data necessitates a search engine to help identify the most relevant
data and trends (and to allow non-expert users to issue queries). The
increased availability of elastic computation as well as advances in
machine learning and statistics suggest that the construction of such
an engine is possible.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’17, May 14 - 19, 2017, Chicago, Illinois, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4197-4/17/05. . . $15.00
DOI: http://dx.doi.org/10.1145/3035918.3035928

However, the design and implementation of this infrastructure is
challenging; current analytics deployments are a far cry from this
potential. Today, application developers and analysts can employ a
range of scalable dataflow processing engines to compute over fast
data (over 20 in the Apache Software Foundation alone). However,
these engines leave the actual implementation of scalable analysis
operators that prioritize attention (e.g., highlighting, grouping, and
contextualizing important behaviors within fast data) up to the appli-
cation developer. This development is hard: fast data analyses must
i.) determine the few results to return to end users (to avoid over-
whelming their attention) while ii.) executing quickly to keep up
with immense data volumes and iii.) adapting to changes within the
data stream itself. Thus, designing and implementing these analytics
operators requires a combination of domain expertise, statistics and
machine learning, and dataflow processing. This combination is rare.
Instead, today’s high-end industrial deployments overwhelmingly
rely on a combination of static rules and thresholds that analysts
report are computationally efficient but brittle and error-prone; man-
ual analysis is typically limited to reactive, post-hoc error diagnosis
that can take hours to days.

To bridge this gap between the availability of low-level dataflow
processing engines and the need for efficient, accurate analytics
engines that prioritize attention in fast data, we have begun the
development of MacroBase, a fast data analysis system. The core
concept behind MacroBase is simple: to prioritize attention, an ana-
lytics engine should provide analytics operators that automatically
classify and explain fast data volumes to users. MacroBase executes
extensible streaming dataflow pipelines that contain operators for
both classifying individual data points and explaining groups of
points by aggregating them and highlighting commonalities of in-
terest. Combined, these operators ensure that a few returned results
capture the most important properties of data. Much as in conven-
tional relational analytics, when designed for reuse and composition,
a small core set of efficient fast data operators allows portability
across application domains.

The resulting research challenge is to determine this efficient,
accurate, and modular set of core classification and explanation
operators for prioritizing attention in fast data. The statistics and
machine learning literature is replete with candidate algorithms,
but it is unclear which can execute online at fast data volumes,
and, more importantly, how these operators can be composed in an
end-to-end system. Thus, in this paper, we both introduce the core
MacroBase architecture—which combines domain-specific feature
extraction with streaming classification and explanation operators—
and present the design and implemention of MacroBase’s default
streaming classification and explanation operators. In the absence
of labeled training data, MacroBase executes operators for unsu-
pervised, density-based classification that highlight points lying
far from the overall population according to user-specified metrics
of interest (e.g., power drain). MacroBase subsequently executes
sketch-based explanation operators, which highlight correlations

that most differentiate outlying data points according to their at-
tributes (e.g., firmware version, device ID).

Users of the open source MacroBase prototype1 have utilized
MacroBase’s classification and explanation operators to find unusual
and previously unknown behaviors in fast data from mobile devices,
datacenter telemetry, automotives, and manufacturing processes,
such as in the following example.

EXAMPLE. A mobile application manufacturer issues a MacroBase
query to monitor power drain readings (i.e., metrics) across devices
and application versions (i.e., attributes). MacroBase’s default oper-
ator pipeline reports that devices of type B264 running application
version 2.26.3 are sixty times more likely to experience abnormally
high power drain than the rest of the stream, indicating a poten-
tial problem with the interaction between devices of type B264 and
application version 2.26.3.

Beyond this basic default functionality, MacroBase allows users
to tune their queries by i.) adding domain-specific feature transfor-
mations (e.g., time-series operations such as Fourier transform and
autocorrelation) to their pipelines—without modifying the rest of
the pipeline, ii.) providing supervised classification rules (or labels)
to complement or replace unsupervised classifiers and iii.) authoring
custom streaming transformation, classification, and explanation
operators, whose interoperability is enforced by MacroBase’s type
system and can be combined with relational operators.

EXAMPLE. The mobile application developer also wishes to find
time-varying power spikes within the stream, so she reconfigures her
pipeline by adding a time-series feature transformation to identify
time periods with abnormal time-varying frequencies. She later
adds a manual rule to capture all readings with power drain greater
than 100W and a custom time-series explanation operator [55]—all
without modifying the remainder of the operator pipeline.

Developing these operators necessitated several algorithmic ad-
vances, which we address as core research challenges in this paper:

To provide responsive analyses over dynamic data sources, Mac-
roBase’s default operators are designed to adapt to shifts in data.
MacroBase leverages a novel stream sampler, called the Adapt-
able Damped Reservoir (ADR), which performs sampling over
arbitrarily-sized, exponentially damped windows. MacroBase uses
the ADR to incrementally train unsupervised classifiers based on
statistical density estimation that can reliably identify typical behav-
ioral modes despite large numbers of extreme data points [46]. Mac-
roBase also adopts exponentially weighted sketching and streaming
data structures [27, 76] to track correlations between attribute-value
pairs, improving responsiveness and accuracy in explanation.

To provide interpretable explanations of often relatively rare be-
haviors in streams, MacroBase adopts a metric from statistical epi-
demiology called the relative risk ratio that describes the relative
occurrence of key attributes (e.g., age, sex) among infected and
healthy populations. In computing this statistic, MacroBase em-
ploys two new optimizations. First, MacroBase exploits the cardi-
nality imbalance between classified points to accelerate explanation
generation, an optimization enabled by the combination of detec-
tion and explanation. Instead of inspecting “outliers” and “inliers”
separately, MacroBase first examines the small set of outliers, then
aggressively prunes its search over the much larger set of inliers.
Second, MacroBase exploits the fact that many fast data streams
contain repeated measurements from devices with similar attributes
(e.g., firmware version) during risk ratio computation, reducing
data structure maintenance overhead via a new counting sketch,
the Amortized Maintenance Counter (AMC). These optimizations

1https://github.com/stanford-futuredata/macrobase

improve performance while highlighting the often small subset of
attributes that matter most.

We report on early production experiences and quantitatively
evaluate MacroBase’s performance and accuracy on both produc-
tion telematics data as well as a range of publicly available real-
world datasets. MacroBase’s optimized operators exhibit order-of-
magnitude performance improvements over existing operators at
rates of up to 2M events per second per query while delivering
accurate results in controlled studies using both synthetic and real-
world data. As we discuss, this ability to quickly process large data
volumes can also improve result quality: large numbers of samples
combat statistical bias due to the multiple testing problem [70],
thereby improving result significance. We also demonstrate Mac-
roBase’s extensibility via case studies in mobile telematics, electric-
ity metering, and video-based surveillance, and via integration with
several existing analytics frameworks.

We make the following contributions in this paper:

• MacroBase, an analytics engine and architecture for analyzing
fast data streams that is the first to combine streaming outlier
detection and streaming data explanation.

• The Adaptable Damped Reservoir, the first exponentially
damped reservoir sample to operate over arbitrary windows,
which MacroBase leverages in online classifier training.

• An optimization for improving the efficiency of combined
detection and explanation by exploiting cardinality imbalance
between classes in streams.

• The Amortized Maintenance Counter, a new heavy-hitters
sketch that allows fast updates by amortizing sketch pruning
across multiple observations of the same item.

The remainder of this paper proceeds as follows. Section 2 de-
scribes our target environment by presenting motivating use cases.
Section 3 presents the MacroBase’s interaction model and primary
default analysis pipeline (which we denote MDP). Section 4 de-
scribes MacroBase’s default streaming classification operators and
presents the ADR sampler. Section 5 describes MacroBase’s de-
fault streaming explanation operator, including its cardinality-aware
optimization and the AMC sketch. We experimentally evaluate Mac-
roBase’s accuracy and runtime, report on experiences in production,
and demonstrate extensibility via case studies in Section 6. Section 7
discusses related work, and Section 8 concludes.

2. TARGET ENVIRONMENT
MacroBase provides application writers and system analysts an

end-to-end analytics engine capable of classifying data within high-
volume streams while highlighting important properties of the data
within each class. As examples of the types of workloads we seek
to support, we draw on three motivating use cases from industry.

Mobile applications. Cambridge Mobile Telematics (CMT) is a
five-year-old telematics company whose mission is to make roads
safer by making drivers more aware of their driving habits. CMT
provides drivers with a smartphone application and mobile sensor for
their vehicles, and collects and analyzes data from many hundreds
of thousands of vehicles at rates of tens of Hz. CMT uses this data
to provide users with feedback about their driving.

CMT’s engineers report that monitoring their application has
proven especially challenging. CMT’s operators, who include data-
base and systems research veterans, report difficulty in answering
several questions: is the CMT application behaving as expected?
Are all users able to upload and view their trips? Are sensors operat-
ing at a sufficiently granular rate and in a power-efficient manner?

The most severe problems in the CMT application are caught by
quality assurance and customer service, but many behaviors are
more pernicious. For example, Apple iOS 9.0 beta 1 introduced a
buggy Bluetooth stack that prevented iOS devices from connecting
to CMT’s sensors. Few devices ran these versions, so the overall fail-
ure rate was low; as a result, CMT’s data volume and heterogeneous
install base (which includes the 24K distinct device types in the
Android ecosystem) obscured a potentially serious widespread issue
in later releases of the application. Given low storage costs, CMT
records all of the data required to perform analytic monitoring to
detect such behaviors, yet CMT’s engineers report they have lacked
a solution for doing so in a timely and efficient manner.

In this paper, we report on our experiences deploying MacroBase
at CMT, where the system has highlighted interesting behaviors
such as those above, in production.

Datacenter operation. Datacenter and server operation repre-
sents one of the highest-volume data sources today. In addition
to the billion-plus events per minute volumes reported at Twitter
and LinkedIn, engineers reported a similar need to quickly identify
misbehaving servers, applications, and virtual machines.

For example, Amazon AWS recently suffered a failure in its
DynamoDB service, resulting in outages at sites including Netflix
and Reddit. The Amazon engineers reported that “after we addressed
the key issue...we were left with a low overall error rate, hovering
between 0.15-0.25%. We knew there would be some cleanup to do
after the event,” and therefore the engineers deferred maintenance.
However, the engineers “did not realize soon enough that this low
overall error rate was giving some customers disproportionately
high error rates” due to a misbehaving server partition [3].

This public postmortem is representative of many scenarios de-
scribed by system operators in interviews. At a major social network,
engineers reported that the challenge of identifying transient slow-
downs and failures across hosts and containers is exacerbated by
the heterogeneity of workload tasks. Failure postmortems can take
hours to days, and, due to the labor-intensive nature of manual anal-
ysis, engineers report an inability to efficiently and reliably identify
slowdowns, leading to suspected inefficiency.

Unlike the CMT use case, we do not directly present results over
production data from these scenarios. However, datacenter telemetry
is an area of ongoing activity within the MacroBase project.

Industrial monitoring. Increased sensor availability has spurred
interest in and collection of fast data in industrial deployments.
While many industrial systems already rely on legacy analytics
systems, several industrial application operators we encountered
reported a desire for analytics and alerting that can adapt to new
sensors and changing conditions. These industrial scenarios can
have important consequences. For example, an explosion and fire in
July 2010 killed two workers at Horsehead Holding Corp.’s Monaca,
PA, zinc manufacturing plant. The US Chemical Safety board’s
postmortem revealed that “the high rate-of-change alarm warned that
the [plant] was in imminent danger 10 minutes before it exploded,
but there appears to have been no specific alarm to draw attention of
the operator to the subtle but dangerous temperature changes that
were taking place much (i.e. hours) earlier.” The auditor noted that
“it should be possible to design a more modern control system that
could draw attention to trends that are potentially hazardous” [48].

In this paper, we illustrate the potential to draw attention to un-
usual behaviors within electrical utilities.

3. MacroBase ARCHITECTURE AND APIS
As a fast data analytics engine, MacroBase filters and aggregates

large, high-volume streams of potentially heterogeous data. As a

DATA TYPES
Point := (array<double> metrics, array<varchar> attributes)
Explanation := (array<varchar> attributes, stats statistics)
OPERATOR INTERFACE
Operator Type Signature
Ingestor external data source(s)! stream<Point>
Transformer stream<Point>! stream<Point>
Classifier stream<Point>! stream<(label, Point)>
Explainer stream<(label, Point)>! stream<Explanation>
Pipeline Ingestor! stream<Explanation>

Table 1: MacroBase’s core data and operator types. Each op-
erator implements a strongly typed, stream-oriented dataflow
interface specific to a given pipeline stage. A pipeline can uti-
lize multiple operators of each type via transformations, such
as group-by and one-to-many stream replication, as long as the
pipeline ultimately returns a single stream of explanations.

result, MacroBase’s architecture is designed for high-performance
execution as well as flexible operation across domains using an
array of classification and explanation operators. In this section, we
describe MacroBase’s query processing architecture, approach to
extensibility, and interaction modes.

3.1 Core Concepts
To prioritize attention, MacroBase executes streaming analytics

operators that help filter and aggregate the stream. To do so, it
combines two classes of operators:

Classification. Classification operators examine individual data
points and label them according to user-specified classes. For exam-
ple, MacroBase can classify an input stream of power drain readings
into two classes: points representing statistically “normal” readings
and abnormal “outlying” readings.

At scale, surfacing even a handful of raw data points per second
can overwhelm end users, especially if each data point contains
multi-dimensional and/or categorical information. As a result, Mac-
roBase employs a second type of operator:

Explanation. Explanation operators group and aggregate multiple
data points. For example, MacroBase can describe commonalities
among points in a class, as well as differences between classes.
Each result returned by an explanation operator can represent many
individual classification outputs, further prioritizing attention.

As we discuss in Section 7, classification and explanation are
core topics in several communities including statistics and machine
learning. Our goal in MacroBase is to develop core operators for
each task that are able to execute quickly over streaming data that
may change over time and can be composed as part of end-to-end
pipelines. Conventional relational analytics have a well-defined
set of composable, reusable operators; despite pressing application
demands at scale, the same cannot be said of classification and expla-
nation today. Identifying these operators and combining them with
appropriate domain-specific feature extraction operators enables
reuse beyond one-off, ad-hoc analyses.

Thematically, our focus is on developing operators that deliver
more information using less output. This score-and-aggregate strat-
egy is reminiscent of many data-intensive domains, including search.
However, as we show, adapting these operators for use in efficient,
extensible fast data pipelines requires design modifications and even
enables new optimizations. When employed in a system designed
for extensibility, a small number of optimized, composable operators
can execute across domains.

3.2 System Architecture
Query pipelines. MacroBase executes pipelines of specialized
dataflow operators over input data streams. Each MacroBase query
specifies a set of input data sources as well as a logical query plan,
or pipeline of streaming operators, that describes the analysis.

MacroBase’s pipeline architecture is guided by two principles.
First, all operators operate over streams. Batch execution is sup-
ported by streaming over stored data. Second, MacroBase uses the
compiler’s type system to enforce interoperability. Each operator
must implement one of several type signatures (shown in Table 1).
In turn, the compiler enforces that all pipelines composed of these
operators will adhere to the common structure we describe below.

This architecture via typing strikes a balance between the ele-
gance of more declarative but often less flexible interfaces and the
expressiveness of more imperative but often less composable in-
terfaces. More specifically, this use of the type system facilitates
three important kinds of interoperability. First, users can substitute
streaming detection and explanation operators without concern for
their interoperability. Early versions of the MacroBase prototype
that lacked this modularity were hard to adapt. Second, users can
write a range of domain-specific feature transformation operators to
perform advanced processing (e.g., time-series operations) without
requiring expertise in classification or explanation. Third, Mac-
roBase’s operators preserve compatibility with dataflow operators
found in traditional stream processing engines. For example, a
MacroBase pipeline can contain standard selection, project, join,
windowing, aggregation, and group-by operators.

A MacroBase pipeline is structured as follows:

1.) Ingestion. MacroBase ingests data streams for analysis from a
number of external data sources. For example, MacroBase’s JDBC
interface allows users to specify columns of interest from a base
view defined by a SQL query. MacroBase subsequently reads the
result-set from the JDBC connector, and constructs the set of data
points to process, with one point per row in the view. MacroBase
currently requires that any necessary stream ordering and joins be
performed by this initial ingestion operator.

Each data point contains a set of metrics, corresponding to key
measurements (e.g., trip time, battery drain), and attributes, cor-
responding to associated metadata (e.g., user ID and device ID).
MacroBase uses metrics to detect abnormal or unusual events, and
attributes to explain behaviors. In this paper, we consider real-valued
metrics and categorical attributes.2

As an example, to detect the OS version problem at CMT, trip
times could be used as a metric, and device and OS type as at-
tributes. To detect the outages at DynamoDB, error rates could
be used as a metric, and server or IP address as an attribute. To
detect the Horsehead pressure losses, pressure gauge readings could
be used as metrics and their locations as attributes, as part of an
autocorrelation-enabled time-series pipeline (Section 6.4). Today,
selecting attributes, metrics, and a pipeline is a user-initiated process;
ongoing extensions (Section 8) seek to automate this.

2.) Feature Transformation. Following ingestion, MacroBase
executes an optional series of domain-specific data transformations
over the stream, which could include time-series specific operations
(e.g., windowing, seasonality removal, autocorrelation, frequency
analysis), statistical operations (e.g., normalization, dimensionality
reduction), and datatype specific operations (e.g., hue extraction for
images, optical flow for video). For example, in Section 6.4, execute
a pipeline containing a grouped Fourier transform operator that

2We discretize continuous attributes (e.g., see [81]) and provide two exam-
ples of discretization in Section 6.4.

aggregates the stream into hour-long windows, then outputs a stream
containing the twenty lowest Fourier coefficients for each window
as metrics and properties of the window time (hour of day, month)
as attributes. Placing this feature transformation functionality at the
start of the pipeline allows users to encode domain-specific analyses
without modifying later stages. The base type of the stream is
unchanged (Point! Point), allowing transforms to be chained. For
specialized data types like video frames, operators can subclass Point
to further increase the specificity of types (e.g., VideoFramePoint).

3.) Classification. Following ingestion, MacroBase performs clas-
sification, labeling each Point according to its input metrics. Both
training and evaluating classifiers on the metrics in the incoming
data stream occur in this stage. MacroBase supports a range of mod-
els, which we describe in Section 6. The simplest include rule-based
models, which check specific metrics for particular values (e.g., if
the Point metric’s L2-norm is greater than a fixed constant). In
Section 4, we describe MacroBase’s default unsupervised models,
which perform density-based classification into “outlier” and “inlier”
classes. Users can also use operators that make use of supervised and
pre-trained models. Independent of model type, each classifier re-
turns a stream of labeled Point outputs (Point! (label, Point)).

4.) Explanation. Rather than returning all labeled data points,
MacroBase aggregates the stream of labeled data points by generat-
ing explanations. As we describe in detail in Section 5, MacroBase’s
default pipeline returns explanations in the form of attribute-value
combinations (e.g., device ID 5052) that are common among outlier
points but uncommon among inlier points. For example, at CMT,
MacroBase could highlight devices that were found in at least 0.1%
of outlier trips and were at least 3 times more common among out-
liers than inliers. Each explanation operator returns a stream of these
aggregates ((label, Point)!Explanation), and explanation oper-
ators can subclass Explanation to provide additional information,
such as statistics about the explanation or representative sequences
of points to contextualize time-series outliers.

Because MacroBase processes streaming data, explanation oper-
ators continuously summarize the stream. However, continuously
emitting explanations may be wasteful if users only need expla-
nations at the granularity of seconds, minutes, or longer. As a
result, MacroBase’s explanation operators are designed to emit ex-
planations on demand, either in response to a user request, or in
response to a periodic timer. In this way, explanation operators act
as streaming view maintainers.

5.) Presentation. The number of output explanations may still
be large. As a result, most pipelines rank explanations by statistics
specific to the explanations before presentation. For example, by
default, MacroBase delivers a ranked list of explanations—sorted
by their degree of outlier—occurrence to downstream consumers.
MacroBase’s default presentation mode is a static report rendered
via a REST API or GUI. In the former, programmatic consumers
(e.g., reporting tools such as PagerDuty) can automatically forward
explanations to downstream reporting or operational systems. In
the GUI, users can interactively inspect explanations and iteratively
define their MacroBase queries. In practice, we have found that GUI-
based exploration is an important first step in formulating standing
MacroBase queries that can later be used in production.

Extensibility. As we discussed in Section 1 and demonstrate in
Section 6.4, MacroBase’s pipeline architecture lends itself to three
major means of extensibility. First, users can add new domain-
specific feature transformations to the start of a pipeline without
modifying the rest of the pipeline. Second, users can input rules
and/or labels to MacroBase to perform supervised classification.

1. INGEST
ETL & conversion
to datum; pairs of

(metrics, attrs)

2. TRANSFORM
Optional domain-

specific data
transformations

4. EXPLAIN
Aggregation of
labels, ranking
using attributes

5. PRESENT
Export and

consumption: GUI,
alerts, dashboards

3. CLASSIFY
Application of

inlier, outlier labels
by metrics

Figure 1: MacroBase’s default analytics pipeline: MacroBase ingests streaming data as a series of points, which are scored and
classified, aggregated by an explanation operator, then ranked and presented to end users.

ADR

AD
R retraining

input sample score sample

retraining

sc
or

es

MAD/MCD

AMC

Model:

inlier summary data structures

outlier summary data structures

cl
as

si
fic

at
io

n
ex

pl
an

at
io

n

Threshold

UNSUPERVISED CLASSIFICATION EXPLANATIONin
lie

r +
 o

ut
lie

r s
tre

am
s

M-CPS-Tree

M-CPS-Tree

filter via risk ratio

AMC

Figure 2: MDP: MacroBase’s default streaming classification
(Section 4) and explanation (Section 5) operators.

Third, users can write their own feature transformation, classifi-
cation, and explanation operators, as well as new pipelines. This
third option is the most labor-intensive, but is also the interface
with which MacroBase’s maintainers author new pipelines. These
interfaces have proven useful to non-experts: a master’s student at
Stanford and a master’s student at MIT each implemented and tested
a new outlier detector operator in less than a week of part-time work,
and MacroBase’s core maintainers currently require less than an
afternoon of work to author and test a new pipeline.

By providing a set of interfaces with which to extend pipelines
(with varying expertise required), MacroBase places emphasis on
“pay as you go” deployment [11]. MacroBase’s Default Pipeline
(MDP, which we illustrate in Figure 2 and describe in the following
two sections) is optimized for efficient, accurate execution over a
variety of data types without relying on labeled data or rules. It
foregoes domain-specific feature extraction and instead operates di-
rectly on raw input metrics. However, as we illustrate in Section 6.4,
this interface design enables users to incorporate more sophisticated
features such as domain-specific feature transformation, time-series
analysis, and supervised models.

In this paper, we present MacroBase’s interfaces using an object-
oriented interface, reflecting their current implementation. However,
each of MacroBase’s operator types is compatible with existing
stream-to-relation semantics [9], theoretically allowing additional
relational and stream-based processing between stages. Realizing
this mapping and the potential for higher-level declarative interfaces
above MacroBase’s pipelines are promising areas for future work.

Operating modes. MacroBase supports three operating modes.
First, MacroBase’s graphical front-end allows users to interactively
explore their data by configuring different inputs and selecting dif-
ferent combinations of metrics and attributes. This is typically the
first step in interacting with the engine. Second, MacroBase can
execute one-shot queries that can be run programmatically in a sin-
gle pass over the data. Third, MacroBase can execute streaming
queries that can be run programmatically over a potentially infinite
stream of data. In streaming mode, MacroBase continuously ingests
data points and supports exponentially decaying averages that give
precedence to more recent points (e.g., decreasing the importance
of points at a rate of 50% every hour). MacroBase continuously
re-renders query results, and if desired, triggers automated alerting
for downstream consumers.

Figure 3: Discriminative power of estimators under contami-
nation by outliers (high scores better). Robust methods (MCD,
MAD) outperform the Z-score-based approach.

4. MDP CLASSIFICATION
MacroBase’s classification operators label input data points, and,

by default, identify data points that exhibit deviant behavior. While
MacroBase allows users to configure their own operators, in this
section, we focus on the design of MacroBase’s default classification
operators in MDP, which use robust estimation procedures to fit
a distribution to data streams and identify the least likely points
with the distribution using quantile estimation. To enable streaming
execution, we introduce the Adaptable Damped Reservoir, which
MacroBase uses for model retraining and quantile estimation.

4.1 Robust Distribution Estimation
MDP relies on unsupervised density-based classification to iden-

tify points that are abnormal relative to a population. However,
a small number of anomalous points can have a large impact on
density estimation. As an example, consider the Z-Score of a point
drawn from a univariate sample, which measures the number of
standard deviations that the point lies away from the sample mean.
This provides a normalized way to measure the “outlying”-ness of a
point (e.g., a Z-Score of three indicates the point lies three standard
deviations from the mean). However, the Z-Score is not robust to
outliers: a single outlying value can skew the mean and standard
deviation by an unbounded amount, limiting its utility.

To address this challenge, MacroBase’s MDP pipeline leverages
robust statistical estimation [46], a branch of statistics that pertains to
finding statistical distributions for data that is mostly well-behaved
but may contain a number of ill-behaved data points. Given a
distribution that reliably fits most of the data, we can measure each
point’s distance from this distribution in order to find outliers [57].

For univariate data, a robust variant of the Z-Score is to use the
median and the Median Absolute Deviation (MAD), in place of
mean and standard deviation, as measures of the location and scatter
of the distribution. The MAD measures the median of the absolute
distance from each point in the sample to the sample median. Since
the median itself is resistant to outliers, each outlying data point has
limited impact on the MAD score of all other points in the sample.

For multivariate data, the Minimum Covariance Determinant
(MCD) provides similar robust estimates for location and spread [47].
The MCD estimator finds the tightest group of points that best repre-
sents a sample, and summarizes the set of points according to its lo-
cation µ and scatter C (i.e., covariance) in metric space. Given these

estimates, we can compute the distance between a point x and the
distribution via the Mahalanobis distance

p
(x�µ)TC�1(x�µ);

intuitively, the Mahalanobis distance normalizes (or warps) the met-
ric space via the scatter and then measures the distance to the center
of the transformed space using the mean (see also Appendix A).

As Figure 3 empirically demonstrates, MAD and MCD reliably
identify points in outlier clusters despite increasing outlier contam-
ination (experimental setup in Appendix A). Whereas MAD and
MCD are resilient to contamination up to 50%, the Z-Score is unable
to distinguish inliers and outliers under even modest contamination.

Classifying outliers. Given a query with a single, univariate
metric, MDP uses a MAD-based detector, and, given a query with
multiple metrics, MacroBase computes the MCD via an iterative
approximation called FastMCD [67]. These unsupervised models
allow MDP to score points without requiring labels or rules from
users. Subsequently, MDP uses a percentile-based cutoff over scores
to identify the most extreme points in the sample. Points with scores
above the percentile-based cutoff are classified as outliers, reflecting
their distance from the body of the distribution.

As a notable caveat, MAD and MCD are parametric estimators,
assigning scores based on an assumption that data is normally dis-
tributed. While extending these estimators to multi-modal behavior
is straightforward [41] and MacroBase allows substitution of more
sophisticated detectors (e.g., Appendix D), we do not consider them
here. Instead, we have found that looking for far away points using
these parametric estimators yields useful results: as we empirically
demonstrate, many interesting behaviors manifest as extreme devia-
tions from the overall population. Robustly locating the center of a
population—while ignoring local, small-scale deviations in the body
of the distribution—suffices to identify many important classes of
outliers in the applications we study (cf. [42]).

4.2 MDP Streaming Execution
Despite their utility, we are not aware of an existing algorithm for

training MAD or MCD in a streaming context.3 This is especially
problematic because, as the distributions within data streams change
over time, MDP’s estimators should be updated to reflect the change.

ADR: Adaptable Damped Reservoir. MDP’s solution to the re-
training problem is a novel adaptation of reservoir sampling over
streams, which we call the Adaptable Damped Reservoir (ADR).
The ADR maintains a sample of input data that is exponentially
weighted towards more recent points; the key difference from tra-
ditional reservoir sampling is that the ADR operates over arbitrary
window sizes, allowing greater flexibility than existing damped sam-
plers. As Figure 2 illustrates, MDP maintains an ADR sample of
the input to periodically recompute its robust estimator and a sec-
ond ADR sample of the outlier scores to periodically recompute its
quantile threshold.

The classic reservoir sampling technique can be used to select
a uniform sample over a set of data using finite space and one
pass [77]. The probability of insertion into the sample, or “reservoir,”
is inversely proportional to the number of points observed thus far.
In the context of stream sampling, we can treat the stream as an
infinitely long set of points and the reservoir as a uniform sample
over the data observed so far.

In MacroBase, we wish to promptly reflect changes in the un-
derlying data stream, and therefore we adapt a weighted sampling
approach, in which the probability of data retention decays over time.
The literature contains several existing algorithms for weighted reser-

3Specifically, MAD requires computing the median of median distances,
meaning streaming quantile estimation alone is insufficient. FastMCD is an
inherently iterative algorithm that iteratively re-sorts data.

Algorithm 1 ADR: Adaptable Damped Reservoir
given: k: reservoir size 2 N; r: decay rate 2 (0,1)
initialization: reservoir R {}; current weight cw 0
function OBSERVE(x: point, w: weight)

cw cw +w
if |R|< k then

R R[{x}
else with probability k

cw
remove random element from R and add x to R

function DECAY()
cw r · cw

voir sampling [5, 22, 29]. Most recently, Aggarwal described how to
perform exponentially weighted sampling on a per-record basis: that
is, the probability of insertion is an exponentially weighted function
of the number of points observed so far [5]. While this is useful, as
we demonstrate in Section 6, under workloads with variable arrival
rates, we may wish to employ a decay policy that decays in time, not
in number of tuples; specifically, tuple-at-a-time decay may skew
the reservoir towards periods of high stream volume.

To support more flexible reservoir behavior, MacroBase adapts an
earlier variant of weighted reservoir sampling due to Chao [22,29] to
provide the first exponentially decayed reservoir sampler that decays
over arbitrary decay intervals. We call this variant the Adaptable
Damped Reservoir, or ADR (Algorithm 1). In contrast with existing
approaches that decay on a per-tuple basis, the ADR separates the
insertion process from the decay decision, allowing both time-based
and tuple-based decay policies. Specifically, the ADR maintains a
running count cw of items inserted into the reservoir (of size k) so far.
When an item is inserted, cw is incremented by one (or an arbitrary
weight, if desired). With probability k

cw
, the item is placed into the

reservoir and a random item is evicted from the reservoir. When
the ADR is decayed (e.g., via a periodic timer or tuple count), its
running count is multiplied by a decay factor (i.e., cw := (1�a)cw).

MacroBase currently supports two decay policies: time-based
decay, which decays the reservoir at a pre-specified rate measured
according to real time, and batch-based decay, which decays the
reservoir at a pre-specified rate measured by arbitrarily-sized batches
of data points (Appendix A). The validity of this procedure follows
from Chao’s sampler, which otherwise requires the user to manually
manage weights and decay. As in Chao’s sampler, in the event of
extreme decay, “overweight” items with relative insertion probability
k

cw
> 1 are always retained in the reservoir until their insertion

probability falls below 1, at which point they are inserted normally.
MacroBase’s MDP uses the ADR to solve the model retraining

and quantile estimations problems:

Maintaining training inputs. Either on a tuple-based or time-
based interval, MDP retrains models using the contents of an ADR
that samples the input data stream. This streaming robust estimator
maintenance and evaluation strategy is the first of which we are
aware. We discuss this procedure’s statistical impact in Appendix D.

Maintaining percentile thresholds. While streaming quantile
estimation is well studied, we were not able to find many compu-
tationally inexpensive options for an exponentially damped model
with arbitrary window sizes. Thus, instead, MacroBase uses an ADR
to sample the outlier scores produced by MAD and MCD. The ADR
maintains an exponentially damped sample of the scores, which it
uses to periodically compute the appropriate score quantile value

(e.g., 99th percentile of scores).4 A sample of size O(1
e2 log(1

d))
yields an e-approximation of an arbitrary quantile with probability
1�d [15], so a ADR of size 20K provides an e = 1% approximation
with 99% probability (d = 1%).

5. MDP EXPLANATION
MDP’s explanation operators produce explanations to contextual-

ize and differentiate inliers and outliers according to their attributes.
In this section, we discuss how MacroBase performs this task by
using a metric from epidemiology, the relative risk ratio (risk ratio),
using a range of data structures. We again begin with a discussion of
MDP’s batch-oriented operation and introduce a cardinality-based
optimization, then discuss how MacroBase executes streaming ex-
planation via the Amortized Maintenance Counter sketch.

5.1 Semantics: Support and Risk Ratio
MacroBase produces explanations that describe attributes com-

mon to outliers but relatively uncommon to inliers. To identify
combinations of attribute values that are relatively common in out-
liers, MDP finds combinations with high risk ratio (or relative risk
ratio). This ratio is a standard diagnostic measure used in epidemi-
ology, and is used to determine potential causes for disease [60].
Formally, given an attribute combination appearing ao times in the
outliers and ai times in the inliers, where there are bo other outliers
and bi other inliers, the risk ratio is defined as:

risk ratio =
ao/(ao +ai)

bo/(bo +bi)

Intuitively, the risk ratio quantifies how much more likely a data
point is to be an outlier if it is of a specific attribute combination,
as opposed to the general population. To eliminate explanations
corresponding to rare but non-systemic combinations, MDP finds
combinations with high support, or occurrence (by relative count)
in outliers. To facilitate these two tests, MDP accepts a minimum
risk ratio and level of outlier support as input parameters. As an
example, MDP may find that 500 of 890 records flagged as outliers
correspond to iPhone 6 devices (outlier support of 56.2%), but, if
80191 of 90922 records flagged as inliers also correspond to iPhone
6 devices (inlier support of 88.2%), we are likely uninterested in
iPhone 6 as it has a low risk ratio of 0.1767. MDP reports explana-
tions in the form of combinations of attributes, each subset of which
has risk ratio and support above threshold.

5.2 Basic Explanation Strategy
A naïve solution to computing the risk ratio for various attribute

sets is to search twice, once over all inlier points and once over
all outlier points, and then look for differences between the inlier
and outlier sets. As we experimentally demonstrate in Section 6,
this is inefficient as it wastes times searching over attributes in
inliers that are eventually filtered due to insufficient outlier support.
Moreover, the number of outliers is much smaller than the inliers,
so processing the two sets independently ignores the possibility of
additional pruning. To reduce this wasted effort, MacroBase takes
advantage of both the cardinality imbalance between inliers and
outliers as well as the joint explanation of each set.

Optimization: Exploit cardinality imbalance. The cardinality
of the outlier set is by definition much smaller than that of the inlier
set. Therefore, instead of searching the outlier supports and the

4This enables a simple mechanism for detecting quantile drift: if the propor-
tion of outlier points significantly deviates from the target percentile (i.e.,
via application of a binomial proportion confidence interval), MDP should
recompute the quantile.

Algorithm 2 MDP’s Outlier-Aware Explanation Strategy
given: minimum risk ratio r, minimum support s,

set of outliers O, set of inliers I
1: find attributes w/ support � s in O and risk ratio � r in O, I
2: mine FP-tree over O using only attributes from (1)
3: filter (2) by removing patterns w/ risk ratio < r in I; return

inlier supports separately, MDP first finds outlier attribute sets with
minimum support and subsequently searches the inlier attributes,
while only searching for attributes that were supported in the outliers.
This reduces the space of inlier attributes to explore.

Optimization: Individual item ratios are cheap. We have found
that many important attribute combinations (i.e., with high risk ra-
tio) can be explained by a small number of attributes (typically,
one or two, which can be tested inexpensively). Moreover, while
computing risk ratios for all attribute combinations is expensive
(combinatorial), computing risk ratios for single attributes is in-
expensive: we can compute support counts over both inliers and
outliers via a single pass over the attributes. Accordingly, MDP
first computes risk ratios for single attribute values, then computes
support of combinations whose members have sufficient risk ratios.

In contrast with [54], this optimization for risk ratio computation
is enabled by the fact that we wish to find combinations of attributes
whose subsets are each supported and have minimum risk ratio. If a
set of attributes is correlated, reporting them as a group helps avoid
overwhelming the user with explanations.

Algorithms and Data Structures. In the one-pass batch setting,
single attribute value counting is straightforward, requiring a single
pass over the data; the streaming setting below is more interesting.
We experimented with several itemset mining techniques that use dy-
namic programming to prune the search over attribute combinations
with sufficient support and ultimately decided on prefix-tree-based
approaches inspired by FPGrowth [40]. In brief, the FPGrowth
algorithm maintains a frequency-descending prefix tree of attributes
that can subsequently be mined by recursively generating a set of
“conditional” trees. Corroborating recent benchmarks [34], the FP-
Growth algorithm was fast and proved extensible in our streaming
implementation below.

End result. The result is a three-stage process (Algorithm 2).
MDP first calculates the attribute values with minimum risk ratio
(support counting, followed by a filtering pass based on risk ratio).
From the first stage’s outlier attribute values, MDP then computes
supported outlier attribute combinations. Finally, MDP computes
the risk ratio for each attribute combination based on their support in
the inliers (support counting, followed by a filtering pass to exclude
any attribute combinations with insufficient risk ratio).

Significance. We discuss confidence intervals on MDP explana-
tions as well as quality improvements achievable by processing large
data volumes in Appendix B.

5.3 Streaming Explanation
As in MDP detection, streaming explanation generation is more

challenging. We present the MDP implementation of single-attribute
streaming explanation then extend the approach to multi-attribute
streaming explanation.

Implementation: Single Attribute Summarization. To begin,
we find individual attributes with sufficient support and risk ratio
while respecting both changes in the stream and limiting the overall
amount of memory required to store support counts. The problem
of maintaining a count of frequent items (i.e., heavy hitters, or

Algorithm 3 AMC: Amortized Maintenance Counter
given: e 2 (0,1); r: decay rate 2 (0,1)
initialization: C (item! count) {}; weight wi 0
function OBSERVE(i: item, c: count)

C[i] wi + c if i /2C else C[i]+ c
function MAINTAIN()

remove all but the 1
e largest entries from C

wi the largest value just removed, or, if none removed, 0
function DECAY()

decay the value of all entries of C by r
call MAINTAIN()

attributes with top k occurrence) in data streams is well studied [25].
Given a heavy-hitters sketch over the inlier and outlier stream, we
can compute an approximate support and risk ratio for each attribute
by comparing the contents of the sketches at any time.

Initially, we implemented the MDP item counter using the Space-
Saving algorithm [59], which provides empirically good perfor-
mance [26] and has extensions in the exponentially decayed set-
ting [27]. However, like many of the sketches in the literature,
SpaceSaving was designed to strike a balance between sketch size
and performance, with a strong emphasis on limited size. For exam-
ple, in its heap-based variant, SpaceSaving maintains 1

k -approximate
counts for the top k item counts by maintaining a heap of the items.
For a stream of size n, this requires O(n log(k)) update time. (In the
case of exponential decay, the linked-list variant can require O(n2)
processing time.)

While logarithmic update time is modest for small sketches, given
only two heavy-hitters sketches per MacroBase query, MDP can
expend more memory on its sketches to improve accuracy; for
example, 1M items require four megabytes of memory for float-
encoded counts, which is small relative to modern server memory
sizes. As a result, we developed a heavy-hitters sketch, called the
Amortized Maintenance Counter (AMC, Algorithm 3), that occupies
the opposite end of the design spectrum: the AMC uses a much
greater amount of memory for a given accuracy level, but is faster to
update and still limits total space utilization. The key insight behind
the AMC is that if we observe even a single item in the stream
more than once, we can amortize the overhead of maintaining the
sketch across multiple observations of the same item. In contrast,
SpaceSaving maintains the sketch for every observation but in turn
ensures a smaller sketch size.

AMC provides the same counting functionality as a traditional
heavy-hitters sketch but exposes a second method, maintain, that is
called to periodically prune the sketch size. AMC allows the sketch
size to increase between calls to maintain, and, during maintenance,
the sketch size is reduced to a desired stable size, which is specified
as an input parameter. Therefore, the maximum size of the sketch is
controlled by the period between calls to maintain: as in SpaceSav-
ing, a stable size of 1

e yields an ne approximation of the count of
n points, but the size of the sketch may grow within a period. This
separation of insertion and maintenance has two implications. First,
it allows constant-time insertion, which we describe below. Second,
it allows a range of maintenance policies, including a sized-based
policy, which performs maintenance once the sketch reaches a pre-
specified upper bound, as well as a variable period policy, which
operates over real-time and tuple-based windows (similar to ADR).

To implement this functionality, AMC maintains a set of approx-
imate counts for all items that were among the most common in
the previous period along with approximate counts for all other
items that observed in the current period. During maintenance,
AMC prunes all but the 1

e items with highest counts and records

the maximum count that is discarded (wi). Upon insertion, AMC
checks to see if the item is already stored. If so, the item’s count is
incremented. If not, AMC stores the item count plus wi. If an item
is not stored in the current window, the item must have had count
less than or equal to wi at the end of the previous period.

AMC has three major differences compared to SpaceSaving. First,
AMC updates are constant time (hash table insertion) compared
to O(log(1

e)) for SpaceSaving. Second, AMC has an additional
maintenance step, which is amortized across all items seen in a
window. Using a min-heap, with I items in the sketch, maintenance
requires O(I · log(1

e)) time. If we observe even one item more
than once, this is faster than performing maintenance on every
observation. Third, AMC has higher space overhead; in the limit, it
must maintain all items it has seen between maintenance intervals.

Implementation: Streaming Combinations. While AMC tracks
single items, MDP also needs to track combinations of attributes. As
such, we sought a tree-based technique that would admit exponen-
tially damped arbitrary windows but eliminate the requirement that
each attribute be stored in the tree, as in recent proposals such as the
CPS-tree [76]. As a result, MDP adapts a combination of two data
structures: AMC for the frequent attributes, and an adaptation of
the CPS-Tree data structure to store frequent attributes. We present
algorithms for maintaining the adapted CPS-tree in Appendix B.

Summary. MDP’s streaming explanation operator consists of two
primary parts: maintenance and querying. When a new data point
arrives at the summarization operator, MacroBase inserts each of
the point’s attributes into an AMC sketch. MacroBase then inserts
a subset of the point’s attributes into a prefix tree that maintains
an approximate, frequency descending order. When a window has
elapsed, MacroBase decays the counts of the items and the counts
in each node of the prefix tree. MacroBase removes any attributes
that are no longer above the support threshold and rearranges the
prefix tree in frequency-descending order. To produce explanations,
MacroBase runs FPGrowth on the prefix tree.

6. EVALUATION
In this section, we evaluate the accuracy, efficiency, and flexibility

of MacroBase and the MDP operators. We wish to demonstrate that:

• MacroBase is accurate: on controlled, synthetic data, under
changes in stream behavior and over real-world workloads
from the literature and in production (Section 6.1).

• MacroBase can process up to 2M points per second per query
on a range of real-world datasets (Section 6.2).

• MacroBase’s cardinality-aware explanation strategy produces
meaningful speedups (average: 3.2⇥ speedup; Section 6.3).

• MacroBase’s use of AMC is up to 500⇥ faster than existing
sketches on production data (Section 6.3).

• MacroBase’s architecture is extensible, which we illustrate
via three case studies (Section 6.4).

Experimental environment. We report results from deploying the
MacroBase prototype on a server with four Intel Xeon E5-4657L
2.40GHz CPUs containing 12 cores per CPU and 1TB of RAM.
To isolate the effects of pipeline processing, we exclude loading
time from our results. By default, we issue MDP queries with a
minimum support of 0.1% and minimum risk ratio of 3, a target
outlier percentile of 1%, ADR and AMC sizes of 10K, a decay
rate of 0.01 every 100K points, and report the average of at least
three runs per experiment. We vary these parameters in subsequent
experiments in this section and the Appendix.

Figure 4: Precision-recall of explanations. Without noise, MDP
exactly identifies misbehaving devices. MDP’s use of risk ratio
improves resiliency to both label and measurement noise.

Implementation. We describe MacroBase’s implementation, data-
flow runtime, and approach to parallelism in Appendix C.

Large-scale datasets. To compare the efficiency of MacroBase
and related techniques, we compiled a set of large-scale real-world
datasets (Table 2) for evaluation (descriptions in Appendix D).

6.1 Result Quality
In this section, we focus on MacroBase’s statistical result qual-

ity. We evaluate precision/recall on synthetic and real-world data,
demonstrate adaptivity to changes in data streams, and report on
experiences from production usage.

Synthetic dataset accuracy. We ran MDP over a synthetic dataset
generated in line with those used to evaluate recent anomaly detec-
tion systems [68,80]. The generated dataset contains 1M data points
from a number of synthetic devices. Each device in the dataset has a
unique device ID attribute and metrics which are drawn from either
an inlier distribution (N (10,10)) or outlier distribution (N (70,10)).
We subsequently evaluated MacroBase’s ability to automatically
determine the device IDs corresponding to the outlying distribution.
We report the F1-score

⇣
2 · precision · recall

precision+recall

⌘
for the set of device

IDs identified as outliers metric for explanation quality.
Since MDP’s statistical techniques are a natural match for this

experimental setup, we also perturbed the base experiment to un-
derstand when MDP might underperform. We introduced two types
of noise into the measurements to quantify their effects on MDP’s
performance. First, we introduced label noise by randomly assign-
ing readings from the outlier distribution to inlying devices and
vice-versa. Second, we introduced measurement noise by randomly
assigning a proportion of both outlying and inlying points to a third,
uniform distribution over the interval [0,80].

Figure 4 illustrates the results. In the the noiseless regions of
Figure 4, MDP correctly identified 100% of the outlying devices.
As the outlying devices are solely drawn from the outlier distri-
bution, constructing outlier explanations via the risk ratio enables
MacroBase to perfectly recover the outlying device IDs. In con-
trast, techniques that rely solely on individual outlier classification
deliver less accurate results on this workload (cf. [68, 80]). Under
label noise, MacroBase robustly identified the outlying devices until
approximately 25% noise, which corresponds a 3 : 1 ratio of correct
to incorrect labels. As our risk ratio threshold is set to 3, exceeding
this threshold causes rapid performance degradation. Under mea-
surement noise, accuracy degrades linearly with the amount of noise.
MDP is more robust to this type of noise when fewer devices are
present; its accuracy suffers with a larger number of devices, as each
device type is subject to more noisy readings.

In summary, MDP is able to accurately identify correlated causes
of outlying data for noise of 20% or more. The noise threshold is

improved by both MDP’s use of robust methods as well as the use
of risk ratio to prune irrelevant summaries. Noise of this magnitude
is likely rare in practice, and, if such noise exists, is possibly of
another interesting behavior in the data.

Real-world dataset accuracy. In addition to synthetic data, we
also performed experiments to determine MacroBase’s ability to
accurately identify systemic abnormalities in real-world data. We
evaluated MacroBase’s ability to distinguish abnormally-behaving
OLTP servers within a cluster, as defined according to data and man-
ual labels collected in a recent study [81] to diagnose performance
issues within a single host. We performed a set of experiments, each
corresponding to a distinct type of performance degradation within
MySQL on a particular OLTP workload (TPC-C and TPC-E). For
each experiment, we consider a cluster of eleven servers, where a
single server exhibits the degradation. Using over 200 operating
systems and database performance counters, we ran MDP to identify
the anomalous server.

We ran MDP with two sets of queries. In the former set, QS, MDP
executed a query to find abnormal hosts (with hostname attributes)
using a single set of 15 metrics identified via feature selection
techniques on a holdout of 2 clusters per experiment (i.e., one query
for all anomalies). As Table 4 (Appendix D) shows, under QS, MDP
achieves top-1 accuracy of 86.1% on the holdout set across all forms
of anomalies (top-3: 88.8%). For eight of nine anomalies, MDP’s
top-1 accuracy is higher: 93.8%. However, for the ninth anomaly,
which corresponds to a poorly written query, the metrics correlated
with the anomalous behavior are substantially different.

In the second set of experiments, QE, MDP executed a slow-
hosts query using a set of metrics for each distinct anomaly type
(e.g., network contention), again using a holdout of 2 clusters per
experiment (i.e., one query per anomaly type). In contrast with QS,
because QE targets each type of performance degradation with a
custom set of metrics, it is able to identify behaviors more reliably,
leading to perfect top-3 accuracy.

These results show that with proper feature selection, MacroBase
accurately recovers systemic causes even in unsupervised settings.

Adaptivity. While the previous set of experiments operated over
data with a static underlying distribution, we sought to understand
the benefit of MDP’s ability to adapt to changes in the input distri-
bution via the exponential decay of ADR and AMC. We performed
a controlled experiment over two types of time-varying behavior:
changing underlying data distribution, and variable data arrival rate.
We then compared the accuracy of MDP outlier detection across
three sampling techniques: a uniform reservoir sample, a per-tuple
exponentially decaying reservoir sample, and our proposed ADR.

Figure 5c displays the time-evolving stream representing 100
devices over which MDP operates. To begin, all devices produce
readings drawn from a Gaussian N (10,10) distribution. After 50
seconds, a single device, D0, produces readings from N (70,10)
before returning to the original distribution at 100 seconds. The
second period (150s to 300s) is similar to the first, except we also
introduce a shift in all devices’ metrics: after 150 seconds, all
devices produce readings from N (40,10), and, after 225 seconds,
D0 produces readings from N (�10,10), returning to N (40,10)
after 250 seconds. Finally from 300s to 400s, all devices experience
a spike in data arrival rate. We introduce a four-second noise spike in
the sensor readings at 320 seconds: the arrival rate rises by ten-fold,
to over 200k points per second, with corresponding values drawn
from a N (85,15) distribution (Figure 5d).

In the first time period, all three strategies detect D0 as an outlier,
as reflected in the computed risk ratios in Figure 5a. After 100
seconds, when D0 returns to the inlier distribution, its risk ratio

(a)

(b)

(c)

(d)

Figure 5: ADR provides greater adaptivity compared to tuple-
at-a-time reservoir sampling and is more resilient to spikes in
data volume (see text for details).

drops. The reservoir averages remain unchanged in all strategies
(Figure 5b). In the second time period, both adaptive reservoirs
adjust to the new distribution by 170 seconds, while the uniform
reservoir fails to adapt quickly (Figure 5b). As such, when D0 drops
to N (�10,10) from time 225 through 250, only the two adaptive
strategies track the change (Figure 5a). At time 300, the short noise
spike appears in the sensor readings. The per-tuple reservoir is
forced to absorb this noise, and the distribution in this reservoir
spikes precipitously. As a result, D0, which remains at N (40,10) is
falsely suspected as outlying. In contrast, the ADR average value
rises slightly but never suspects D0 as an outlier. This illustrates the
value of MDP’s adaptivity to distribution changes and resilience to
variable arrival rates.

Production results. MacroBase currently operates over a range
of production data and external users report the prototype has dis-
covered previously unknown and sometimes serious behaviors in
several domains. Here, we report on our experiences deploying
MacroBase at CMT, where it identified several previously unknown
behaviors. In one case, MacroBase highlighted a small number of
users who experienced issues with their trip detection. In another
case, MacroBase discovered a rare issue with the CMT application
and a device-specific battery problem. Consultation and investi-
gation with the CMT team confirmed these issues as previously
unknown, and have since been addressed. These experiences and
others [11] have proven a useful demonstration of MacroBase’s abil-
ity to prioritize attention in production environments and inspired
several ongoing extensions (Section 8).

6.2 End-to-End Performance
In this section, we evaluate MacroBase’s end-to-end performance

on real-world datasets. For each dataset X , we execute two Mac-
roBase queries: a simple query, with a single attribute and metric
(denoted XS), and a complex query, with a larger set of attributes
and, when available, multiple metrics (denoted XC). We then report
throughput for two system configurations: one-shot batch execution

that processes each stage in sequence and exponentially-weighted
streaming execution (EWS) that processes points continuously. One-
shot and EWS have different semantics, as reflected in the explana-
tions they produce. One-shot execution examines the entire dataset
at once. Exponentially weighted streaming prioritizes recent points.
Therefore, for datasets with few distinct attribute values (e.g., Ac-
cidents contains only nine types of weather conditions), the expla-
nations will have high similarity. However, explanations differ in
datasets with many distinct attribute values (typically the complex
queries with hundreds of thousands of possible combinations—e.g.,
Disburse has 138,338 different disbursement recipients). For this
reason, we provide throughput results both with and without ex-
planations, as well as the number of explanations generated by the
simple (XS) and complex (XC) queries and their Jaccard similarity.

Table 2 displays results across all queries. Throughput varied
from 147K points per second (on MC with explanation) to over
2.5M points per second (on T S without explanation); the average
throughput for one-shot execution was 1.39M points per second, and
the average throughput for EWS was 599K points per second. The
better-performing mode depended heavily on the particular data set
and characteristics. In general, queries with multiple metrics were
slower in one-shot than queries with single metrics (due to increased
training time, as streaming trains over samples), and EWS typically
returned fewer explanations due to its temporal bias. Generating
each explanation at the end of the query incurred an approximately
22% overhead. In all cases, these queries far exceed the current
arrival rate of data for each dataset. In practice, users tune their
decay on a per-application basis (e.g., at CMT, streaming queries
may prioritize trips from the last hour to catch errors arising from the
most recent deployment). These throughputs exceed those of related
techniques we have encountered in the literature (by up to three
orders of magnitude); we examine specific factors that contribute to
this performance in the next section.

Runtime breakdown. To further understand how each pipeline op-
erator contributed to overall performance, we profiled MacroBase’s
one-shot execution (EWS was challenging to instrument accurately
due to its streaming execution). On MC, MacroBase spent approxi-
mately 52% of its execution training MCD, 21% scoring points, and
26% generating explanations. On MS, MacroBase spent approxi-
mately 54% of its execution training MAD, 16% scoring points, and
29% generating explanations. In contrast, on FC, which returned
over 1000 explanations, MacroBase spent 31% of its execution
training MAD, 4% scoring points, and 65% generating explanations.
Thus, the overhead of each component is data- and query-dependent.

6.3 Microbenchmarks and Comparison
In this section, we explore two key aspects of MacroBase’s design:

cardinality-aware explanation and use of AMC sketches.

Cardinality-aware explanation. We evaluated the efficiency of
MacroBase’s cardinality-aware pruning compared to traditional FP-
Growth. MacroBase leverages a unique pruning strategy that ex-
ploits the low cardinality of outliers, which delivers large speedups—
on average, over 3⇥ compared to unoptimized FPGrowth. Specif-
ically, MacroBase’s produced a summary of each dataset’s inliers
and outliers in 0.22–1.4 seconds. In contrast, running FPGrowth
separately on inliers and outliers was, on average, 3.2⇥ slower; com-
pared to MacroBase’s joint explanation according to support and
risk ratio, much of the time spent mining inliers (with insufficient
risk ratio) in FPGrowth is wasted. However, both MacroBase and
FPGrowth must perform a linear pass over all of the inliers, which
places a lower bound on the running time. The benefit of this opti-
mization depends on the risk ratio, which we vary in Appendix D.

Queries Thru w/o Explain (pts/s) Thru w/ Explain (pts/s) # Explanations Jaccard
Dataset Name Metrics Attrs Points One-shot EWS One-shot EWS One-shot EWS Similarity

Liquor LS 1 1 3.05M 1549.7K 967.6K 1053.3K 966.5K 28 33 0.74
LC 2 4 385.9K 504.5K 270.3K 500.9K 500 334 0.35

Telecom TS 1 1 10M 2317.9K 698.5K 360.7K 698.0K 469 1 0.00
TC 5 2 208.2K 380.9K 178.3K 380.8K 675 1 0.00

Campaign ES 1 1 10M 2579.0K 778.8K 1784.6K 778.6K 2 2 0.67
EC 1 5 2426.9K 252.5K 618.5K 252.1K 22 19 0.17

Accidents AS 1 1 430K 998.1K 786.0K 729.8K 784.3K 2 2 1.00
AC 3 3 349.9K 417.8K 259.0K 413.4K 25 20 0.55

Disburse FS 1 1 3.48M 1879.6K 1209.9K 1325.8K 1207.8K 41 38 0.84
FC 1 6 1843.4K 346.7K 565.3K 344.9K 1710 153 0.05

CMT MS 1 1 10M 1958.6K 564.7K 354.7K 562.6K 46 53 0.63
MC 7 6 182.6K 278.3K 147.9K 278.1K 255 98 0.29

Table 2: Datasets and query names, throughput, and explanations produced under one-shot and exponentially weighted streaming
(EWS) execution. MacroBase sustains throughput of several hundred thousand (and up to 2.5M) points per second.

Figure 6: Streaming heavy hitters sketch comparison. AMC:
Amortized Maintenance Counter with maintenance every 10K
items; SSL: Space Saving List; SSH: Space Saving Hash. All
share the same accuracy bound. Varying the AMC mainte-
nance period produced similar results.

AMC Comparison. We also compared the performance of AMC
with existing heavy-hitters sketches (Figure 6). AMC outperformed
both implementations of SpaceSaving in all configurations by a
margin of up to 500⇥ for sketch sizes exceeding 100 items. This is
because the SpaceSaving overhead (heap maintenance on every oper-
ation is expensive with even modestly-sized sketches or list traversal
is costly for decayed, non-integer counts) is costly. In contrast, with
an update period of 10K points, AMC sustained over 10M updates
per second. The primary cost of these performance improvements
is additional space: for example, with a minimum sketch size of 10
items and update period of 10K points, AMC retained up to 10,010
items while each SpaceSaving sketch retained only 10. As a result,
when memory sizes are especially constrained, SpaceSaving may
be preferable, at a measurable cost to performance.

Additional results. In Appendix D, we provide additional results
examining the distribution of outlier scores, the effect of varying
support and risk ratio, the effect of training over samples and oper-
ating over varying metric dimensions, the behavior of the M-CPS
tree, preliminary scale-out behavior, comparing the runtime of MDP
explanation to both existing batch explanation procedures, and MDP
detection and explanation to operators from frameworks including
Weka, Elki, and RapidMiner.

6.4 Case Studies and Extensibility
MacroBase is designed for extensibility, as we highlight via case

studies in three separate domains. We describe the pipeline struc-
tures, performance, and interesting explanations from applying Mac-
roBase over supervised, time-series, and video surveillance data.

Hybrid Supervision. We demonstrate MacroBase’s ability to

combine supervised and unsupervised classification models via a
use case from CMT. Each trip in the CMT dataset is accompa-
nied by a supervised diagnostic score representing the trip quality.
While MDP’s unsupervised operators can use this score as an input,
CMT also wishes to capture low-quality scores independent of their
distribution in the population. Accordingly, we authored a new Mac-
roBase pipeline that feeds some metrics (e.g. trip length, battery
drain) to the MDP MCD operator and also feeds the diagnostic
metric (trip quality score) to a special rule-based operator that flags
low quality scores as anomalies. The pipeline, which we depict
below, performs a logical or over the two classification results:

ingest
MCD logical

or
hybrid
detection

supervised classifier

%ile MDP
explain

With this hybrid supervision strategy, MacroBase identified addi-
tional behaviors within the CMT dataset. Since the quality scores
were generated external to MacroBase and the supervision rule in
MacroBase was lightweight, runtime was unaffected. This kind of
pipeline can easily be extended to more complex supervised models.

Time-series. MacroBase can also detect temporal behaviors via
feature transformation, which we demonstrate using a dataset of
16M points capturing a month of electricity usage from devices
within a household [12]. We augment MDP by adding a sequence
of feature transforms that i.) partition the stream by device ID, ii.)
window the stream into hourly intervals, with attributes according
to hour of day, day of week, and date, then iii.) apply a Discrete-
Time Short-Term Fourier Transform (STFT) to each window, and
truncate the transformed data to a fixed number of dimensions. As
the diagram below shows, we feed the transformed stream into an
unmodified MDP and search for outlying time periods and devices:

ingest

groupby(plug)+time-series transform

... MCD %ile
window STFT

MDP
explain

drop dim.

window STFT drop dim.
... ...

With this custom time-series pipeline, MacroBase detected several
systemic periods of abnormal device behavior. For example, the
following dataset of power usage by a household refrigerator spiked
on an hourly basis (possibly corresponding to compressor activity);
instead of highlighting the hourly power spikes, MacroBase was
able to detect that the refrigerator consistently behaved abnormally
compared to other devices in the household and to other time periods
between the hours of 12PM and 1PM—presumably, lunchtime—as
highlighted in the excerpt below:

Without feature transformation, the entire MDP pipeline completed
in 158ms. Feature transformation dominated the runtime, utilizing
516 seconds to transform the 16M points via unoptimized STFT.

Video Surveillance. We further highlight MacroBase’s ability to
easily operate over a wide array of data sources and domains by
searching for interesting patterns in the CAVIAR video surveillance
dataset [1]. Using OpenCV 3.1.0, we add a custom feature trans-
form that computes the average optical flow velocity between video
frames, a technique that has been successfully applied in human
action detection [30]. Each transformed frame is tagged with a time
interval attribute, which we use to identify interesting video seg-
ments and, as depicted below, the remainder of the pipeline executes
the standard MDP operators:

video
ingest

groupby(video) + CV xform

... MAD %ile MDP
explain

...
optical flow mean

optical flow mean

Using this pipeline, MacroBase detected periods of abnormal mo-
tion in the video dataset. For example, the MacroBase pipeline
highlighted a three-second period in which two people fought:

Like our STFT pipeline, feature transformation via optical flow
dominated runtime (22s vs. 34ms for MDP); this is unsurprising
given our CPU-based implementation of an expensive transform but
nevertheless illustrates MDP’s ability to process video streams.

7. RELATED WORK
In this section, we discuss related techniques and systems.

Streaming and Specialized Analytics. MacroBase is a data anal-
ysis system specialized for prioritizing attention in fast data streams.
In its architecture, MacroBase builds upon a long history of sys-
tems for streaming data and specialized, advanced analytics tasks.
A range of systems from both academia [4, 21] and industry (e.g.,
Storm, StreamBase, IBM Oracle Streams) provide infrastructure
for executing streaming queries. MacroBase adopts dataflow as its
execution substrate, but its goal is to provide a set of high-level
analytic monitoring operators; in MacroBase, dataflow is a means
to an end rather than an end in itself. In designing a specialized en-
gine, we were inspired by several past projects, including Gigascope
(specialized for network monitoring) [28], WaveScope (special-
ized for signal processing) [36], MCDB (specialized for Monte
Carlo-based operators) [52], and Bismarck (providing extensible ag-
gregation for gradient-based optimization) [33]. In addition, a range
of commercially-available analytics packages provide advanced an-
alytics functionality—but, to the best of our knowledge, not the
streaming explanation operations we seek here. MacroBase con-
tinues this tradition by providing a specialized set of operators for
classification and explanation of fast data, which in turn allows new
optimizations. We further discuss this design philosophy in [11].

Classification. Classification and outlier detection have an exten-
sive history; the literature contains thousands of techniques from
communities including statistics, machine learning, data mining,

and information theory [7,19,44]. Outlier detection techniques have
seen major success in several domains including network intrusion
detection [32,61], fraud detection (leveraging a variety of classifiers
and techniques) [14, 64], and industrial automation and predictive
maintenance [8, 56]. A considerable subset of these techniques
operates over data streams [6, 18, 65, 75].

At stream volumes in the hundreds of thousands or more events
per second, statistical outlier detection techniques will (by nature)
produce a large stream of outlying data points. As a result, while
outlier detection forms a core component of a fast data analytics
engine, it must be coupled with streaming explanation. In the de-
sign of MacroBase, we treat the array of classification techniques
as inspiration for a modular architecture. In MacroBase’s default
pipeline, we leverage detectors based on robust statistics [46, 57],
adapted to the streaming context. However, in this paper, we also
demonstrate compatibility with detectors from Elki [72], Weka [38],
RapidMiner [45], and OpenGamma [2].

Data explanation. Data explanation techniques assist in summa-
rizing differences between datasets. The literature contains several
recent explanation techniques leveraging decision-tree [23] and
Apriori-like [39, 80] pruning, grid search [68, 82], data cubing [69],
Bayesian statistics [78], visualization [17,62], causal reasoning [81],
and several others [31, 43, 51, 58]. While we are inspired by these
results, none of these techniques executes over streaming data or at
the scale we seek. Several exhibit runtime exponential in the number
of attributes (which can number in the hundreds of thousands to
millions in the fast data we examine) [69, 78] and, when reported,
runtimes in the batch setting often vary from hundreds to approxi-
mately 10K points per second [68,78,80] (we also directly compare
throughput with several techniques [23, 69, 78, 80] in Appendix D).

To address the demands of streaming operation and to scale
to millions of events per second, MacroBase’s explanation tech-
niques draw on sketching and streaming data structures (specifi-
cally [22, 24, 25, 27, 29, 59, 71, 76]), adapted to the fast data setting.
We view existing explanation techniques as a useful second step in
analysis following the explanations generated by MacroBase, and
we see promise in adapting these existing techniques to streaming
execution at high volume. Given our goal of providing a generic ar-
chitecture for analytic monitoring, future improvements in streaming
explanation should be complementary to our results here.

8. CONCLUSIONS AND FUTURE WORK
We have presented MacroBase, a new analytics engine designed

to prioritize attention in fast data streams. MacroBase provides a
flexible architecture that combines streaming classification and data
explanation techniques to deliver interpretable summaries of impor-
tant behavior in fast data streams. MacroBase’s default analytics
operators, which include new sampling and sketching procedures,
take advantage of this combination of detection and explanation
and are specifically optimized for high-volume, time-sensitive, and
heterogeneous data streams, resulting in improved performance and
result quality. This emphasis on flexibility, accuracy, and speed has
proven useful in several production deployments, where MacroBase
has already identified previously unknown behaviors.

MacroBase is available as open source and is under active devel-
opment. The system serves as the vehicle for a number of ongoing
research efforts, including techniques for temporally-aware expla-
nation, heterogeneous sensor data fusion, online non-parametric
density estimation, and contextual outlier detection. Ongoing pro-
duction use cases continue to stimulate the development of new
functionality to expand the set of supported domains and leverage
the flexibility provided by MacroBase’s pipeline architecture.

Acknowledgments
We thank the many members of the Stanford InfoLab, our collab-
orators at MIT and Waterloo, Graham Cormode, Ali Ghodsi, Joe
Hellerstein, Mark Phillips, Leif Walsh, and the early adopters of
the MacroBase prototype for providing feedback on and inspira-
tion for this work. This research was supported in part by Toyota
Research Institute, Intel, the Army High Performance Computing
Research Center, RWE AG, Visa, Keysight Technologies, Facebook,
VMWare, and Philips Lighting, and by the NSF Graduate Research
Fellowship (grants DGE-114747, DGE-1656518). As MacroBase
is open source and publicly available, there is no correspondence—
either direct or implied—between the use cases described in this
work and the above institutions that supported this work.

9. REFERENCES
[1] Caviar test case scenarios. http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
[2] Opengamma, 2015. http://www.opengamma.com/.
[3] Summary of the Amazon DynamoDB service disruption and related impacts in

the US-East region, 2015. https://aws.amazon.com/message/5467D2/.
[4] D. J. Abadi et al. The design of the borealis stream processing engine. In CIDR,

2005.
[5] C. C. Aggarwal. On biased reservoir sampling in the presence of stream

evolution. In VLDB, 2006.
[6] C. C. Aggarwal. Data streams: models and algorithms, volume 31. Springer

Science & Business Media, 2007.
[7] C. C. Aggarwal. Outlier Analysis. Springer, 2013.
[8] R. Ahmad and S. Kamaruddin. An overview of time-based and condition-based

maintenance in industrial application. Computers & Industrial Engineering,
63(1):135–149, 2012.

[9] A. Arasu, S. Babu, and J. Widom. The cql continuous query language: semantic
foundations and query execution. The VLDB Journal, 15(2):121–142, 2006.

[10] A. Asta. Observability at Twitter: technical overview, part i, 2016. https:
//blog.twitter.com/2016/observability-at-twitter-technical-overview-part-i.

[11] P. Bailis, E. Gan, K. Rong, and S. Suri. Prioritizing attention in fast data:
Principles and promise. In CIDR, 2017.

[12] C. Beckel et al. The ECO data set and the performance of non-intrusive load
monitoring algorithms. In BuildSys. ACM, 2014.

[13] Y. Benjamini and D. Yekutieli. The control of the false discovery rate in
multiple testing under dependency. Annals of statistics, pages 1165–1188, 2001.

[14] R. J. Bolton and D. J. Hand. Statistical fraud detection: A review. Statistical
science, pages 235–249, 2002.

[15] C. Buragohain and S. Suri. Quantiles on streams. In Encyclopedia of Database
Systems, pages 2235–2240. Springer, 2009.

[16] R. Butler, P. Davies, and M. Jhun. Asymptotics for the minimum covariance
determinant estimator. The Annals of Statistics, pages 1385–1400, 1993.

[17] L. Cao, Q. Wang, and E. A. Rundensteiner. Interactive outlier exploration in big
data streams. Proceedings of the VLDB Endowment, 7(13):1621–1624, 2014.

[18] L. Cao, D. Yang, Q. Wang, Y. Yu, J. Wang, and E. A. Rundensteiner. Scalable
distance-based outlier detection over high-volume data streams. In ICDE, 2014.

[19] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
computing surveys (CSUR), 41(3):15, 2009.

[20] B. Chandramouli, J. Goldstein, et al. Trill: A high-performance incremental
query processor for diverse analytics. In VLDB, 2014.

[21] S. Chandrasekaran et al. TelegraphCQ: Continuous dataflow processing for an
uncertain world. In CIDR, 2003.

[22] M. Chao. A general purpose unequal probability sampling plan. Biometrika,
69(3):653–656, 1982.

[23] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer. Failure diagnosis
using decision trees. In ICAC, 2004.

[24] J. Cheng et al. A survey on algorithms for mining frequent itemsets over data
streams. Knowledge and Information Systems, 16(1):1–27, 2008.

[25] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for massive
data: Samples, histograms, wavelets, sketches. Foundations and Trends in
Databases, 4(1–3):1–294, 2012.

[26] G. Cormode and M. Hadjieleftheriou. Methods for finding frequent items in
data streams. The VLDB Journal, 19(1):3–20, 2010.

[27] G. Cormode, F. Korn, and S. Tirthapura. Exponentially decayed aggregates on
data streams. In ICDE. IEEE, 2008.

[28] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: a stream
database for network applications. In SIGMOD, 2003.

[29] P. S. Efraimidis. Weighted random sampling over data streams. In Algorithms,
Probability, Networks, and Games, pages 183–195. Springer, 2015.

[30] A. A. Efros, A. C. Berg, G. Mori, and J. Malik. Recognizing action at a
distance. In ICCV, 2003.

[31] K. El Gebaly, P. Agrawal, L. Golab, F. Korn, and D. Srivastava. Interpretable
and informative explanations of outcomes. In VLDB, 2014.

[32] T. Escamilla. Intrusion detection: network security beyond the firewall. John
Wiley & Sons, Inc., 1998.

[33] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a unified architecture for
in-RDBMS analytics. In SIGMOD, 2012.

[34] P. Fournier-Viger. SPMF: An Open-Source Data Mining Library – Performance,
2015. http://www.philippe-fournier-viger.com/spmf/.

[35] P. H. Garthwaite and I. Koch. Evaluating the contributions of individual
variables to a quadratic form. Australian & New Zealand Journal of Statistics,
58(1):99–119, 2016.

[36] L. Girod et al. Wavescope: a signal-oriented data stream management system.
In ICDE, 2006.

[37] M. Goldstein and S. Uchida. A comparative evaluation of unsupervised anomaly
detection algorithms for multivariate data. PLoS ONE, 11(4):1–31, 04 2016.

[38] M. Hall et al. The WEKA data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[39] J. Han et al. Frequent pattern mining: current status and future directions. Data
Mining and Knowledge Discovery, 15(1):55–86, 2007.

[40] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In SIGMOD, 2000.

[41] J. Hardin and D. M. Rocke. Outlier detection in the multiple cluster setting
using the Minimum Covariance Determinant estimator. Computational
Statistics & Data Analysis, 44(4):625–638, 2004.

[42] J. Hardin and D. M. Rocke. The distribution of robust distances. Journal of
Computational and Graphical Statistics, 14(4):928–946, 2005.

[43] J. M. Hellerstein. Quantitative data cleaning for large databases. United Nations
Economic Commission for Europe (UNECE), 2008.

[44] V. J. Hodge and J. Austin. A survey of outlier detection methodologies.
Artificial Intelligence Review, 22(2):85–126, 2004.

[45] M. Hofmann and R. Klinkenberg. RapidMiner: Data mining use cases and
business analytics applications. CRC Press, 2013.

[46] P. J. Huber. Robust statistics. Springer, 2011.
[47] M. Hubert and M. Debruyne. Minimum covariance determinant. Wiley

interdisciplinary reviews: Computational statistics, 2(1):36–43, 2010.
[48] W. H. Hunter. US Chemical Safety Board: analysis of Horsehead Corporation

Monaca Refinery fatal explosion and fire, 2015.
http://www.csb.gov/horsehead-holding-company-fatal-explosion-and-fire/.

[49] J.-H. Hwang, M. Balazinska, et al. High-availability algorithms for distributed
stream processing. In ICDE, 2005.

[50] IDC. The digital universe of opportunities: Rich data and the increasing value of
the internet of things, 2014. http://www.emc.com/leadership/digital-universe/.

[51] I. F. Ilyas and X. Chu. Trends in cleaning relational data: Consistency and
deduplication. Foundatations and Trends in Databases, 2015.

[52] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P. J. Haas. MCDB: a
Monte Carlo approach to managing uncertain data. In SIGMOD, 2008.

[53] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building efficient query engines
in a high-level language. In VLDB, 2014.

[54] H. Li, J. Li, L. Wong, M. Feng, and Y.-P. Tan. Relative risk and odds ratio: A
data mining perspective. In PODC, 2005.

[55] J. Lin et al. Visualizing and discovering non-trivial patterns in large time series
databases. Information visualization, 4(2):61–82, 2005.

[56] R. Manzini, A. Regattieri, H. Pham, and E. Ferrari. Maintenance for industrial
systems. Springer Science & Business Media, 2009.

[57] R. Maronna, D. Martin, and V. Yohai. Robust statistics. John Wiley & Sons,
Chichester. ISBN, 2006.

[58] A. Meliou, S. Roy, and D. Suciu. Causality and explanations in databases. In
VLDB, 2014.

[59] A. Metwally et al. Efficient computation of frequent and top-k elements in data
streams. In ICDT. Springer, 2005.

[60] J. A. Morris and M. J. Gardner. Statistics in medicine: Calculating confidence
intervals for relative risks (odds ratios) and standardised ratios and rates. British
medical journal (Clinical research ed.), 296(6632):1313, 1988.

[61] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network intrusion detection.
Network, IEEE, 8(3):26–41, 1994.

[62] V. Nair et al. Learning a hierarchical monitoring system for detecting and
diagnosing service issues. In KDD, 2015.

[63] T. Pelkonen et al. Gorilla: A fast, scalable, in-memory time series database. In
VLDB, 2015.

[64] C. Phua, V. Lee, K. Smith, and R. Gayler. A comprehensive survey of data
mining-based fraud detection research. arXiv preprint arXiv:1009.6119, 2010.

[65] D. Pokrajac, A. Lazarevic, and L. J. Latecki. Incremental local outlier detection
for data streams. In CIDM, 2007.

[66] B. Reiser. Confidence intervals for the Mahalanobis distance. Communications
in Statistics-Simulation and Computation, 30(1):37–45, 2001.

[67] P. J. Rousseeuw and K. V. Driessen. A fast algorithm for the minimum
covariance determinant estimator. Technometrics, 41(3):212–223, 1999.

[68] S. Roy, A. C. König, I. Dvorkin, and M. Kumar. Perfaugur: Robust diagnostics
for performance anomalies in cloud services. In ICDE, 2015.

[69] S. Roy and D. Suciu. A formal approach to finding explanations for database
queries. In SIGMOD, 2014.

[70] G. Rupert Jr et al. Simultaneous statistical inference. Springer Science &
Business Media, 2012.

[71] F. I. Rusu. Sketches for aggregate estimations over data streams. PhD thesis,
University of Florida, 2009.

[72] E. Schubert, A. Koos, T. Emrich, A. Züfle, K. A. Schmid, and A. Zimek. A
framework for clustering uncertain data. In VLDB, 2015.

[73] W. Shi and B. Golam Kibria. On some confidence intervals for estimating the
mean of a skewed population. International Journal of Mathematical Education
in Science and Technology, 38(3):412–421, 2007.

[74] H. A. Simon. Designing organizations for an information rich world. In
Computers, communications, and the public interest, pages 37–72. 1971.

[75] S. Subramaniam et al. Online outlier detection in sensor data using
non-parametric models. In VLDB, 2006.

[76] S. K. Tanbeer et al. Sliding window-based frequent pattern mining over data
streams. Information sciences, 179(22):3843–3865, 2009.

[77] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS), 11(1):37–57, 1985.

[78] X. Wang, X. L. Dong, and A. Meliou. Data x-ray: A diagnostic tool for data
errors. In SIGMOD, 2015.

[79] A. Woodie. Kafka tops 1 trillion messages per day at LinkedIn. Datanami,
September 2015. http://www.datanami.com/2015/09/02/
kafka-tops-1-trillion-messages-per-day-at-linkedin/.

[80] E. Wu and S. Madden. Scorpion: Explaining away outliers in aggregate queries.
In VLDB, 2013.

[81] D. Y. Yoon, N. Niu, and B. Mozafari. DBSherlock: A performance diagnostic
tool for transactional databases. In SIGMOD, 2016.

[82] Z. Zheng, Y. Li, and Z. Lan. Anomaly localization in large-scale clusters. In
ICCC, 2007.

APPENDIX
A. CLASSIFICATION
MCD. Computing the exact MCD requires examining all subsets of
points to find the subset whose covariance matrix exhibits the minimum
determinant. This is computationally intractable for even modestly-
sized datasets. Instead, MacroBase adopts an iterative approximation
called FastMCD [67]. In FastMCD, an initial subset of points S0 is cho-
sen from the input set of points P. FastMCD computes the covariance
C0 and mean µ0 of S0, then performs a “C-step” by finding the set S1 of
points in P that have the |S1| closest Mahalanobis distances (to C0 and
µ0). FastMCD subsequently repeats C-steps (i.e., computes the covari-
ance C1 and mean µ1 of S1, selects a new subset S2 of points in P, and
repeats) until the change in the determinant of the sample covariance
converges (i.e., det(Si�1)� det(Si) < e , for small e). To determine
which dimensions are most anomalous in MCD, MacroBase uses the
corr-max transformation [35].

Handling variable ADR arrival rates. We consider two policies for
collecting samples using an ADR over real-time periods with variable
tuple arrival rates. The first is to compute a uniform sample per decay
period, with decay across periods. This can be achieved by maintaining
an ADR for the stream contents from all prior periods and a regular,
uniform reservoir sample for the current period. At the end of the period,
the period sample can be inserted into the ADR. The second policy is
to compute a uniform sample over time, with decay according to time.
In this setting, given a sampling period (e.g., 1s), for each period, insert
the average of all points.

Contamination plot details. In Figure 3, we examine a dataset of 10M
points drawn from two distributions: a uniform inlier distribution, with
radius 50 centered at the origin, and a uniform outlier distribution, with
radius 50 centered at (1000, 1000). We varied the proportion of points
in each to evaluate the effect of contamination on the Z-Score, MAD,
and MCD (using univariate points for Z-Score and MAD).

B. EXPLANATION
Streaming combinations: CPS-tree adaptation. Given the set of
recently frequent items, MDP monitors the attribute stream for frequent

attribute combinations by maintaining a frequency-descending prefix
tree of attribute values: the CPS-tree data structure [76], with several
modifications, which we call the M-CPS-tree. Like the CPS-tree, the M-
CPS-tree maintains both the basic FP-tree data structures as well as a set
of leaf nodes in the tree. However, in an exponentially damped model,
the CPS-tree stores at least one node for every item ever observed in the
stream. This is infeasible at scale. As a compromise, the M-CPS-tree
only stores items that were frequent in the previous window: at each
window boundary, MacroBase updates the frequent item counts in the
M-CPS-tree based on its AMC sketch. Any items that were frequent in
the previous window but were not frequent in this window are removed
from the tree. MacroBase then decays all frequency counts in the M-
CPS-tree nodes and re-sorts the M-CPS-tree in frequency descending
order (as in the CPS-tree, by traversing each path from leaf to root and
re-inserting as needed). Subsequently, attribute insertion can continue
as in the FP-tree.

Confidence. To provide confidence intervals on its output explanations
and prevent false discoveries (type I errors, our focus here), MDP lever-
ages existing results from the epidemiology literature, applied to the
MDP data structures. For a given attribute combination appearing ao
times in the outliers and ai times in the inliers, with a risk ratio of o, bo
other outlier points, and bi other inlier points, we can compute a 1� p%
confidence interval as:

o ± exp

zp

r
1
ao
� 1

ao +ai
+

1
bo
� 1

bo +bi

!

where zp is the z-score corresponding to the 1� p
2 percentile [60]. For

example, an attribute combination with risk ratio of 5 that appears in 1%
of 10M points has a 95th percentile confidence interval of (3.93,6.07)
(99th: (3.91,6.09)). Given a risk ratio threshold of 3, MacroBase can
return this explanation with confidence.

However, because MDP performs a repeated set of statistical tests
to find attribute combinations with sufficient risk ratio, MDP subject to
the multiple testing problem: large numbers of statistical tests are statis-
tically likely to contain false positives. To address this problem, MDP
can apply a correction to its intervals. For example, under the Bonfer-
roni correction [70], if a user seeks a confidence of 1� p and MDP tests
k attribute combinations, MDP should instead assess the confidence for
zp at 1� p

k . We can compute k at explanation time by recording the
number of support computations.

k is likely to be large as, in the limit, MDP may examine the power
set of all attribute values in the outliers. However, with fast data, this
is less problematic. First, the pruning power of MDP’s explanation
routine eliminates many tests, thus reducing type I errors. Second,
empirically, many of MacroBase’s explanations have very high risk
ratio—often in the tens or hundreds. This is because many problem-
atic behaviors are highly systemic, meaning large intervals may still be
above the user-specified risk ratio threshold. Third, and perhaps most
importantly, MacroBase analyzes large streams. In the above exam-
ple, even with k = 10M, the 95th percentile confidence interval is still
(3.80,6.20). Compared to medical studies with study sizes in the range
of hundreds of samples, the large volume of data mitigates many of
the problems associated with multiple testing. For example, the same
k = 10M yields a 95th percentile confidence interval of (0,106M) when
applied to a dataset of only 1000 points, which is effectively meaning-
less. (This trend also applies to alternative corrective methods such as
the Benjamini-Hochberg procedure [13].) Thus, while the volumes of
fast data streams pose significant computational challenges, they can
actually improve the statistical quality of analytics results.

C. IMPLEMENTATION
In this section, we describe the MacroBase prototype implementation

and runtime. As of February 2017, MacroBase’s core comprises approx-
imately 9,400 lines of Java, over 7,000 of which are devoted to operator
implementation, along with an additional 1,000 lines of Javascript and
HTML for the front-end and 7,600 lines of Java for diagnostics and
prototype pipelines.

LS TS ES AS FS MS
Throughput (points/sec) 7.86M 8.70M 9.35M 12.31M 7.05M 6.22M
Speedup over Java 7.46⇥ 24.11⇥ 5.24⇥ 16.87⇥ 5.32⇥ 17.54⇥

.

Table 3: Speedups of hand-optimized C++ over Java Mac-
roBase prototype for simple queries (queries from Section 6).

We chose Java due to its high productivity, support for higher-order
functions, and popularity in open source. However, there is consider-
able performance overhead associated with the Java virtual machine
(JVM). Despite interest in bytecode generation from high-level languages
such as Scala and .NET [20, 53], we are unaware of any generally-
available, production-strength operator generation tools for the JVM.
As a result, MacroBase leaves performance on the table in exchange
for programmer productivity. To understand the performance gap, we
rewrote a simplified MDP pipeline in hand-optimized C++. As Table 3
shows, we measure an average throughput gap of 12.76⇥ for simple
queries. JVM code generation will reduce this gap.

MacroBase executes operator pipelines via a custom single-core da-
taflow execution engine. MacroBase’s streaming dataflow decouples
producers and consumers: each operator writes (i.e,. pushes) to an out-
put stream but consumes tuples as they are pushed to the operator by
the runtime (i.e., implements a consume(OrderedList<Point>) inter-
face). This facilitates a range scheduling policies: operator execution
can proceed sequentially, or by passing batches of tuples between op-
erators. MacroBase supports several styles of pipeline construction, in-
cluding a fluent, chained operator API. By default, MacroBase amor-
tizes calls to consume across several thousand points, reducing function
call overhead. This API also allows stream multiplexing and is com-
patible with a variety of existing dataflow execution engines, including
Storm, Heron, and Amazon Streams, which could act as future execu-
tion substrates. We demonstrate interoperability with several existing
data mining frameworks in Appendix D.

The MacroBase prototype does not currently implement fault tol-
erance, although classic techniques such as state-based checkpointing
are applicable here [49], especially as MDP’s operators contain modest
state. The MacroBase prototype is also oriented towards single-core
deployment. For parallelism, MacroBase currently runs one query per
core (e.g., one query pipeline per application cluster in a datacenter).
We report on preliminary multi-core scale-out results in Appendix D.

The MacroBase prototype and all code evaluated in this paper are
available online under a permissive open source license.

D. EXPERIMENTAL RESULTS
Dataset descriptions. CMT contains user drives at CMT, including
anonymized metadata such as phone model, drive length, and battery
drain; Telecom contains aggregate internet, SMS, and telephone activ-
ity for a Milanese telecom; Accidents contains statistics about United
Kingdom road accidents between 2012 and 2014, including road con-
ditions, accident severity, and number of fatalities; Campaign contains
all US Presidential campaign expenditures in election years between
2008 and 2016, including contributor name, occupation, and amount;
Disburse contains all US House and Senate candidate disbursements
in election years from 2010 through 2016, including candidate name,
amount, and recipient name; and Liquor contains sales at liquor stores
across the state of Iowa. All but CMT are i.) publicly accessible, allow-
ing reproducibility, and ii.) representative of many challenges we have
encountered in analyzing production data beyond CMT in both scale
and behaviors. While none of these datasets contain ground-truth la-
bels, we have verified several of the explanations from our queries over
CMT.

Score distribution. We plot the CDF of scores in each of our real-
world dataset queries in Figure 7. While many points have high outlier
scores, the tail of the distribution (at the 99th percentile) is extreme: a
very small proportion of points have outlier scores over over 150. Thus,
by focusing on this small upper percentile, MDP highlights the most
extreme behaviors.

Figure 7: CDF of outlier scores for all datasets, with average in
red; the datasets exhibit a long tail with extreme outlier scores
at the 99th percentile and higher.

Figure 8: Number of summaries produced and summarization
time under varying support (percentage) and risk ratio.

Varying support and risk ratio. To understand the effect of support
and risk ratio threshold on explanation, we varied each and measured
the resulting runtime and the number of summaries produced on the EC
and MC datasets, which we plot in Figure 8. Each dataset has few at-
tributes with outlier support greater than 10%, but each had over 1700
with support greater than 0.001%. Modifying the support threshold be-
yond 0.01% had limited impact on runtime; most time in explanation
is spent in simply iterating over the inliers rather than maintaining tree
structures. This effect is further visible when varying the risk ratio,
which has less than 40% impact on runtime yet leads to an order of mag-
nitude change in number of summaries. Our default setting of support
and risk ratio yields a sensible trade-off between number of summaries
produced and runtime.

Operating on samples. MDP periodically trains models using samples
from the input distribution. The statistics literature offers confidence
intervals on the MAD [73] and the Mahalanobis distance [66] (e.g., for
a sample of size n, the confidence interval of MAD shrinks with n1/2),
while MCD converges at a rate of n�1/2 [16]. To empirically evalu-
ate these effects, we measured the accuracy and efficiency of training
models on samples from a 10M point dataset. In Figure 9, we plot the
outlier classification accuracy versus sample size for the CMT queries.
MAD precision and recall are largely unaffected by sampling, allowing
a two order-of-magnitude speedup without loss in accuracy. In contrast,
MCD accuracy is slightly more sensitive due to variance in the sample
selection. This variance is partially offset by the fact that models are re-
trained regularly under streaming execution, and the resulting speedups
in both models are substantial.

Metric scalability. As Figure 10 demonstrates, MCD train and score
throughput (here, over Gaussian data) is linearly affected by data dimen-
sionality, encouraging the use of dimensionality reduction techniques
for complex data.

M-CPS and CPS behavior. We also investigated the behavior of the
M-CPS-tree compared to the generic CPS-tree. The two data structures

Figure 9: Behavior of MAD (MS) and MCD (MC) on samples.

Figure 10: MCD throughput versus metric size.

have different behaviors and semantics: the M-CPS-tree captures only
itemsets that are frequent for at least two windows by leveraging an
AMC sketch. In contrast, CPS-tree captures all frequent combinations
of attributes but must insert each point’s attributes into the tree (whether
supported or not) and, in the limit, stores (and re-sorts) all items ever
observed in the stream. As a result, across all queries except ES and EC,
the CPS-tree was on average 130x slower than the M-CPS-tree (std dev:
213x); on ES and EC, the CPS-tree was over 1000x slower. The exact
speedup was influenced by the number of distinct attribute values in the
dataset: Accidents had few values, incurring 1.3x and 1.7x slowdowns,
while Campaign had many, incurring substantially greater slowdowns

Preliminary scale-out. As a preliminary assessment of MacroBase’s
potential for scale-out, we examined MDP behavior under a naïve, shared-
nothing parallel execution strategy. We partitioned the data across a
variable number of cores of a server containing four Intel Xeon E7-4830
2.13 GHz CPUs and processed each partition in parallel; upon com-
pletion, we return the union of each core’s explanation. As Figure 11
shows, this strategy delivers excellent linear scalability. However, as
each core processes a sample of the overall dataset, accuracy suffers
due to both model drift (as in Figure 9) and lack of cross-partition co-
operation in summarization. For example, with 32 partitions spanning
32 cores, FS achieves throughput nearing 29M points per second, with
perfect recall, but only 12% accuracy. Improving accuracy while main-
taining scalability is the subject of ongoing work.

Explanation runtime comparison. Following the large number of re-
cent data explanation techniques (Section 7), we implemented several
additional methods. The results of these methods are not comparable,
and prior work has not evaluated these techniques with respect to one
another in terms of semantics or performance. We do not attempt a full
comparison based on semantics but do perform a comparison based on
running time, which we depict in Table 5. We compared to a data cub-
ing strategy suggested by Roy and Suciu [69], which generates counts
for all possible combinations (21x slower), Apriori itemset mining [39]
(over 43x slower), and Data X-Ray [78]. Cubing works better for data

Figure 11: Behavior of naïve, shared-nothing scale-out.

TPC-C (QS: one MacroBase query per cluster): top-1: 88.8%, top-3: 88.8%
A1 A2 A3 A4 A5 A6 A7 A8 A9

Train top-1 correct (of 9) 9 9 9 9 9 8 9 9 8
Holdout top-1 correct (of 2) 2 2 2 2 2 2 2 2 0
TPC-C (QE: one MacroBase query per anomaly type): top-1: 83.3%, top-3: 100%

A1 A2 A3 A4 A5 A6 A7 A8 A9
Train top-1 correct (of 9) 9 9 9 9 9 8 9 9 7
Holdout top-1 correct (of 2) 2 2 2 2 2 1 2 2 0

TPC-E (QS: one MacroBase query per cluster): top-1: 83.3%, top-3: 88.8%
A1 A2 A3 A4 A5 A6 A7 A8 A9

Train top-1 correct (of 9) 9 9 9 9 9 8 9 9 0
Holdout top-1 correct (of 2) 2 2 2 2 2 1 2 2 0
TPC-E (QE: one MacroBase query per anomaly type): top-1: 94.4%, top-3: 100%

A1 A2 A3 A4 A5 A6 A7 A8 A9
Train top-1 correct (of 9) 9 9 9 9 9 8 9 9 6
Holdout top-1 correct (of 2) 2 2 2 2 2 1 2 2 2

Table 4: MDP accuracy on DBSherlock workload. A1: work-
load spike, A2: I/O stress, A3: DB backup, A4: table restore,
A5: CPU stress, A6: flush log/table; A7: network congestion;
A8: lock contention; A9: poorly written query. “Poor physi-
cal design” (from [81]) is excluded as the labeled anomalous re-
gions did not exhibit significant correlations with any metrics.

Query MB FP Cube DT10 DT100 AP XR
LC 1.01 4.64 DNF 7.21 77.00 DNF DNF
TC 0.52 1.38 4.99 10.70 100.33 135.36 DNF
EC 0.95 2.82 16.63 16.19 145.75 50.08 DNF
AC 0.22 0.61 1.10 1.22 1.39 9.31 6.28
FC 1.40 3.96 71.82 15.11 126.31 76.54 DNF
MC 1.11 3.23 DNF 11.45 94.76 DNF DNF

Table 5: Running time of explanation algorithms (s) for each
complex query. MB: MacroBase, FP: FPGrowth, Cube: Data
cubing; DTX: decision tree, maximum depth X; AP: A-Aprioi;
XR: Data X-Ray. DNF: did not complete in 20 minutes.

with fewer attributes, while Data X-Ray is optimized for hierarchical
data; we have verified with the authors of Data-XRay that, for Mac-
roBase’s flat attributes, Data X-Ray will consider all combinations un-
less stopping criteria are met. MacroBase’s cardinality-aware explana-
tion completes fastest for all queries.

Compatibility with existing frameworks. We implemented several
additional MacroBase operators to validate interoperability with exist-
ing data mining packages. We were unable to find a single framework
that implemented both unsupervised outlier detection and data expla-
nation and had difficulty locating streaming implementations. Never-
theless, we implemented two MacroBase outlier detection operators
using Weka 3.8.0’s KDTree and Elki 0.7.0’s SmallMemoryKDTree, an
alternative FastMCD operator based on a recent RapidMiner extension
(CMGOSAnomalyDetection) [37], an alternative MAD operator from the
OpenGamma 2.31.0, and an alternative FPGrowth-based summarizer
based on SPMF version v.0.99i. As none of these packages allowed
streaming operation (e.g., Weka allows adding points to a KDTree but
does not allow removals, while Elki’s SmallMemoryKDTree does not
allow modification), we implemented batch versions. We do not per-
form accuracy comparisons here but note that the kNN performance
was substantially slower (>100x) than MDP’s operators (in line with
recent findings [37]) and, while SPMF’s operators were faster than our
generic FPGrowth implementation, SPMF was still 2.8⇥ slower than
MacroBase due to MDP’s cardinality-aware optimizations. The primary
engineering overheads came from adapting to each framework’s data
formats; however, with a small number of utility classes, we were able
to easily compose operators from different frameworks and also from
MacroBase, without modification. Should these frameworks begin to
prioritize streaming execution and/or explanation, this interoperability
may prove fruitful in the future.

