
Feral Concurrency Control:
An Empirical Investigation of Modern Application Integrity

Peter Bailis, Alan Fekete†, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica
UC Berkeley and †University of Sydney

ABSTRACT
The rise of data-intensive “Web 2.0” Internet services has led to a
range of popular new programming frameworks that collectively
embody the latest incarnation of the vision of Object-Relational
Mapping (ORM) systems, albeit at unprecedented scale. In this
work, we empirically investigate modern ORM-backed applica-
tions’ use and disuse of database concurrency control mechanisms.
Specifically, we focus our study on the common use of feral, or
application-level, mechanisms for maintaining database integrity,
which, across a range of ORM systems, often take the form of declar-
ative correctness criteria, or invariants. We quantitatively analyze
the use of these mechanisms in a range of open source applications
written using the Ruby on Rails ORM and find that feral invariants
are the most popular means of ensuring integrity (and, by usage, are
over 37 times more popular than transactions). We evaluate which
of these feral invariants actually ensure integrity (by usage, up to
86.9%) and which—due to concurrency errors and lack of database
support—may lead to data corruption (the remainder), which we
experimentally quantify. In light of these findings, we present rec-
ommendations for database system designers for better supporting
these modern ORM programming patterns, thus eliminating their
adverse effects on application integrity.

1. INTRODUCTION
The rise of “Web 2.0” Internet applications delivering dynamic,

highly interactive user experiences has been accompanied by a new
generation of programming frameworks [80]. These frameworks
simplify common tasks such as content templating and presentation,
request handling, and, notably, data storage, allowing developers
to focus on “agile” development of their applications. This trend
embodies the most recent realization of the larger vision of object-
relational mapping (ORM) systems [29], albeit at a unprecedented
scale of deployment and programmer adoption.

As a lens for understanding this modern ORM behavior, we
study Ruby on Rails (or, simply, “Rails”) [50, 74], a central player
among modern frameworks powering sites including (at one point)
Twitter [35], Airbnb [9], GitHub [70], Hulu [31], Shopify [40],
Groupon [67], SoundCloud [28], Twitch [71], Goodreads [2], and
Zendesk [83]. From the perspective of database systems research,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2737784.

Rails is interesting for at least two reasons. First, it continues to be a
popular means of developing responsive web application front-end
and business logic, with an active open source community and user
base. Rails recently celebrated its tenth anniversary and enjoys
considerable commercial interest, both in terms of deployment and
the availability of hosted “cloud” environments such as Heroku.
Thus, Rails programmers represent a large class of consumers of
database technology. Second, and perhaps more importantly, Rails
is “opinionated software” [41]. That is, Rails embodies the strong
personal convictions of its developer community, and, in particular,
David Heinemeier Hansson (known as DHH), its creator. Rails is
particularly opinionated towards the database systems that it tasks
with data storage. To quote DHH:

“I don’t want my database to be clever! . . . I consider
stored procedures and constraints vile and reckless de-
stroyers of coherence. No, Mr. Database, you can not
have my business logic. Your procedural ambitions
will bear no fruit and you’ll have to pry that logic from
my dead, cold object-oriented hands . . . I want a single
layer of cleverness: My domain model.” [55]

Thus, this wildly successful software framework bears an actively
antagonistic relationship to database management systems, echoing
a familiar refrain of the “NoSQL” movement: get the database out
of the way and let the application do the work.

In this paper, we examine the implications of this impedance
mismatch between databases and modern ORM frameworks in the
context of application integrity. By shunning decades of work on
native database concurrency control solutions, Rails has developed a
set of primitives for handling application integrity in the application
tier—building, from the underlying database system’s perspective, a
feral concurrency control system. We examine the design and use of
these feral mechanisms and evaluate their effectiveness in practice
by analyzing them and experimentally quantifying data integrity
violations in practice. Our goal is to understand how this growing
class of applications currently interacts with database systems and
how we, as a database systems community, can positively engage
with these criticisms to better serve the needs of these developers.

We begin by surveying the state of Rails’ application-tier concur-
rency control primitives and examining their use in 67 open source
applications representing a variety of use cases from e-Commerce to
Customer Relationship Management and social networking. We find
that, these applications overwhelmingly use Rails’ built-in support
for declarative invariants—validations and associations—to protect
data integrity—instead of application-defined transactions, which
are used more than 37 times less frequently. Across the survey, we
find over 9950 uses of application-level validations designed to en-
sure correctness criteria including referential integrity, uniqueness,
and adherence to common data formats.

Given this corpus, we subsequently ask: are these feral invariants
correctly enforced? Do they work in practice? Rails will execute
validation checks concurrently, so we study the potential for data
corruption due to races if validation and update activity does not
run within a serializable transaction in the database. This is a real
concern, as many DBMS platforms use non-serializable isolation by
default and in many cases (despite labeling otherwise) do not provide
serializable isolation as an option at all. Accordingly, we apply
invariant confluence analysis [17] and show that, in fact, up to 86.9%
of Rails validation usage by volume is actually safe under concurrent
execution. However, the remainder—which include uniqueness
violations under insertion and foreign key constraint violations under
deletion—are not. Therefore, we quantify the impact of concurrency
on data corruption for Rails uniqueness and foreign key constraints
under both worst-case analysis and via actual Rails deployment. We
demonstrate that, for pathological workloads, validations reduce the
severity of data corruption by orders of magnitude but nevertheless
still permit serious integrity violations.

Given these results, we return to our goal of improving the un-
derlying data management systems that power these applications
and present recommendations for the database research commu-
nity. We expand our study to survey several additional web frame-
works and demonstrate that many also provide a notion of feral
validations, suggesting an industry-wide trend. While the success
of Rails and its ilk—despite (or perhaps due to) their aversion to
database technology—are firm evidence of the continued impedance
mismatch between object-oriented programming and the relational
model, we see considerable opportunity in improving database sys-
tems to better serve these communities—via more programmer- and
ORM-friendly interfaces that ensure correctness while minimizing
impacts on performance and portability.

In summary, this paper makes the following contributions:

• We analyze 67 open source Ruby on Rails applications to
determine their use of both database-backed and feral concur-
rency control mechanisms. This provides a quantitative pic-
ture of how mainstream web developers interact with database
systems, and, more specifically, concurrency control.

• We study these applications’ feral mechanisms potential for
application integrity violations. We analytically and experi-
mentally quantify the incidence and degree of inconsistency
allowed by Rails’s uniqueness and association validations.

• We survey six additional frameworks for similarly unsafe val-
idations. Based on these results and those above, we present
a set of recommendations for database systems designers, in-
cluding increasing database support for application invariants
while avoiding coordination and maintaining portability.

In all, this paper is an attempt to understand how a large and
growing class of programmers and framework authors interacts with
the data management systems that this community builds. We hope
to raise awareness about prevalent and under-supported application
programming patterns and their impact on the integrity of real-
world, end-user database-backed applications. Our contributions do
not include a new system for database concurrency control; rather,
our goal is to inform designers and architects of next-generation
data management systems and provide quantitative evidence of the
practical shortcomings and pitfalls in real-world database concur-
rency control today. We view this work as an early example of
the promising opportunity in empirical analysis of open source
database-backed software as written and deployed in practice.

The remainder of this paper proceeds as follows. Section 2 briefly
provides background on Rails MVC and deployment, while Sec-
tion 3 surveys Rails’s supported concurrency control mechanisms.

Section 4 presents analysis of mechanism usage in open source
applications as well as safety under weak isolation. Section 5 ex-
perimentally quantifies the integrity violations allowed in a Rails
deployment. Section 6 describes support for feral validations in
additional frameworks, and Section 7 presents recommendations for
better supporting these framework demands. Section 8 presents re-
lated work, and Section 9 concludes with a reflection on the potential
of empirical methods in database systems research.

2. BACKGROUND
As a primary focus of our study, we investigate the operational

model, database use, and application primitives provided in Rails. In
this section, we provide a brief overview of the Rails programming
model and describe standard Rails deployment architectures.

2.1 Rails Tenets and MVC
Rails was developed in order to maximize developer productivity.

This focus is captured by two core architectural principles [74].
First, Rails adopts a “Don’t Repeat Yourself” (DRY) philosophy:
“every piece of knowledge should be expressed in just one place” in
the code. Data modeling and schema descriptions are relegated to
one portion of the system, while presentation and business logic are
relegated to two others. Rails attempts to minimize the amount of
boilerplate code required to achieve this functionality. Second, Rails
adopts a philosophy of “Convention over Configuration,” aiming for
sensible defaults and allowing easy deployment without many—if
any—modifications to configuration.

A natural corollary to the above principles is that Rails encourages
an idiomatic style of programming. The Rails framework authors
claim that “somehow, [this style] just seems right” for quickly build-
ing responsive web applications [74]. The framework’s success
hints that its idioms are, in fact, natural to web developers.

More concretely, Rails divides application code into a three-
component architecture called Model-View-Controller [49, 60]:

• The Model acts as a basic ORM and is responsible for man-
aging business objects, including schemas, querying, and
persistence functionality. For example, in a banking applica-
tion, an account’s state could be represented by a model with
a numeric owner ID field and a numeric balance field.

• The View acts as a presentation layer for application objects,
including rendering into browser-ingestible HTML and/or
other formats such as JSON. In our banking application, the
View would be responsible for rendering the page displaying
a user’s account balance.

• The Controller encapsulates the remainder of the applica-
tion’s business logic, including actual generation of queries
and transformations on the Active Record models. In our
banking application, we would write logic for orchestrating
withdrawal and deposit operations within the Controller.

Actually building a Rails application is a matter of instantiat-
ing a collection of models and writing appropriate controller and
presentation logic for each.

As we are concerned with how Rails utilizes database back-
ends, we largely focus on how Rails applications interact with the
Model layer. Rails natively supports a Model implementation called
Active Record. Rails’s Active Record module is an implemen-
tation of the Active Record pattern originally proposed by Martin
Fowler, a prominent software design consultant [48]. Per Fowler, an
Active Record is “an object that wraps a row in a database or view,
encapsulates the database access, and adds domain logic on that
data” (further references to Active Record will correspond to Rails’s

implementation). The first two tasks—persistence and database
encapsulation—fit squarely in the realm of standard ORM design,
and Rails adopts Fowler’s recommendation of a one-to-one correla-
tion between object fields and database columns (thus, each declared
Active Record class is stored in a separate table in the database).
The third component, domain logic, is more complicated. Each
Rails model may contain a number of attributes (and must include
a special primary-key-backed id field) as well as associated logic
including data validation, associations, and other constraints. Fowler
suggests that “domain logic that isn’t too complex” is well-suited
for encapsulation in an Active Record class. We will discuss these
in greater depth in the next section.

2.2 Databases and Deployment
This otherwise benign separation of data and logic becomes in-

teresting when we consider how Rails servers process concurrent
requests. In this section, we describe how, in standard Rails deploy-
ments, application logic may be executed concurrently and without
synchronization within separate threads or processes.

In Rails, the database is—at least for basic usages—simply a place
to store model state and is otherwise divorced from the application
logic. All application code is run within the Ruby virtual machine
(VM), and Active Record makes appropriate calls to the database
in order to materialize collections of models in the VM memory
as needed (as well as to persist model state). However, from the
database’s perspective (and per DHH’s passionate declaration in
Section 1), logic remains in the application layer. Active Record
natively provides support for PostgreSQL, MySQL, and SQLite,
with extensions for databases including Oracle and is otherwise
agnostic to database choice.

Rails deployments typically resemble traditional multi-tier web
architectures [10] and consist of an HTTP server such as Apache
or Nginx that acts as a proxy for a pool of Ruby VMs running the
Rails application stack. Depending on the Ruby VM and Rails
implementation, the Rails application may or may not be multi-
threaded.1 Thus, when an end-user makes a HTTP request on a
Rails-powered web site, the request is first accepted by a web server
and passed to a Rails worker process (or thread within the process).
Based on the HTTP headers and destination, Rails subsequently
determines the appropriate Controller logic and runs it, including
any database calls via Active Record, and renders a response via the
View, which is returned to the HTTP server.

Thus, in a Rails application, the only coordination between in-
dividual application requests occurs within the database system.
Controller execution—whether in separate threads or across Ruby
VMs (which may be active on different physical servers)—is entirely
independent, save for the rendezvous of queries and modifications
within the database tier, as triggered by Active Record operations.

The independent execution of concurrent business logic should
give serious pause to disciples of transaction processing systems.
Is this execution strategy actually safe? Thus far, we have yet to
discuss any mechanisms for maintaining correct application data,
such as the use of transactions. In fact, as we will discuss in the next

1Ruby was not traditionally designed for highly concurrent operations: its
standard reference VM—Ruby MRI—contains (like Python’s CPython) a
“Global VM Lock” that prevents multiple OS threads from executing at a
given time. While alternative VM implementations provide more concurrent
behavior, until Rails 2.2 (released in November 2008), Rails embraced this
behavior and was unable to process more than one request at a time (due to
state shared state including database connections and logging state) [69]. In
practice today, the choice of multi-process, multi-threaded, or multi-process
and multi-threaded deployment depends on the actual application server
architecture. For example, three popular servers—Phusion Passenger, Puma,
and Unicorn —each provide a different configuration.

section, Rails has, over its lifetime, introduced several mechanisms
for maintaining consistency of application data. In keeping with
Rails’ focus on keeping application logic within Rails (and not in
the database), this has led to several different proposals. In the
remainder of this paper, we examine their use and whether, in fact,
they correctly maintain application data.

3. FERAL MECHANISMS IN RAILS
As we discussed in Section 2.2, Rails services user requests in-

dependently, with the database acting as a point of rendezvous for
concurrent operations. Given Rails’s design goals of maintaining
application logic at the user level, this appears—on its face—a some-
what cavalier proposition with respect to application integrity. In
response, Rails has developed a range of concurrency control strate-
gies, two of which operate external to the database, at the application
level, which we term feral concurrency control mechanisms.

In this section, we outline four major mechanisms for guarding
against integrity violations under concurrent execution in Rails. We
subsequently begin our study of 67 open source applications to
determine which of these mechanisms are used in practice. In the
following section, we will determine which are sufficient to maintain
correct data—and when they are not.

3.1 Rails Concurrency Control Mechanisms
Rails contains four main mechanisms for concurrency control.

1. Rails provides support for transactions. By wrapping a sequence
of operations within a special transaction block, Rails opera-
tions will execute transactionally, backed by an actual database
transaction. The database transaction either runs at the database’s
configured default isolation level or, as of Rails 4.0.0, can be
configured on a per-transaction basis [64].

2. Rails provides support for both optimistic and pessimistic per-
record locking. Applications invoke pessimistic locks on an
Active Record object by calling its lock method, which invokes
a SELECT FOR UPDATE statement in the database. Optimistic
locking is invoked by declaring a special lock_version field
in an Active Record model. When a Rails process performs an
update to an optimistically locked model, Active Record atomi-
cally checks whether the corresponding record’s lock_version
field has changed since the process last read the object; if it has
not changed, Rails transactionally increments lock_version and
updates the database record.

3. Rails provides support for application-level validations. Each
Active Record model has a set of zero or more validations, or
boolean-valued functions, and a model instance many only be
saved to the database if all of its declared validations return
true. These validations ensure, for example, that particular fields
within a record are not null or, alternatively, are unique within the
database. Rails provides a number of built-in validations but also
allows arbitrary user-defined validations (we discuss actual vali-
dations further in subsequent sections). The framework runs each
declared validation sequentially and, if all succeed, the model
state is updated in the database; this happens within a database-
backed transaction.2 The validations supported by Rails today
include ones that are natively supported by many commercial
databases today, as well as others.

2The practice of wrapping validations in a transaction dates to the earliest
public Rails commit (albeit, in 2004, transactions were only supported via
a per-Ruby VM global lock [54]). However, as late as 2010, updates were
only partially protected by transactions [75].

4. Rails provides support for application-level associations. As the
name suggests, “an association is a connection between two Ac-
tive Record models,” effectively acting like a foreign key in an
RDBMS. Associations can be declared on one or both sides of
a one-to-one or one-to-many relationship, including transitive
dependencies (via a :through annotation). Declaring an associ-
ation (e.g., :belongs_to dept) produces a special field for the
associated record ID within the model (e.g., dept_id). Coupling
an association with an appropriate validation (e.g., :presence)
ensures that the association is indeed valid (and is, via the val-
idation, backed by a database transaction). Until the release of
Rails 4.2 in December 2014, Rails did not provide native support
for database-backed foreign key constraints. In Rails 4.2, foreign
keys are supported via manual schema annotations declared sepa-
rately from each model; declaring an association does not declare
a corresponding foreign key constraint and vice-versa.

Overall, these four mechanisms provide a range of options for de-
velopers. The first is squarely in the realm of traditional concurrency
control. The second is, in effect, a coarse-grained user-level imple-
mentation of single-record transactions via database-level “compare-
and-swap” primitives (implemented via SELECT FOR UPDATE). How-
ever, the latter two—validations and associations—operate, in effect,
at the application level. Although some validations like uniqueness
validations have analogs in an RDBMS, the semantics of these vali-
dations are entirely contained within the Rails code. In effect, from
the database’s perspective, these validations exist external to the
system and are feral concurrency control mechanisms.

Rails’s feral mechanisms—validations and associations—are a
prominent feature of the Active Record model. In contrast, neither
transactions nor locks are actually discussed in the official “Rails
Guides,” and, generally, are not promoted as a means of ensuring
data integrity. Instead, the Rails documentation [7] prefers vali-
dations as they are “are database agnostic, cannot be bypassed by
end users, and are convenient to test and maintain.” Moreover, the
Rails documentation opines that “database constraints and/or stored
procedures make the validation mechanisms database-dependent
and can make testing and maintenance more difficult.” As we will
show shortly, these feral mechanisms accordingly dominate in terms
of developer popularity in real applications.

3.2 Adoption in Practice
To understand exactly how users interact with these concurrency

control mechanisms and determine which deserved more study,
we examined their usage in a portfolio of publicly available open
source applications. We find that validations and associations are
overwhelmingly the most popular forms of concurrency control.

Application corpus. We selected 67 open source applications built
using Ruby on Rails and Active Record, representing a variety of
application domains, including eCommerce, customer relationship
management, retail point of sale, conference management, content
management, build management, project management, personal
task tracking, community management and forums, commenting,
calendaring, file sharing, Git hosting, link aggregation, crowdfund-
ing, social networking, and blogging. We sought projects with
substantial code-bases (average: 26,809 lines of Ruby) multiple
contributors (average: 69.1), and relative popularity (measured ac-
cording to GitHub stars) on the site. Table 2 (in the Appendix)
provides a detailed overview.

While several of these applications are projects undertaken by
hobbyists, many are either commercially supported (e.g., Canvas
LMS, Discourse, Spree, GitLab) and/or have a large open source
community (e.g., Radiant, Comfortable Mexican Sofa, Diaspora).

A larger-scale commercial, closed-source Rails application such
as Twitter, GitHub, or Airbnb might exhibit different trends than
those we observe here. However, in the open source domain, we
believe these applications represent a diverse selection of Rails use
cases and are a good-faith effort to obtain a representative sample
of popular open source Rails applications as hosted on GitHub.

Mechanism usage. We performed a simple analysis of the applica-
tions to determine how each of the concurrency control mechanisms
were used (see Appendix A for more methodological details).

Overwhelmingly, applications did not use transactions or locks
(Figure 1 and Table 2). On average, applications used 0.13 transac-
tions, 0.01 locks, 1.80 validations, and 3.19 associations per model
(with an average of 29.1 models per application). While 46 (68.7%)
of applications used transactions, all used some validations or asso-
ciations. Only six applications used locks. Use of pessimistic locks
was over twice as common as the use of optimistic locks.

Perhaps most notable among these general trends, we find that
validations and associations are, respectively, 13.6 and 24.2 times
more common than transactions and orders of magnitude more com-
mon than locking. These feral mechanisms are—in keeping with the
Rails philosophy—favored by these application developers. That is,
rather than adopting the use of traditional transactional programming
primitives, Rails application writers chose to instead specify correct-
ness criteria and have the ORM system enforce the criteria on their
behalf. It is unclear and even unlikely that these declarative criteria
are a complete specification of program correctness: undoubtedly,
some of these programs contain errors. However, given that these
criteria are nevertheless being declared by application writers and
represent a departure from traditional, transaction-oriented program-
ming, we devote much of the remainder of this work to examining
exactly what they are attempting to preserve (and whether they are
actually sufficient to do so).

Understanding specific applications. Over the course of our
investigation, we found that application use of mechanisms varied.
While our focus is largely on aggregate behavior, studying individual
applications is also interesting. For example, consider Spree, a
popular eCommerce application:

Spree uses only six transactions, one for each of 1.) canceling
an order, 2.) approving an order (atomically setting the user ID and
timestamp), 3.) transferring shipments between fulfillment locations
(e.g., warehouses), 4.) transferring items between shipments, 5.)
transferring stock between fulfillment locations, and 6.) updating
an order’s specific inventory status. While this is a reasonable set
of locations for transactions, in an eCommerce application, one
might expect a larger number of scenarios to require transactions,
including order placement and stock adjustment.

In the case of Spree stock adjustment, the inventory count for
each item is a potential hotspot for concurrency issues. Manual
adjustments of available stock (adjust_count_on_hand(value))
is indeed protected via a pessimistic lock, but simply setting the
available stock (set_count_on_hand(value)) is not. It is unclear
why one operation necessitates a lock but the other does not, given
that both are ostensibly sensitive to concurrent accesses. Meanwhile,
the stock level field is wrapped in a validation ensuring non-negative
balances, preventing negative balances but not necessarily classic
Lost Update anomalies [8].

At one point, Spree’s inventory count was protected by an opti-
mistic lock; it was removed due to optimistic lock failure during
customer checkouts. On relevant GitHub issue pertaining to this
lock removal, a committer notes that “I think we should get rid
of the [optimistic lock] if there’s no documentation about why it’s
there...I think we can look at this issue again in a month’s time

0
30
60
90

120
150
180

M
od

el
s

0

2

4

6

8

Tr
an

sa
ct

io
ns

/M
od

el

0

2

4

6

8

Va
lid

at
io

ns
/M

od
el

0 10 20 30 40 50 60

Project Number

0

2

4

6

8

A
ss

oc
ia

tio
ns

/M
od

el

Figure 1: Use of concurrency control mechanisms in Rails ap-
plications. We maintain the same ordering of applications for
each plot (i.e., same x-axis values; identical to Table 2) and show
the average for each plot using the dotted line.

and see if there’s been any problems since you turned it off” [38].
This removal has, to our knowledge, not been revisited, despite the
potential dangers of removing this point of synchronization.

The remainder of the application corpus contains a number of
such fascinating examples, illustrating the often ad-hoc process of
deciding upon a concurrency control mechanism. Broadly, the use of
each style of concurrency control varies across repositories, but our
results demonstrate a clear trend towards feral mechanisms within
Rails rather than traditional use of transactions.

Additional metrics. To better understand how programmers used
each of these mechanisms, we performed two additional analyses.

First, we analyzed the number of models, transactions, validations,
and associations over each project’s lifetime. Using each project’s
Git history, we repeated the above analysis at a fixed set of intervals
through the project’s lifespan (measured by commits). Figure 6
(see Appendix) plots the median number of occurrences across all
projects. The results show that concurrency control mechanisms (of
all forms) tend to be introduced after models are introduced. That is,
additions to the data model precede (often by a considerable amount)
additional uses of transactions, validations, and associations. It is
unclear whether the bulk of concurrency control usage additions are
intended to correct concurrency issues or are instead due to natural
growth in Controller code and business logic. However, the gap

between models and concurrency control usage shrinks over time;
thus, the data model appears to stabilize faster than the controller
logic, but both eventually stabilize. We view additional longitudinal
analysis along these lines as worthwhile future work.

Second, we analyze the distribution of authors to commits com-
pared to the distribution of authors to validations and associations
authored.3 As Figure 7 (see Appendix, page) demonstrates, 95%
of all commits are authored by 42.4% of authors. However, 95%
of invariants (validations plus associations) are authored by only
20.3% of authors. This is reminiscent of traditional database schema
authorship, where a smaller number of authors (e.g., DBAs) modify
the schema than contribute to the actual application code.

3.3 Summary and Discussion
Returning to the Rails design philosophy, the applications we

have encountered do indeed express their logic at the application
layer. There is little actual communication of correctness criteria to
the database layer. Part of this is due to limitations within Rails. As
we have mentioned, there is no way to actually declare a foreign key
constraint in Rails without importing additional third-party mod-
ules. Insofar as Rails is an “opinionated” framework encouraging
an idiomatic programming style, if our application corpus is any
indication, DHH and his co-authors advocating application-level
data management appear to have succeeded en masse.

Having observed the relative popularity of these mechanisms, we
turn our attention to the question of their correctness. Specifically,
do these application-level criteria actually enforce the constraints
that they claim to enforce? We restrict ourself to studying declared
validations and associations for three reasons. First, as we have
seen, these constructs are more widely used in the codebases we
have studied. Second, these constructs represent a deviation from
standard concurrency control techniques and are therefore perhaps
more likely to contain errors. Third, while analyzing latent con-
straints (e.g., those that might be determined via more sophisticated
techniques such as pre- and post-condition invariant mining [65, 73]
and/or by interviewing each developer on each project) would be
instructive, this is difficult to scale. We view these forms of analysis
as highly promising avenues for future research.

4. ISOLATION AND INTEGRITY
We now turn our attention to understanding which of Rails’ feral

validations and associations are actually correct under concurrent
execution as described in Section 2.2 and which require stronger
forms of isolation or synchronization for correct enforcement.

4.1 Understanding Validation Behavior
To begin, recall that each sequence of validations (and model

update as well, if validations pass) is wrapped within a database-
backed transaction, the validation’s intended integrity will be pre-
served provided the database is using serializable isolation. How-
ever, relational database engines often default to non-serializable
isolation [16]; notably for Rails, PostgreSQL and MySQL actually
default to, respectively, the weaker Read Committed and Repeatable
Read isolation levels.

We did not encounter evidence that applications changed the
isolation level. Rails does not configure the database isolation level
for validations, and none of the application code or configurations
we encountered change the default isolation level, either (or mention
doing so in documentation). Thus, although we cannot prove that
3We chose to analyze commits authored rather than lines of code written
because git tracks large-scale code refactoring commits as an often large set
of deletions and insertions. Nevertheless, we observed a close correlation
between lines of code and commits authored.

this is indeed the case, this data suggests that validations are likely
to run at default database isolation in production environments.

Validations with weak isolation. Given that validations are not
likely to be perfectly isolated, does this lack of serializable isolation
actually affect these invariants? Just because validations effectively
run concurrently does not mean that they are necessarily incorrect.
To determine exactly which of these invariants are correct under
concurrent execution, we draw on the recently developed theory of
invariant confluence [17].

Invariant confluence (I-confluence) provides a necessary and suffi-
cient condition for whether or not invariants can be preserved under
coordination-free, concurrent execution of transactions. Informally,
the condition ensures that, if transactions maintain database states
that are correct with respect to an invariant when run in isolation,
the transactions can be run simultaneously and their results com-
bined (“merged”) to produce another correct state. In the case of
Rails, we wish to determine whether, in the event of concurrent
validations and model saves, the result of concurrent model saves
will not violate the validation for either model. In the event that two
concurrent controllers save the same model (backed by the same
database record), only one will be persisted (a some-write-wins
“merge”). In the event that two concurrent controllers save different
models (i.e., backed by different database records), both will be
persisted (a set-based “merge”). In both cases, we must ensure that
validations hold after merge.

Our I-confluence analysis currently relies on a combination of
manual proofs and simple static analysis: given a set of invariant
and operation pairs classified as providing the I-confluence property,
we can iterate through all operations and declared invariants and
check whether or not they appear in the set of I-confluent pairs. If so,
we label the pair as I-confluent. If not, we can either conservatively
label the pair as unsafe under concurrent execution or prove the pair
as I-confluent or not. (To prove a pair is I-confluent, we must show
that the set of database states reachable by executing operations
preserves the invariant under merge, as described above.)

Returning to our task of classifying Rails validations and asso-
ciations as safe or not, we applied this I-confluence analysis to the
invariants4 in the corpus. In our analysis, we found that only 60
out of 3505 validations were expressed as user-defined functions.
The remainder were drawn from the standard set of validations sup-
ported by Rails core.5 Accordingly, we begin by considering built-in
validations, then examine each of the custom validations.

4.2 Built-In Validations
We now discuss common, built-in validations and their I-confluence.

Many are I-confluent and are therefore safe to execute concurrently.
Table 1 presents the ten most common built-in validations by

usage and their occurences in our application corpus. The exact
coordination requirements depended on their usage.

The most popular invariant, presence, serves multiple purposes.
Its basic behavior is to simply check for empty values in a model
before saving. This is I-confluent as, in our model, concurrent
model saves cannot result in non-null values suddenly becoming
null. However, presence can also be used to enforce that the op-
posite end of an association is, in fact, present in the database (i.e.,
referential integrity). Under insertions, foreign key constraints are
I-confluent [17], but, under deletions, they are not.

4We focus on validations here as, while associations do represent an invariant,
it is only when they are coupled with validations that they are enforced.
5It is unclear exactly why this is the case. It is possible that, because these
invariants are standardized, they are more accessible to users. It is also
possible that Rails developers have simply done a good job of codifying
common patterns that programmers tend to use.

Name Occurrences I-Confluent?
validates_presence_of 1762 Depends
validates_uniqueness_of 440 No
validates_length_of 438 Yes
validates_inclusion_of 201 Yes
validates_numericality_of 133 Yes
validates_associated 39 Depends
validates_email 34 Yes
validates_attachment_content_type 29 Yes
validates_attachment_size 29 Yes
validates_confirmation_of 19 Yes
Other 321

Table 1: Use of and invariant confluence of built-in validations.

The second most popular invariant, concerning record uniqueness,
is not I-confluent [17]. That is, if two users concurrently insert or
modify records, they can introduce duplicates.

Eight of the next nine invariants are largely concerned with data
formatting and are I-confluent. For example, numericality ensures
that the field contains a number rather than an alphanumeric string.
These invariants are indeed I-confluent under concurrent update.

Finally, the safety of associated (like presence) is contin-
gent on whether or not the current updates are both insertions (I-
confluent) or mixed insertions and deletions (not I-confluent). Thus,
correctness depends on the operation.

Overall, a large number of built-in validations are safe under
concurrent operation. Under insertions, 86.9% of built-in valida-
tion occurrences as I-confluent. Under deletions, only 36.6% of
occurrences are I-confluent. However, associations and multi-record
uniqueness are—depending on the workload—not I-confluent and
are therefore likely to cause problems. In the next section, we
examine these validations in greater detail.

4.3 Custom Validations
We also manually inspected the coordination requirements of

the 60 (1.71%) validations (from 17 projects) that were declared
as UDFs. 52 of these custom validations were declared inline via
Rails’s validates_each syntax, while 8 were custom classes that
implemented Rails’s validation interface. 42 of 60 validations were I-
confluent, while the remaining 18 were not. Due to space constraints,
we omit a discussion of each validation but discuss several trends
and notable examples of custom validations below.

Among the custom validations that were I-confluent, many con-
sisted of simple format checks or other domain-specific validations,
including credit card formatting and static username blacklisting.

The validations that were not I-confluent took on a range of forms.
Three validations performed the equivalent of foreign key checking,
which, as we have discussed, is unsafe under deletion. Three vali-
dations checked database-backed configuration options including
the maximum allowed file upload size and default tax rate; while
configuration updates are ostensibly rare, the outcome of each vali-
dation could be affected under a configuration change. Two valida-
tions were especially interesting. Spree’s AvailabilityValidator
checks whether an eCommerce inventory has sufficient stock avail-
able to fulfill an order; concurrent order placement might result
in negative stock. Discourse’s PostValidator checks whether a
user has been spamming the forum; while not necessarily critical,
a spammer could technically foil this validation by attempting to
simultaneously author many posts.

In summary, again, a large proportion of validations appear safe.
Nevertheless, the few non-I-confluent validations should be cause
for concern under concurrent execution.

5. QUANTIFYING FERAL ANOMALIES
While many of the validations we encountered were I-confluent,

not all were. In this section, we specifically investigate the effect of
concurrent execution on two of the most popular non-I-confluent
validations: uniqueness and foreign key validations.

5.1 Uniqueness Constraints and Isolation
To begin, we consider Rails’s uniqueness validations: 12.7% of

the built-in validation uses we encountered. In this section, we
discuss how Rails implements uniqueness and show that this is—at
least theoretically—unsafe.

When a model field is declared with a :validates_uniqueness
annotation, any instance of that model is compared against all other
corresponding records in the database to ensure that the field is in-
deed unique. ActiveRecord accomplishes this by issuing a “SELECT”
query in SQL and, if no such record is found, Rails updates the
instance state in the database (Appendix B.1).

While this user-level uniqueness validation runs within a transac-
tion, the isolation level of the transaction affects its correctness. For
correct execution, the SELECT query must effectively attain a predi-
cate lock on the validated column for the duration of the transaction.
This behavior is supported under serializable isolation. However, un-
der Read Committed or Repeatable Read isolation, no such mutual
exclusion will be performed, leading to potential inconsistency.6

Moreover, validation under Snapshot Isolation may similarly result
in inconsistencies.7 Thus, unless the database is configured for
serializable isolation, integrity violations may result.

As we have discussed, MySQL and PostgreSQL each support
serializable isolation but default to weaker isolation. Moreover,
in our investigation, we discovered a bug in PostgreSQL’s imple-
mentation of Serializable Snapshot Isolation that allowed duplicate
records to be created under serializable isolation when running a set
of transactions derived from the Rails primary key validator. We
have confirmed this anomalous behavior with the core PostgreSQL
developers8 and, as of March 2015, the behavior persists. Thus, any
discussion of weak isolation levels aside, PostgreSQL’s implementa-
tion of serializability is non-serializable and is insufficient to provide
correct behavior for Rails’ uniqueness validations. So-called “serial-
izable” databases such as Oracle 12c that actually provide Snapshot
Isolation will similarly fall prey to duplicate validations.

The Rails documentation warns that uniqueness validations may
fail and admit duplicate records [7]. Yet, despite the availability
of patches that remedy this behavior by the use of an in-database
constraint and/or index, Rails provides this incorrect behavior by
default. (One patch was rejected; a developer reports “[t]he reasons
for it not being incorporated...are lost in the mists of time but I
suspect it’s to do with backwards compatibility, cross database
compatibility and applications varying on how they want/need to
handle these kind of errors.” [27]).

6Using SELECT FOR UPDATE under these weaker models would be safe, but
Rails does not implement its predicate-based lookups as such (i.e., it instead
opts for a simple SELECT statement).
7The first reference to the potential integrity violations resulting from this
implementation in the Rails code that we are aware of dates to December
2007, in Rails v.2.0.0 [59]. In September 2008, another user added additional
discussion within the code comments, noting that “this could even happen
if you use transactions with the ’serializable’ isolation level” [62]. Without
reading too closely, the use of “’serializable”’ possibly suggests familiarity
with the common, erroneous labeling of Snapshot Isolation as “serializable”
(as in Oracle 12c documentation and PostgreSQL documentation prior to the
introduction of SSI in version 9.1.1 in September 2011).
8“BUG #11732: Non-serializable outcomes under serializable iso-
lation” at http://www.postgresql.org/message-id/20141021071458.
2678.9080@wrigleys.postgresql.org

In another bug report complaining of duplicates due to concurrent
uniqueness validation, a commenter asserts “this is not a bug but
documented and inherent behavior of validates_uniqueness_of” [72].
A Rails committer follows up, noting that “the only way to han-
dle [uniqueness] properly is at the database layer with a unique
constraint on the column,” and subsequently closes the issue. The
original bug reporter protests that “the problem extends beyond
unique constraints and into validations that are unique to a Rails
application that can’t [sic?!] be enforced on the DB level”; the Rails
committer responds that “with the possible exception of [associa-
tions,] all of the other validations are constrained by the attribute
values currently in memory, so aren’t susceptible to similar flaws.”
This final statement is correct for many of the built-in validations
but is not correct for arbitrary user-defined validations. We discuss
the user-defined validation issue further in Section 7.

Understanding validation behavior. Given that entirely feral
mechanisms can introduce duplicates, how many duplicates can
be introduced? Once a record is written, any later validations will
observe it via SELECT calls. However, while a record is being vali-
dated, any number of concurrent validations can unsafely proceed.
In practice, the number of concurrent validations is dependent on the
Rails environment. In a Rails deployment permitting P concurrent
validations (e.g., a single-threaded, multi-process environment with
P processes), each value in the domain of the model field/database
column can be inserted no more than P times. Thus, validations—
at least theoretically—bound the worst-case number of duplicate
records for each unique value in the database table.

5.2 Quantifying Uniqueness Anomalies
Given that feral uniqueness validations are acknowledged to be

unsafe under non-serializable isolation yet are widely used, we
sought to understand exactly how often uniqueness anomalies occur
in an experimental deployment. In this section, we demonstrate
that uniqueness validations in Rails are indeed unsafe under non-
serializable isolation. While they prevent some data integrity errors,
we observe—depending on the workload—many duplicate records.

Experimental setup. We developed a Rails 4.1.5 application that
performed insertions to a non-indexed string column and compared
the incidence of violations both with and without a uniqueness
validator (see also Appendix C.1).9 We deployed this application on
two Amazon EC2 m2.4xlarge instances, offering 68.4 GB RAM,
8 CPU cores, and 1680GB local storage, running Ubuntu 14.04
LTS. On one instance, we deployed our application, using Nginx
1.6.2 as a web frontend proxied to a set of Unicorn 4.8.3 (Ruby
VM pool) workers. Nginx acts as a HTTP frontend and forwards
incoming requests to a variably sized pool of Rails VMs (managed
by Unicorn, in a multi-process, single-threaded server) that epoll
on a shared Linux file descriptor. On the other EC2 instance, we
deployed PostgreSQL 9.3.5 and configured it to run on the instance
local storage. We used a third EC2 instance to direct traffic to the
front-end instance and drive load. We plot the average and standard
deviation of three runs per experiment.

Stress test. We began our study by issuing a simple stress test
that executed a number of concurrent insertion requests against a

9In our experimental evaluation, we use the custom applications described
below (and in Appendix C) for two reasons. First, these test cases allow us
to isolate ActiveRecord behavior to the relevant set of validations as they are
deployed by default, independent of any specialized controller logic. Second,
this reduces the complexity of automated testing. Many of the applications
in our corpus indeed use the same code paths within ActiveRecord, but
evaluating these custom applications simplifies programmatic triggering of
validation logic.

http://www.postgresql.org/message-id/20141021071458.2678.9080@wrigleys.postgresql.org
http://www.postgresql.org/message-id/20141021071458.2678.9080@wrigleys.postgresql.org

1 2 4 8 16 32 64

Number of Rails Processes

0
100

101

102

103

104

N
um

be
ro

fD
up

lic
at

e
R

ec
or

ds

Without validation
With validation

Figure 2: Uniqueness stress test integrity violations.

variable number of Unicorn workers. We repeatedly issued a set of
64 concurrent model creation (SQL insertion) requests, each with
the same validated key (e.g., all with field key set to value 1) against
the Rails application. Across an increasing number of Unicorn
workers, we repeated this set of requests 100 times (blocking in-
between rounds to ensure that each round is, in fact, a concurrent set
of requests), changing the validated key each round (Appendix C.2).

Figure 2 shows the results. With no validation, all concurrent
requests succeed, resulting in 6300 duplicate records (100 rounds
of 64-1 duplicate keys). With validations enabled, the number of
violations depends on the degree of concurrency allowed by Unicorn.
With only one process, Unicorn performs the validations serially,
creating no duplicates. However, with two processes, Unicorn pro-
cesses race, resulting in 70 duplicate records spread across 70 keys.
With three processes, Unicorn produces 249 duplicate records across
all 100 keys. The number of duplicates increases with the number of
processes, peaking at 16 workers. With additional workers, duplicate
counts decrease slightly, which we attribute to thrashing between
workers and within PostgreSQL (recall that each instance has only
8 cores). Nevertheless, using validations, the microbenchmark du-
plicate count remains below 700—nearly an order-of-magnitude
fewer duplicates than without using validations. Therefore, even
though these validations are incorrectly implemented, they still re-
sult in fewer anomalies. However, when we added in in-database
unique index on the key column10 and repeated the experiment, we
observed no duplicates, as expected.

Actual workloads. The preceding experiment stressed a particu-
larly high-contention workload—in effect, a worst case workload for
uniqueness validations. In practice, such a workload is likely rare.11

Accordingly, we set up another workload meant to capture a less
pathological access pattern. We ran another insert-only workload,
with key choice distributed among a fixed set of keys. By varying
the distribution and number of keys, we were able to both capture
more realistic workloads and also control the amount of contention
in the workload. As a basis for comparison, we ran four different
distributions. First, we considered uniform key access. Second,
we used YCSB’s Zipfian-distributed accesses from workloada [36].
Third and fourth, we used the item distribution access from Face-
book’s LinkBench workload, which captures MySQL record access

10In this case, we added a unique index to the model using Active Record’s
database migration, or manual schema change functionality. Migrations are
written separately from the Active Record model declarations. Adding the
index was not difficult, but, nevertheless, the index addition logic is separate
from the domain model. Without using third-party models, we are unaware
of a way to enforce uniqueness within Rails without first declaring an index
that is also annotated with a special unique: true attribute.

11In fact, it was in the above workload that we encountered the non-
serializable PostgreSQL behavior under serializable isolation. Under se-
rializable isolation, the number of anomalies is reduced compared to the
number under Read Committed isolation (as we report here), but we still
detected duplicate records.

N
um

be
ro

fD
up

lic
at

e
R

ec
or

ds

0
100

101

102

103

104
Uniform

Without validation
With validation

0
100

101

102

103

104
YCSB

0
100

101

102

103

104
LinkBench-Insert

1 10 100 1K 10K 100K 1M

Number of Possible Keys

0
100

101

102

103

104
LinkBench-Update

Figure 3: Uniqueness workload integrity violations.

when serving Facebook’s social graph [14]. Specifically, we used—
separately—the insert and update traffic from this benchmark.

For each trial in this workload, we used 64 concurrent clients
independently issuing a set of 100 requests each, with a fixed number
of 64 Unicorn workers per process (Appendix C.3).

Figure 3 illustrates the number of duplicate records observed
under each of these workloads. As we increase the number of
possible keys, there are two opposing effects. With more keys,
the probability of any two operations colliding decreases. However,
recall that, once a key is written, all subsequent validators can read it.
While the uniform workload observes an average of 2.33 duplicate
records with only one possible key, it observes an average of 26
duplicate keys with 1000 possible keys. Nevertheless, with 1 million
possible keys, we do not observe any duplicate records.

The actual “production” workloads exhibit different trends. In
general, YCSB is an extremely high contention workload, with
a Zipfian constant of 0.99, resulting in one very hot key. This
decreases the beneficial effect of increasing the number of keys in the
database. However, LinkBench has less contention and anomalies
decrease more rapidly with increased numbers of keys.

5.3 Association Validations and Isolation
Having investigated uniqueness constraints, we turn our atten-

tion to association validations. We first, again, discuss how Rails
enforces these validations and describe how—at least theoretically—
validations might result in integrity errors.

When a model field is declared with an association (e.g., it
:belongs_to another model) and a :validates_presence vali-
dation, Rails will attempt to ensure that the declared validation is

valid before saving the model. Rails accomplishes this by issuing a
“SELECT WHERE” query in SQL to find an associated record (e.g., to
ensure the “one” end of a one-to-many relationship exists) and, if
a matching association is found, Rails updates the instance state in
the database (Appendix B.2). On deletion, any models with associ-
ations marked with :dependent => destroy (or :dependent =>
delete) will have any associated models destroyed (i.e., removed by
instantiating in Rails and calling destroy on the model) or deleted
(i.e., removed by simply calling the database’s DELETE method).

This feral association validation runs within a transaction, but,
again the exact isolation level of the transaction affects its correct-
ness. For correct execution, the SELECT query must also attain a
predicate lock on the specific value of the validated column for the
duration of the transaction. Similar to the uniqueness validator, con-
current deletions and insertions are unsafe under Read Committed,
Repeatable Read, and Snapshot Isolation. Thus, unless the database
is configured for serializable isolation, inconsistency may result and
the feral validation will fail to prevent data corruption.

Unlike uniqueness validations, there is no discussion of asso-
ciations and concurrency anomalies in the Rails documentation.
Moreover, in Rails 4.1, there is no way to natively declare a for-
eign key constraint;12 it must be done via a third-party library such
as foreigner [57] or schema_plus [1]. Only two applications
(canvaslms and diaspora) used foreigner, and only one appli-
cation (juvia) used schema_plus. One application (jobsworth)
used a custom schema annotation and constraint generator.

Understanding association behavior. Given that entirely feral
mechanisms can introduce broken associations, how many dangling
records can be introduced? Once a record is deleted, any later vali-
dations will observe it via SELECT calls. However, in the worst case,
the feral cascading deletion on the one side of a one-to-many relation
can stall indefinitely, allowing an unlimited number of concurrent
insertions to the many side of the relation. Thus, validations—at
least theoretically—only reduce the worst-case number of dangling
records that were inserted prior to deletion; any number of concur-
rent insertions may occur during validation, leading to unbounded
numbers of dangling records.

5.4 Quantifying Association Anomalies
Given this potential for errors, we again set out to quantify in-

tegrity errors. We demonstrate that weak isolation can indeed lead
to data integrity errors in Rails’ implementation of associations.

We performed another set of experiments to test association val-
idation behavior under concurrent insertions and deletions. Using
the same Unicorn and PostgreSQL deployment as above, we con-
figured another application to test whether or not Rails validations
would correctly enforce association-based integrity constraints. We
consider an application with two models: Users and Departments.
We configure a one-to-many relationship: each user belongs_to a
department, and each department has_many user (Appendix C.4).

As a basic stress test, we initialize the database by creating 100
departments with no users. Subsequently, for each department in the
database, we issue a single request to delete the department along
with 64 concurrent requests to insert users in that department. To
correctly preserve the one-to-many relationship, the database should
either reject the deletion operation or perform a cascading deletion
of the department and any users (while rejecting any future user
creation requests for that department). We can quantify the degree
of inconsistency by counting the number of users left in the database
who have no corresponding department (Appendix C.5).

12Rails 4.2 added support for foreign keys via migration annotation (separate
from models; similarly to adding a unique index) in December 2014.

1 2 4 8 16 32 64

Number of Rails Workers

0
100

101

102

103

104

N
um

be
ro

fO
rp

ha
ne

d
U

se
rs

Without validation
With validation

Figure 4: Foreign key stress association anomalies.

With associations declared in Rails, the Rails process performing
the deletion will attempt a cascading delete of users upon department
deletion. However, this cascade is performed, again, ferally—at
the application level. Thus, under non-serializable isolation, any
user creation events that are processed while the search for Users to
delete is underway will result in Users without departments.

Figure 4 shows the number of “orphaned” Users (i.e., Users with-
out a matching Department) as a function of Rails worker processes.
With no constraints declared to Rails or to the database, all User cre-
ations succeed, resulting in 6400 dangling Users. With constraints
declared in Rails (via a mix of validation and association), the de-
gree of inconsistency depends on the degree of parallelism. Under
the worst case, with 64 concurrent processes, the validations are
almost worthless in preventing integrity errors. In contrast, when
we declare a foreign key constraint within the database13 and run
the workload again, we observe no inconsistency.

The above stress test shows that inconsistency due to feral con-
currency control occurs only during times of contention—parallel
deletions and insertions. We subsequently varied the degree of con-
tention within the workload. We configured the same application
and performed a set of insertions and deletions, but spread across
a greater number of keys and at random. A set of 64 processes
concurrently each issued 100 User creation and Department deletion
requests (at a ratio of 10 to 1) to a set of randomly-selected keys
(again at a ratio of 10 Users to each Department). By varying the
number of Users and Departments, we were able to control the
amount of contention within the workload. Under this workload,
inconsistency resulted only when a Department deletion proceeded
concurrently with a User creation event and the feral cascading
deletion “missed” the User creation (Appendix C.6).

Figure 5 shows the results. As the number of Departments in-
creases, we observe two trends. First, with only one Department,
there is again less chance of inconsistency: all operations contend
on the same data item, so the total number of inconsistent, orphaned
users is limited by the number of potentially racing. However, as
the number of Departments increases, the chance of concurrent
deletions and insertions drops.

5.5 Takeaways and Discussion
The preceding experiments demonstrate that, indeed, Active

Record is unsafe as deployed by default. Validations are susceptible
to data corruption due to sensitivity to weak isolation anomalies.

This raises the question: why declare validations at all? As we
observe, validations protect against some data corruption. First, they
correctly guard against non-concurrency-related anomalies such as
data entry or input errors. For example, if a user attempts to reserve
a username that was previously chosen, a validation would succeed.

13In this case, we introduced the constraint via SQL using a direct connection
to the database. This change was straightforward but—like the unique index
addition—was not reflected in the base Active Record models.

1 10 100 1000 10000

Number of Departments

0
100

101

102

103

104
N

um
be

ro
fO

rp
ha

ne
d

U
se

rs

Without validation
With validation

Figure 5: Foreign key workload association anomalies.

The failures we observe here are solely due to concurrent execu-
tion. Without concurrent execution, validations are correct. Second,
validations do reduce the incidence of inconsistency. Empirically,
even under worst-case workloads, these validations result in order-
of-magnitude reductions in inconsistency. Under less pathological
workloads, they may eliminate it. It is possible that, in fact, the
degree of concurrency and data contention within Rails-backed ap-
plications simply does not lead to these concurrency races—that, in
some sense, validations are “good enough” for many applications.

Nevertheless, in both cases, Rails’s feral mechanisms are a poor
substitute for their respective database counterparts—at least in
terms of integrity. We re-examine the Rails community’s reluctance
to embrace these mechanisms in Section 7.

6. OTHER FRAMEWORKS
While our primary focus in this paper is Rails, we briefly investi-

gated support for uniqueness, foreign key, and custom validations
in several other ORM frameworks. We find widespread support for
validations and varying susceptibility to integrity errors.

Java Persistence API (JPA; version EE 7) [3] is a standard Java Ob-
ject persistence interface and supports both uniqueness and primary
key constraints in the database via specialized object annotations.
Thus, when JPA is used to create a table, it will use the database
to enforce these constraints. In 2009, JPA introduced support for
UDF validations via a JavaBean interface [23]. Interestingly, both
the original (and current) Bean validation specifications specifically
address the use of uniqueness validations in their notes:

“Question: should we add @Unique that would map
to @Column(unique=true)? @Unique cannot be tested
at the Java level reliably but could generate a database
unique constraint generation. @Unique is not part of
the [Bean Validation] spec today.” [21]

An author of a portion of the code specification notes separately:

“The reason @Unique is not part of the built-in con-
straints is the fact that accessing the [database] during
a valiation [sic] is opening yourself up for potenital
[sic] phantom reads. Think twice before you go for [an
application-level] approach.” [46]

By default, JPA Validations are run upon model save and run in
a transaction at the default isolation level, and therefore, as the
developers above hint, are susceptible to the same kinds of integrity
violations we study here.

Hibernate (version 4.3.7) [56], a Java ORM based on JPA, does
not automatically enforce declared foreign key relationships: if a
foreign key constraint is declared; a corresponding column is added,
but that column is not backed by a database foreign key. Instead, for
both uniqueness and foreign key constraints, Hibernate relies on JPA
schema annotations for correctness. Therefore, without appropriate

schema annotations, Hibernate’s basic associations may contain
dangling references. Hibernate also has an extensive user-level
validation framework implementing the JPA Validation Bean speci-
fication [47] and is sensitive to weak isolation anomalies, similar to
Rails validations.

CakePHP (version 2.5.5) [4], a PHP-based web framework, sup-
ports uniqueness, foreign key, and UDF validations. CakePHP does
not back any of its validation checking with a database transaction
and relies on the user to correctly specify any corresponding for-
eign keys or uniqueness constraints within the database the schema.
Thus, while users can declare each of these validations, there is no
guarantee that they are actually enforced by the database. Thus,
unless users are careful to specify constraints in both their schema
and in their validations, validations may lead to integrity violations.

Laravel (version 4.2) [6], another PHP-based web framework, sup-
ports the same set of functionality as CakePHP, including application-
level uniqueness, foreign key, and UDF validations in the application.
Any database-backed constraints must be specified manually in the
schema. Per one set of community documentation [43], “database-
level validations can efficiently handle some things (such as unique-
ness of a column in heavily-used tables) that can be difficult to
implement otherwise” but “testing and maintenance is more diffi-
cult...[and] your validations would be database- and schema-specific,
which makes migrations or switching to another database backend
more difficult in the future.” In contrast, model-level validations are
“the recommended way to ensure that only valid data is saved into
your database. They are database agnostic, cannot be bypassed by
end users, and are convenient to test and maintain.”

Django (version 1.7) [5], a popular Python-based framework, backs
declared uniqueness and foreign key constraints with database-level
constraints. It also supports custom validations, but these validations
are not wrapped in a transaction [15]. Thus, Django also appears
problematic, but only for custom validations.

Waterline (version 0.10) [20], the default ORM for Sails.js (a popular
MVC framework for Node.js [19]), provides support for in-DB
foreign key and uniqueness constraints (when supported by the
database) as well as custom validations (that are not supported
via transactions; e.g., “TO-DO: This should all be wrapped in a
transaction. That’s coming next but for the meantime just hope we
don’t get in a nasty state where the operation fails!” [78]).

Summary. In all, we observe common cross-framework support
for feral validation/invariants, with inconsistent use of mechanisms
for enforcing them, ranging from the use of in-database constraints
to transactions to no ostensible use of concurrency control in either
application or database.

7. IMPLICATIONS FOR DATABASES
In light of this empirical evidence of the continued mismatch

between ORM applications and databases, in this section, we reflect
on the core database limitations for application writers today and
suggest a set of directions for alleviating them.

7.1 Summary: Shortcomings Today
The use of feral invariants is not well-supported by today’s databases.

At a high level, today’s databases effectively offer two primary op-
tions for ORM framework developers and users:

1. Use ACID transactions. Serializable transactions are sufficient
to correctly enforce arbitrary application invariants, including
transaction-backed feral validations. This is core to the transac-
tion concept: isolation is a means towards preserving integrity.

Unfortunately, in practice, for application developers, transac-
tions are problematic. Given serializability’s performance and
availability overheads [26], developers at scale have largely es-
chewed the use of serializable transactions (which are anyway
not required for correct enforcement of approximately 75% of
the invariants we encountered in the Rails corpus). Moreover,
many databases offering “ACID” semantics do not provide seri-
alizability by default and often, even among industry-standard
enterprise offerings, do not offer it as an option at all [16] (to say
nothing of implementation difficulties, as in Footnote 8). Instead,
developers using these systems today must manually reason about
a host of highly technical, often obscure, and poorly understood
weak isolation models expressed in terms of low-level read/write
anomalies such as Write Skew and Lost Update [8, 13]. We have
observed (e.g., Footnote 7) that ORM and expert application de-
velopers are familiar with the prevalence of weak isolation, which
may also help explain the relative unpopularity of transactions
within the web programming community.

2. Custom, feral enforcement. Building user-level concurrency
control solutions on a per-framework or, worse, per-application
basis is an expensive, error-prone, and difficult process that ne-
glects decades of contributions from the database community.
While this solution is sufficient to maintain correctness in the
approximately 87% (I-confluent) invariants in our corpus, the
remainder can—in many modern ORM implementations—lead
to data corruption on behalf of applications.

However, and perhaps most importantly, this feral approach pre-
serves a key tenet of the Rails philosophy: a recurring insistence
on expressing domain logic in the application. This also enables
the declaration of invariants that are not among the few natively
supported by databases today (e.g., uniqueness constraints).

In summary, application writers today lack a solution that guar-
antees correctness while maintaining high performance and pro-
grammability. Serializability is too expensive for some applications,
is not widely supported, and is not necessary for many application
invariants. Feral concurrency control is often less expensive and
is trivially portable but is not sufficient for many other application
invariants. In neither case does the database respect and assist with
application programmer desires for a clean, idiomatic means of
expressing correctness criteria in domain logic. We believe there is
an opportunity and pressing need to build systems that provide all
three criteria: performance, correctness, and programmability.

7.2 Domesticating Feral Mechanisms
Constructively, to properly provide database support and thereby

“domesticate” these feral mechanisms, we believe application users
and framework authors need a new database interface that will
enable them to:

1. Express correctness criteria in the language of their domain
model, with minimal friction, while permitting their automatic
enforcement. Per Section 2, a core factor behind the success
of ORMs like Rails appears to be their promulgation of an id-
iomatic programming style that “seems right” for web program-
ming. Rails’ disregard for advanced database functionality is
evidence of a continued impedance mismatch between applica-
tion domain logic and current database primitives: databases
today do not understand the semantics of feral validations.
We believe any solution to domestication must respect ORM ap-
plication patterns and programming style, including the ability to
specify invariants in each framework’s native language. Ideally,
database systems could enforce applications’ existing feral invari-

ants without modification. This is already feasible for a subset of
invariants—like uniqueness and foreign key constraints—but not
all. An ideal solution to domestication would provide universal
support with no additional overhead for application writers.

2. Only pay the price of coordination when necessary. Per Section 4,
many invariants can be safely executed without coordination,
while others cannot. The many that do not need coordination
should not be unnecessarily penalized.
An ideal solution to domestication would enable applications
to avoid coordination whenever possible, thus maximizing both
performance and operation availability. The database should facil-
itate this avoidance, thus evading common complaints (especially
within the Internet community) about serializable transactions.

3. Easily deploy to multiple database backends. ORM frameworks
today are deployed across a range of database implementations,
and, when deciding which database features to exercise, frame-
work authors often choose the least common denominator for
compatibility purposes.
An ideal solution to domestication would preserve this compatibil-
ity, possibly by providing a “bolt on” compatibility layer between
ORM systems and databases lacking advanced functionality (ef-
fectively, a “blessed” set of mechanisms beneath the applica-
tion/ORM that correctly enforce feral mechanisms).

Fulfilling these design requirements would enable high perfor-
mance, correct execution, and programmability. However, doing so
represents a considerable challenge.

Promise in the literature. The actual vehicle for implementing
this interface is an open question, but the literature lends several
clues. On the one hand, we do not believe the answer lies in ex-
posing additional read/write isolation or consistency guarantees
like Read Committed; these fail our requirement for an abstraction
operating the level of domain logic and, as we have noted, are chal-
lenging for developers (and researchers) to reason about. On the
other hand, more recent proposals for invariant-based concurrency
control [17, 65] and a litany of work from prior decades on rule-
based [82] and, broadly, semantics-based concurrency control [79]
appear immediately applicable and worth (re-)considering. Recent
advances in program analysis for extracting invariants [73] and sub-
routines from imperative code [33] may allow us to programatically
suggest new invariants, perform correspondence checking for ex-
isting applications, and apply a range of automated optimizations
to legacy code [34, 76]. Finally, clean-slate language design and
program analysis obviate the need for explicit invariant declaration
(thus alleviating concerns of specification completeness) [11,12,84];
while adoption within the ORM community is a challenge, we view
this exploration as worthwhile.

Summary. In all, the wide gap between research and current prac-
tice is both a pressing concern and an exciting opportunity to revisit
many decades of research on alternatives to serializability with an
eye towards current operating conditions, application demands, and
programmer practices. Our proposal here is demanding, but so are
the framework and application writers our databases serve. Given
the correct primitives, database systems may yet have a role to play
in ensuring application integrity.

8. RELATED WORK
There is a large body of related work that we consider in four

categories: object relational mapping systems, the study of weak
isolation and application requirements, the quantification of isolation
behavior, and empirical open source software analysis.

ORMs. Database systems and application programming frame-
works have a long history [24, 30, 63]. The “impedance mismatch”
between object-oriented programming and the relational model is a
perennial problem in data management systems. Ruby on Rails is no
exception, and the concurrency control issues we study here are en-
demic to this mismatch—namely, the disuse of common concurrency
control mechanisms like database-backed constraints. Bridging this
gap remains an active area of research [66].

The latest wave of web programming frameworks has inspired
diverse research spanning databases, verification, and security. Sta-
tusQuo uses program analysis and synthesis to transform imperative
ORM code into SQL, leveraging the efficiency of database-backed
web applications written in the Spring framework [33]. Rails has
been the subject of study in the verification of cross-site scripting
attacks [32], errors in data modeling of associations [68], and ar-
bitrary, user-specified (non-validation) invariants [25]. Rails-style
ORM validations have been used to improve systems security via
client-side execution [58, 76]. Our focus here is on the concurrency
control requirements and usages of applications written in Rails.

Applications and weak isolation. The issues we examine here
are fundamental to the use of weak isolation in data management
systems. Non-serializable isolation dates to the mid-1970s [52]
and has a colorful history [8]; today, by volume, many database
management systems are non-serializable by default [16]. The
isolation anomalies surfaced by the stores we study here are directly
responsible for violating the integrity of the validations we consider.

However, serializable isolation is not strictly necessary for main-
taining application integrity. Semantic-based concurrency control
criteria has almost as long a lineage as serializability [44, 53] and
suggests that, with additional, non-syntactic knowledge about ap-
plications (e.g., integrity constraints) [61], correctness is achievable
without serializability. This use of invariants has enjoyed recent
popularity in work by Li et al. [65], Roy et al. [73], and Bailis et
al. [17]. We use the concept of invariant confluence from [17] to de-
termine whether Rails’s built-in validators and applications written
in Rails are indeed safe under any coordination-free execution. Our
methodology is closest in spirit to [17], but, here, we examine real
applications instead of standardized benchmarks.

Quantifying anomalies. A range of research similarly quantifies
the effect of non-serializable isolation in a variety of ways.

Perhaps closest to our work is a study by Fekete et al., which quan-
titatively analyzed data inconsistencies arising from non-serializable
schedules [45]. This study used a hand-crafted benchmark for anal-
ysis but is nevertheless one of the only studies of actual application
inconsistencies. Here, we focus on open source applications from
the Rails community.

A larger body of work examines isolation anomalies at the read-
write interface (that is, measures deviations from properties such
as serializability or linearizability but not the end effect of these
deviations on actual application behavior). Wada et al. evaluated
the staleness of Amazon’s SimpleDB using end-user request trac-
ing [81], while Bermbach and Tai evaluated Amazon S3 [22], each
quantifying various forms of non-serializable behavior. Golab et al.
provide algorithms for verifying the linearizability of and sequen-
tial consistency arbitrary data stores [51] and Zellag and Kemme
provide algorithms for verifying their serializability [85] and other
cycle-based isolation anomalies [86]. Probabilistically Bounded
Staleness provides time- and version-based staleness predictions
for eventually consistent data stores [18]. Our focus here is on
anomalies as observed by application logic rather than read-write
anomalies observed under weak isolation.

Empirical software analysis. Empirical software analysis of open

source software is a topic of active interest in the software engineer-
ing research community [77]. In the parlance of that community, in
this work, we perform a mixed-methods analysis, combining quanti-
tative survey techniques with a confirmatory case study of Rails’s
susceptibility to validation errors [42]. In our survey, we attempt
to minimize sampling bias towards validation-heavy projects by
focusing our attention on popular projects, as measured by GitHub
stars. Our use of quantitative data followed by supporting qualitative
data from documentation and issue tracking—as well as the chronol-
ogy of methodologies we employed to attain the results presented
here—can be considered an instance of the sequential exploration
strategy [37]. We specifically use these techniques in service of
better understanding use of database concurrency control.

9. CONCLUSIONS
In this work, we examined the use of concurrency control mecha-

nisms in a set of 67 open source Ruby on Rails applications and, to a
less thorough extent, concurrency control support in a range of other
web-oriented ORM frameworks. We found that, in contrast with tra-
ditional transaction processing, these applications overwhelmingly
prefer to leverage application-level feral support for data integrity,
typically in the form of declarative (sometimes user-defined) valida-
tion and association logic. Despite the popularity of these invariants,
we find limited use of in-database support to correctly implement
them, leading to a range of quantifiable inconsistencies for Rails’
built-in uniqueness and association validations. While many valida-
tions are invariant confluent and therefore correct under concurrent
execution given standard RDBMS weak isolation and concurrent
update semantics, we see considerable opportunity to better support
these users and their feral invariants in the future.

Coda: A Call for Empiricism
This work is a first step towards better understanding how users
in the wild actually interact with the database systems that this
community builds. Given the ascendancy of open source, there is
unprecedented opportunity to empirically and quantitatively study
how our systems are and are not serving the needs of application pro-
grammers. Lightweight program analysis has never been easier, and
the corpus of readily-accessible code—especially in an academic
context—has never been larger.

These open source applications are undoubtedly dwarfed by many
other commercial and enterprise-grade codebases in terms of size,
quality, and complexity. However, compared to alternatives such as
TPC-C, which today is almost 23 years old and is still the preferred
standard for transaction processing evaluation, open source corpuses
are far better proxies for modern applications. Recent efforts like
the OLTPBenchmark suite [39] are promising but are nevertheless
(and perhaps necessarily) not a substitute for real applications. The
opportunity to perform both quantitative surveys across a large set of
applications as well as longitudinal studies over the history of each
application repository (and the behavior of a given programmer over
time and across repositories) is particularly compelling. While these
studies are inherently imprecise (due to limitations of the corpuses),
the resulting quantitative trends are invaluable.

In summary, in this era of “Big Data” analytics, we see great
promise in turning these analyses inwards, towards an empirical
understanding of the usage of data management systems today,
in service of better problem selection and a more quantitatively
informed community dialogue.

Acknowledgments. The authors would like to thank Peter Alvaro,
Michael R. Bernstein, Colin Jones, Xavier Shay, and the SIGMOD
reviewers for their insightful commentary and feedback on this

work. This research is supported in part by NSF CISE Expedi-
tions Award CCF-1139158, LBNL Award 7076018, DARPA XData
Award FA8750-12-2-0331, the NSF Graduate Research Fellow-
ship (grant DGE-1106400), and gifts from Amazon Web Services,
Google, SAP, The Thomas and Stacey Siebel Foundation, Adatao,
Adobe, Apple, Inc., Blue Goji, Bosch, C3Energy, Cisco, Cray,
Cloudera, EMC, Ericsson, Facebook, Guavus, Huawei, Informat-
ica, Intel, Microsoft, NetApp, Pivotal, Samsung, Splunk, Virdata,
VMware, and Yahoo!.

10. REFERENCES
[1] SchemaPlus. https://github.com/SchemaPlus/schema_plus.
[2] How a quiet developer built Goodreads.com into book community of 2.6+

million members – with Otis Chandler, November 2009.
http://mixergy.com/interviews/goodreads-otis-chandler/.

[3] Java EE 7 API: Package javax.persistence, 2013.
http://docs.oracle.com/javaee/7/api/javax/persistence/package-
summary.html.

[4] CakePHP, 2014. http://cakephp.org/ and
http://book.cakephp.org/2.0/en/index.html.

[5] Django: The Web framework for perfectionists with deadlines, 2014.
https://www.djangoproject.com/ and
https://github.com/django/django.

[6] Laravel: The PHP Framework for Web Artisans, 2014. http://laravel.com/
and https://github.com/laravel/laravel.

[7] RailsGuide: Active Record Validations, 2014.
http://guides.rubyonrails.org/active_record_validations.html.

[8] A. Adya. Weak consistency: a generalized theory and optimistic
implementations for distributed transactions. PhD thesis, MIT, 1999.

[9] R. Allen. Airbnb Engineering Blog: “Upgrading Airbnb from Rails 2.3 to Rails
3.0”, October 2012. http://nerds.airbnb.com/upgrading-airbnb-from-
rails-23-to-rails-30/.

[10] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services. Springer, 2004.
[11] P. Alvaro, N. Conway, J. M. Hellerstein, and D. Maier. Blazes: Coordination

analysis for distributed programs. In ICDE 2014.
[12] P. Alvaro, N. Conway, J. M. Hellerstein, and W. Marczak. Consistency analysis

in Bloom: a CALM and collected approach. In CIDR 2011.
[13] P. Alvaro et al. Consistency without borders. In SoCC 2013.
[14] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan. Linkbench: a

database benchmark based on the Facebook social graph. In SIGMOD 2013.
[15] J. Aylett. django-database-constraints, 2013.

https://github.com/jaylett/django-database-constraints.
[16] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica.

Highly Available Transactions: Virtues and limitations. In VLDB 2014.
[17] P. Bailis, A. Fekete, M. J. Franklin, J. M. Hellerstein, A. Ghodsi, and I. Stoica.

Coordination avoidance in database systems. In VLDB 2015.
[18] P. Bailis, S. Venkataraman, M. J. Franklin, et al. Probabilistically Bounded

Staleness for practical partial quorums. In VLDB 2012.
[19] Balderdash. Sails.js: Realtime MVC Framework for Node.js, 2014.

https://github.com/balderdashy/sails.
[20] Balderdash. Waterline: An adapter-based ORM for Node.js with support for

mysql, mongo, postgres, redis, [sic] and more, 2014.
https://github.com/balderdashy/waterline.

[21] Bean Validation Expert Group. Jsr-000303 bean validation 1.0 final release
specification, 2009.
http://download.oracle.com/otndocs/jcp/bean_validation-1.0-fr-
oth-JSpec/.

[22] D. Bermbach and S. Tai. Eventual consistency: How soon is eventual? An
evaluation of Amazon S3’s consistency behavior. In MW4SOC, 2011.

[23] E. Bernard. Java Specification Request 349: Bean Validation 1.1, 2013.
https://jcp.org/en/jsr/detail?id=349.

[24] P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. A vision for management of
complex models. ACM Sigmod Record, 29(4):55–63, 2000.

[25] I. Bocić and T. Bultan. Inductive verification of data model invariants for web
applications. In ICSE, ICSE 2014, pages 620–631, New York, NY, USA, 2014.
ACM.

[26] E. Brewer. CAP twelve years later: How the “rules” have changed. Computer,
45(2):23–29, 2012.

[27] J. Brough. #645: Alternative to validates_uniqueness_of using db constraints,
2011. rails/rails at https://github.com/rails/rails/issues/645.

[28] P. Calcado. Building products at SoundCloud – Part I: Dealing with the
monolith, June 2014.
https://developers.soundcloud.com/blog/building-products-at-
soundcloud-part-1-dealing-with-the-monolith.

[29] M. J. Carey and D. J. DeWitt. Of objects and databases: A decade of turmoil. In
VLDB, 1996.

[30] M. J. Carey et al. Shoring up persistent applications. In SIGMOD 1994.

[31] A. Carter. Hulu Tech Blog: “At a glance: Hulu hits Rails Conf 2012”, May
2012. http://tech.hulu.com/blog/2012/05/14/347/.

[32] A. Chaudhuri and J. S. Foster. Symbolic security analysis of Ruby-on-Rails
web applications. In CCS, 2010.

[33] A. Cheung, O. Arden, S. Madden, A. Solar-Lezama, and A. C. Myers.
StatusQuo: Making familiar abstractions perform using program analysis. In
CIDR 2013.

[34] A. Cheung, S. Madden, O. Arden, and A. C. Myers. Automatic partitioning of
database applications. In VLDB 2012.

[35] B. Cook. Scaling Twitter, SDForum Silicon Valley Ruby Conference, 2007.
http://www.slideshare.net/Blaine/scaling-twitter.

[36] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In ACM SoCC 2010.

[37] J. W. Creswell. Research design: Qualitative, quantitative, and mixed methods
approaches. Sage, 2013.

[38] K. Crum. #3238: Activerecord::staleobjecterror in checkout, 2013. spree/spree
at https://github.com/spree/spree/issues/3238.

[39] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux. OLTP-Bench: An
extensible testbed for benchmarking relational databases. In VLDB 2014.

[40] J. Duff. How Shopify scales Rails, Big Ruby 2013, April 2013. http:
//www.slideshare.net/jduff/how-shopify-scales-rails-20443485.

[41] E. Dumbill. O’Reilly: “Ruby on Rails: An interview with David Heinemeier
Hansson”, August 2005.
http://www.oreillynet.com/pub/a/network/2005/08/30/ruby-rails-
david-heinemeier-hansson.html.

[42] S. Easterbrook et al. Selecting empirical methods for software engineering
research. In Guide to advanced empirical software engineering, pages 285–311.
Springer, 2008.

[43] M. Ehsan. Input validation with Laravel, 2014.
http://laravelbook.com/laravel-input-validation/.

[44] K. P. Eswaran et al. The notions of consistency and predicate locks in a
database system. Commun. ACM, 19(11):624–633, 1976.

[45] A. Fekete, S. N. Goldrei, and J. P. Asenjo. Quantifying isolation anomalies. In
VLDB 2009.

[46] H. Ferentschik. Accessing the Hibernate Session within a ConstraintValidator,
May 2010. https://developer.jboss.org/wiki/
AccessingtheHibernateSessionwithinaConstraintValidator.

[47] H. Ferentschik and G. Morling. Hibernate validator JSR 349 reference
implementation 5.1.3.final, 2014.
https://docs.jboss.org/hibernate/stable/validator/reference/en-
US/html/.

[48] M. Fowler. Patterns of enterprise application architecture. Addison-Wesley
Longman Publishing Co., Inc., 2002.

[49] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Pearson Education, 1994.

[50] D. Geer. Will software developers ride Ruby on Rails to success? Computer,
39(2):18–20, 2006.

[51] W. Golab, X. Li, and M. A. Shah. Analyzing consistency properties for fun and
profit. In PODC 2011.

[52] J. Gray, R. Lorie, G. Putzolu, and I. Traiger. Granularity of locks and degrees of
consistency in a shared data base. Technical report, IBM, 1976.

[53] P. W. Grefen and P. M. Apers. Integrity control in relational database
systems–an overview. Data & Knowledge Engineering, 10(2):187–223, 1993.

[54] D. H. Hansson. active_record/transactions.rb, 2004. rails/rails githash db045db
at https://github.com/rails/rails/blob/db045dbb.

[55] D. H. Hansson. Choose a single layer of cleverness, September 2005.
http://david.heinemeierhansson.com/arc/2005_09.html.

[56] Hibernate Team and JBoss Visual Design Team. Hibernate reference
documentation 4.3.7.final, 2014.
http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/.

[57] M. Higgins. Foreigner. https://github.com/matthuhiggins/foreigner.
[58] T. Hinrichs et al. Caveat: Facilitating interactive and secure client-side

validators for ruby on rails applications. In SECURWARE 2013.
[59] M. Koziarski. Warn users about the race condition in validates_uniqueness_of.

[koz], 2007. rails/rails githash c01c28c at
https://github.com/rails/rails/commit/c01c28c.

[60] G. E. Krasner, S. T. Pope, et al. A description of the model-view-controller user
interface paradigm in the smalltalk-80 system. Journal of object oriented
programming, 1(3):26–49, 1988.

[61] H.-T. Kung and C. H. Papadimitriou. An optimality theory of concurrency
control for databases. In SIGMOD, 1979.

[62] H. Lai. Document concurrency issues in validates_uniqueness_of., 2008.
rails/rails githash adacd94 at
https://github.com/rails/rails/commit/adacd94.

[63] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database
system. Communications of the ACM, 34(10):50–63, 1991.

[64] J. Leighton. Support for specifying transaction isolation level, 2012. rails/rails
githash 392eeec at https://github.com/rails/rails/commit/392eeec.

[65] C. Li, J. Leitao, A. Clement, N. Preguiça, R. Rodrigues, et al. Automating the
choice of consistency levels in replicated systems. In USENIX ATC 2014.

https://github.com/SchemaPlus/schema_plus
http://mixergy.com/interviews/goodreads-otis-chandler/
http://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html
http://cakephp.org/
http://book.cakephp.org/2.0/en/index.html
https://www.djangoproject.com/
https://github.com/django/django
http://laravel.com/
https://github.com/laravel/laravel
http://guides.rubyonrails.org/active_record_validations.html
http://nerds.airbnb.com/upgrading-airbnb-from-rails-23-to-rails-30/
http://nerds.airbnb.com/upgrading-airbnb-from-rails-23-to-rails-30/
https://github.com/jaylett/django-database-constraints
https://github.com/balderdashy/sails
https://github.com/balderdashy/waterline
http://download.oracle.com/otndocs/jcp/bean_validation-1.0-fr-oth-JSpec/
http://download.oracle.com/otndocs/jcp/bean_validation-1.0-fr-oth-JSpec/
https://jcp.org/en/jsr/detail?id=349
https://github.com/rails/rails/issues/645
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-dealing-with-the-monolith
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-dealing-with-the-monolith
http://tech.hulu.com/blog/2012/05/14/347/
http://www.slideshare.net/Blaine/scaling-twitter
https://github.com/spree/spree/issues/3238
http://www.slideshare.net/jduff/how-shopify-scales-rails-20443485
http://www.slideshare.net/jduff/how-shopify-scales-rails-20443485
http://www.oreillynet.com/pub/a/network/2005/08/30/ruby-rails-david-heinemeier-hansson.html
http://www.oreillynet.com/pub/a/network/2005/08/30/ruby-rails-david-heinemeier-hansson.html
http://laravelbook.com/laravel-input-validation/
https://developer.jboss.org/wiki/AccessingtheHibernateSessionwithinaConstraintValidator
https://developer.jboss.org/wiki/AccessingtheHibernateSessionwithinaConstraintValidator
https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/
https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/
https://github.com/rails/rails/blob/db045dbb
http://david.heinemeierhansson.com/arc/2005_09.html
http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/
https://github.com/matthuhiggins/foreigner
https://github.com/rails/rails/commit/c01c28c
https://github.com/rails/rails/commit/adacd94
https://github.com/rails/rails/commit/392eeec

[66] A. Malpani et al. Reverse engineering models from databases to bootstrap
application development. In ICDE, 2010.

[67] S. McCullough. Groupon Engineering Blog: “Geekon: I-Tier”, October 2013.
https://engineering.groupon.com/2013/node-js/geekon-i-tier/.

[68] J. Nijjar and T. Bultan. Bounded verification of ruby on rails data models. In
ACM ISSTA, 2011.

[69] C. Nutter. Q/a: What thread-safe Rails means, August 2008.
http://blog.headius.com/2008/08/qa-what-thread-safe-rails-
means.html.

[70] T. Preston-Werner. How we made GitHub fast, October 2009.
https://github.com/blog/530-how-we-made-github-fast.

[71] J. Rizzo. Twitch: The official blog “Technically Speaking – Group Chat and
General Chat Engineering”, April 2014.
http://blog.twitch.tv/2014/04/technically-speaking-group-chat-
and-general-chat-engineering/.

[72] D. Roberts. #13234: Rails concurrency bug on save, 2013. rails/rails at
https://github.com/rails/rails/issues/13234.

[73] S. Roy, L. Kot, et al. The homeostasis protocol: Avoiding transaction
coordination through program analysis. In SIGMOD, 2015.

[74] S. Ruby, D. Thomas, D. H. Hansson, et al. Agile web development with Rails 4.
The Pragmatic Bookshelf, Dallas, Texas, 2013.

[75] N. Singh. update_attributes and update_attributes! are now wrapped in a
transaction, 2010. rails/rails githash f4fbc2c at
https://github.com/rails/rails/commit/f4fbc2c.

[76] N. Skrupsky et al. Waves: Automatic synthesis of client-side validation code for
web applications. In IEEE CyberSecurity 2012.

[77] K.-J. Stol et al. The use of empirical methods in open source software research:
Facts, trends and future directions. In FLOSS, 2009.

[78] C. Stoltman. initial stab at creating has_many relationships, 2013.
balderdashy/waterline githash b05fb1c at
https://github.com/balderdashy/waterline/commit/b05fb1c. As of
November 2014, this code has been moved but is still non-transactional and the
comment remains unchanged.

[79] M. Tamer Özsu and P. Valduriez. Principles of distributed database systems.
Springer, 2011.

[80] Tim O’Reilly. What is web 2.0: Design patterns and business models for the
next generation of software. Communications and Strategies, 65(1):17–37,
2007.

[81] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data consistency properties
and the trade-offs in commercial cloud storage: the consumers’ perspective. In
CIDR 2011.

[82] J. Widom and S. Ceri. Active database systems: Triggers and rules for
advanced database processing. Morgan Kaufmann, 1996.

[83] A. Williams. Techcrunch: Zendesk launches a help center that combines
self-service with design themes reminiscent of Tumblr, August 2013.
http://techcrunch.com/2013/08/21/zendesk-launches-a-help-
center-that-combines-self-service-with-design-themes-
reminiscent-of-tumblr/.

[84] F. Yang et al. Hilda: A high-level language for data-drivenweb applications. In
ICDE, 2006.

[85] K. Zellag and B. Kemme. How consistent is your cloud application? In SoCC
2012.

[86] K. Zellag and B. Kemme. Real-time quantification and classification of
consistency anomalies in multi-tier architectures. In ICDE 2011.

0 20 40 60 80 100

Normalized Application History (% of Commits)

0

20

40

60

80

100

%
of

Fi
na

lO
cc

ur
re

nc
es

Models
Associations per Model
Validations per Model
Transactions per Model

Figure 6: Use of mechanisms over each project’s history. We
plot the median value of each metric across projects and, for
each mechanism, omit projects that do not contain any uses of
the mechanism (e.g., if a project lacks transactions, the project
is omitted from the median calculation for transactions).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

C
om

m
its

A
ut

ho
re

d
(C

D
F)

0.0 0.2 0.4 0.6 0.8 1.0

Proportion Authors

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

/A
ss

oc
A

ut
ho

re
d

(C
D

F)

Figure 7: CDFs of authorship of invariants (validations plus as-
sociations) and commits. Bolded line shows the average CDF
across projects, while faint lines show CDFs for individual
projects. The dotted line shows the 95th percentile CDF value.

APPENDIX
A. ANALYSIS METHODOLOGY

To determine the occurrences and number of models, transactions, locks,
validations, and associations in Rails, we wrote a set of analysis scripts that
performed a very rudimentary syntactic static analysis . We do not consider
the analysis techniques here a contribution; rather, our interest is in the
output of the analysis. The syntactic approach proved portable between the
many versions of Rails against which each application is linked; otherwise,
porting between non-backwards-compatible Rails versions was difficult and,
in fact, unsupported by several of the Rails code analysis tools we considered
using as alternatives. The choice to use syntax as a means of distinguishing
code constructs led to some ambiguity. To compensate, we introduced
custom logic to handle esoteric syntaxes that arose in particular projects
(e.g., some projects extend ActiveRecord::Base with a separate, project-
specific base class, while some validation usages vary between constructs
like :validates_presence and :validates_presence_of).

To determine code authorship, we used the output of git log and blame
and did not attempt any sophisticated entity resolution.

B. DETAILED VALIDATION BEHAVIOR

B.1 Uniqueness Validation
When a controller attempts to save an ActiveRecord model instance i

of type M, if M has a declared :validates_uniqueness annotation on
attribute a, the following actions will be performed:

1. Assuming that instances of M are stored in database table TM (with at-
tribute a stored in column Ca), Active Record will perform the equivalent
of

SELECT 1 FROM TM where Ca = i.a LIMIT ONE;

(SELECT COUNT(*) would be sufficient here as well, but this is not how
the query is actually implemented).

2. If this result set is empty, the validation succeeds.

3. If this result set is not empty, the validation fails. If the validation was
called during save, it returns false. If the validation was called during
save!, it raises an ActiveRecord::RecordInvalid exception.

This is a classic example of the phantom problem. Changing this SELECT
call to SELECT FOR UPDATE would be sufficient. However, Rails is not
implemented this way.

https://engineering.groupon.com/2013/node-js/geekon-i-tier/
http://blog.headius.com/2008/08/qa-what-thread-safe-rails-means.html
http://blog.headius.com/2008/08/qa-what-thread-safe-rails-means.html
https://github.com/blog/530-how-we-made-github-fast
http://blog.twitch.tv/2014/04/technically-speaking-group-chat-and-general-chat-engineering/
http://blog.twitch.tv/2014/04/technically-speaking-group-chat-and-general-chat-engineering/
https://github.com/rails/rails/issues/13234
https://github.com/rails/rails/commit/f4fbc2c
https://github.com/balderdashy/waterline/commit/b05fb1c
http://techcrunch.com/2013/08/21/zendesk-launches-a-help-center-that-combines-self-service-with-design-themes-reminiscent-of-tumblr/
http://techcrunch.com/2013/08/21/zendesk-launches-a-help-center-that-combines-self-service-with-design-themes-reminiscent-of-tumblr/
http://techcrunch.com/2013/08/21/zendesk-launches-a-help-center-that-combines-self-service-with-design-themes-reminiscent-of-tumblr/

Name Description Authors LoC Ruby Commits M T PL OL V A Stars Githash Last commit

Canvas LMS Education 132 309,580 12,853 161 46 12 1 354 837 1,251 3fb8e69 10/16/14

OpenCongress Congress data 15 30,867 1,884 106 1 0 0 48 357 124 850b602 02/11/13

Fedena Education management 4 49,297 1,471 104 5 0 0 153 317 262 40cafe3 01/23/13

Discourse Community discussion 440 72,225 11,480 77 41 0 0 83 266 12,233 1cf4a0d 10/20/14

Spree eCommerce 677 47,268 14,096 72 6 0 0 92 252 5,582 aa34b3a 10/16/14

Sharetribe Content management 35 31,164 7,140 68 0 0 0 112 202 127 8e0d382 10/21/14

ROR Ecommerce eCommerce 19 16,808 1,604 63 2 3 0 219 207 857 c60a675 10/09/14

Diaspora Social network 388 31,726 14,640 63 2 0 0 66 128 9,571 1913397 10/03/14

Redmine Project management 10 81,536 11,042 62 11 0 1 131 157 2,264 e23d4d9 10/19/14

ChiliProject Project management 53 66,683 5,532 61 7 0 1 118 130 623 984c9ff 08/13/13

Spot.us Community reporting 46 94,705 9,280 58 0 0 0 96 165 343 61b65b6 12/02/13

Jobsworth Project management 46 24,731 7,890 55 10 0 0 86 225 478 3a1f8e1 09/12/14

OpenProject Project management 63 84,374 11,185 49 8 1 3 136 227 371 c1e66af 11/21/13

Danbooru Image board 25 27,857 3,738 47 9 0 0 71 114 238 c082ed1 10/17/14

Salor Retail Point of Sale 26 18,404 2,259 44 0 0 0 81 309 24 00e1839 10/07/14

Zena Content management 7 56,430 2,514 44 1 0 0 12 43 172 79576ac 08/18/14

Skyline CMS Content management 7 10,404 894 40 5 0 0 28 89 127 64b0932 12/09/13

Opal Project management 6 10,707 474 38 3 0 0 42 96 45 11edf34 01/09/13

OneBody Church portal 33 20,398 3,973 36 3 0 0 97 140 1,041 2dfbd4d 10/19/14

CommunityEngine Social networking 67 13,967 1,613 35 3 0 0 92 101 1,073 a4d3ea2 10/16/14

Publify Blogging 93 16,763 5,067 35 7 0 0 33 50 1,274 4acf86e 10/20/14

Comas Conference management 5 5,879 435 33 6 0 0 80 45 21 81c25a4 09/09/14

BrowserCMS Content management 56 21,259 2,503 32 4 0 0 47 77 1,183 d654557 09/30/14

RailsCollab Project managment 25 8,849 865 29 6 0 0 40 122 262 9f6c8c1 02/16/12

OpenGovernment Government data 15 9,383 2,231 28 4 0 0 22 141 160 fa80204 11/21/13

Tracks Personal productivity 89 17,419 3,121 27 2 0 0 24 43 639 eb2650c 10/02/14

GitLab Code management 671 39,094 12,266 24 15 0 0 131 114 14,129 72abe9f 10/20/14

Brevidy Video sharing 2 7,608 6 24 1 0 0 74 56 167 d0ddb1a 01/18/14

Insoshi Social network 16 121,552 1,321 24 1 0 0 41 63 1,583 9976cfe 02/24/10

Alchemy Content management 34 19,329 4,222 23 2 0 0 37 40 240 91d9d08 10/20/14

Teambox Project management 48 32,844 3,155 22 2 0 0 56 116 1,864 62a8b02 09/20/11

Fat Free CRM Customer relationship 99 21,284 4,144 21 3 0 0 39 92 2,384 3dd2c62 10/17/14

linuxfr.org FLOSS community 29 8,123 2,271 20 1 0 0 50 50 86 5d4d6df 10/14/14

Squash Bug reporting 28 15,776 231 19 6 0 0 87 62 879 c217ac1 09/15/14

Shoppe eCommerce 14 3,172 349 19 1 0 0 58 34 208 19e60c8 10/18/14

nimbleShop eCommerce 12 8,041 1,805 19 0 0 0 47 34 47 4254806 02/18/13

Piggybak eCommerce 16 2,235 383 17 1 0 0 51 35 166 2bed094 09/10/14

wallgig Wallpaper sharing 6 5,543 350 17 1 0 0 42 45 18 4424d44 03/23/14

Rucksack Collaboration 7 5,346 445 17 3 0 0 18 79 169 59703d3 10/05/13

Calagator Online calendar 48 9,061 1,766 16 0 0 0 8 11 196 6e5df08 10/19/14

Amahi Platform Home media sharing 15 6,244 577 15 2 0 0 38 22 65 5101c8b 08/20/14

Sprint Project management 5 3,056 71 14 0 0 0 50 45 247 584d887 09/17/14

Citizenry Community directory 17 8,197 512 13 0 0 0 12 45 138 e314fe4 04/01/14

LovdByLess Social network 17 30,718 150 12 0 0 0 27 41 568 26e79a7 10/09/09

lobste.rs Link sharing 24 4,963 624 12 8 0 0 20 40 646 b0b9654 10/18/14

BucketWise Personal finance 10 4,644 258 12 2 0 0 11 46 484 5c73f2b 06/10/12

Sugar Forum 13 7,703 1,316 11 1 0 0 20 53 89 49ca79f 10/21/14

Comf. Mexican Sofa Content management 106 8,881 1,746 10 0 0 0 35 26 1,523 fecef0c 10/09/14

Radiant Content management 100 15,923 2,385 9 3 0 1 26 12 1,554 0c9ef9b 10/01/14

Forem Forum 100 4,676 1,383 9 0 0 0 8 29 1,302 519f2de 08/14/14

Saasy eCommerce 2 163,170 21 8 4 0 0 19 9 520 4fe610f 08/03/09

Refinery CMS Content management 438 10,847 9,107 8 0 0 0 16 8 2,979 f4e24ef 10/20/14

BostonRB Ruby community 40 2,135 889 7 0 0 0 18 12 199 05fc100 10/21/14

Inkwell Social networking 6 6,764 156 7 0 0 0 4 51 327 d1938d3 07/15/14

Boxroom File sharing 9 1,956 368 6 0 0 0 18 12 218 1e74e06 10/18/14

Copycopter Copy writing 9 2,347 46 6 1 0 0 7 14 652 d3607c4 06/28/12

Enki Blogging 29 4,678 562 6 1 0 0 5 7 835 b793d48 12/01/13

Fulcrum Project planning 46 3,190 637 5 0 0 0 13 15 1,335 8397de2 08/20/14

GitLab CI Continuous integration 80 3,700 870 5 2 0 0 11 13 1,188 7d51134 10/17/14

Kandan Persistent chat 56 1,694 808 5 0 0 0 6 8 2,249 15a8aab 10/06/14

Juvia Commenting 8 2,302 202 4 3 0 0 11 8 937 43a1c48 05/09/14

Go vs Go Go board game 2 2,378 302 4 0 0 0 11 9 145 c8d739d 02/21/13

Adopt-a-Hydrant Civics 14 14,165 1,242 3 0 0 0 11 8 182 5b7ea0e 10/21/14

Selfstarter Crowdfunding 23 577 127 3 0 0 0 1 4 2,688 740075f 05/16/14

Heaven Code deployment 19 2,090 387 2 0 0 0 2 2 163 2d4162e 10/21/14

Carter eCommerce 3 1,093 70 2 1 0 0 0 12 22 60ad49d 07/22/14

Obtvse Blogging 27 455 393 1 0 0 0 3 0 1,516 1542856 03/21/13

Average: 69.10 26,809.51 2,950.85 29.07 3.84 0.24 0.10 52.31 92.87 1,272.42 02/06/14

Table 2: Corpus of applications used in analysis (M: Models, T: Transactions, PL: Pessimistic Locking, OL: Optimistic Locking, V:
Validations, A: Associations). Stars record number of GitHub Stars as of October 2014.

B.2 Association Validation
When a controller attempts to save an ActiveRecord model instance i of

type M, if M has a declared :belongs_to annotation on attribute a pointing
to attribute b of model N and M has a declared :validates_presence
annotation on attribute a, the following actions will be performed:

1. Assuming that instances of N are stored in database table TN (with attribute
b stored in column Cb), Active Record will perform the equivalent of

SELECT 1 FROM TN where Cb = i.a LIMIT ONE;

2. If this result set is not empty, the validation succeeds.

3. If this result set is empty, the validation fails. If the validation was called
during save, it returns false. If the validation was called during save!,
it raises an ActiveRecord::RecordInvalid exception.

C. EXPERIMENTAL DESCRIPTION
We describe our applications from Section 5 in greater detail.

C.1 Uniqueness Validation Schema
We declare two models, each containing two attributes: key, a string, and

value, also a string. The generated schema for each of the models, which we
call SimpleKeyValue and ValidatedKeyValue, is the same. The schema
for SimpleKeyValue is as follows:

create_table "validated_key_values", force: true do |t|
t.string "key"
t.string "value"
t.datetime "created_at"
t.datetime "updated_at"

end

For the non-uniqueness-validated model, we simply require that the key and
value fields are not null via a presence: true annotation. For the ferally
validated model, we add an additional uniqueness: true validation to
the key field in the Active Record model. The remainder of the application
consists of a simple View and Controller logic to allow us to POST, GET, and
DELETE each kind of model instance programatically via HTTP.

C.2 Uniqueness Stress Test
For the uniqueness stress test (Figure 2), we repeatedly attempt to create

duplicate records. We issue a set of 64 concurrent requests to create instances
with the key field set to an increasing sequence number (k, below) and repeat
100 times. At the end of the run, we count the number of duplicate records
in the table:

for model m ∈ {SimpleKeyValue,ValidatedKeyValue} do
for k← 1 to 100 do

parfor 1 to 64 do
via HTTP: create new m with key=k

dups←execute(SELECT key, COUNT(key)-1 FROM TM
GROUP BY key HAVING COUNT(key) > 1;)

Under correct validation, for each choice of k (i.e., for each key k), all but
one of the model creation requests should fail.

C.3 Uniqueness Workload Test
For the uniqueness workload test (Figure 3), a set of 64 workers sequen-

tially issues a set of 100 operations each. Each operation attempts to create
a new model instance with the key field set to a random item generated
according to the distributions described in Section 5:

for model m ∈ {SimpleKeyValue,ValidatedKeyValue} do
parfor 1 to 64 do

for 1 to 100 do
k← pick new key according to distribution
via HTTP: create new m with key=k

dups←execute(SELECT key, COUNT(key)-1 FROM TM
GROUP BY key HAVING COUNT(key) > 1;)

C.4 Association Validation Schema
We declare two sets of models, each containing two models each: a User

model and a Departments model. Each User has a(n implicit) id (as gener-
ated by Rails ActiveRecord) and an integer corresponding department_i.
Each Department has an id. Both models have a timestamp of the last
updated and creation time, as is auto-generated by Rails. Aside from the
table names, both schemas are equivalent. Below is the schema for the
non-validated users and departments:
create_table "simple_users", force: true do |t|

t.integer "simple_department_id"
t.datetime "created_at"
t.datetime "updated_at"

end

create_table "simple_departments", force: true do |t|
t.datetime "created_at"
t.datetime "updated_at"

end

The two pairs of models vary in their validations. One pair of models has
no validations or associations. The other pair of models contain validations,
including rules for cascading deletions. Specifically, we place an associ-
ation has_many :users, :dependent => :destroy on the department,
and, on the user, an association belongs_to :department and validation
validates :department, :presence => true (note that we only delete
from Departments in our workload, below). Thus, on deletion of a model of
type ValidatedDepartment, ActiveRecord will attempt to call destroy on
each matching ValidatedUser.

C.5 Association Stress Test
For the association stress test (Figure 4), we repeatedly attempt to create

orphan users. We issue a set of 64 concurrent requests to create Users
belonging to a particular department, while simultaneously deleting that
department and repeat 100 times. At the end of the run, we count the number
of users with a department that does not exist:

for model m ∈ {Simple,Validated} do
for i← 1 to 100 do

via HTTP: create mDepartment with id=i
for i← 1 to 100 do

parfor w ∈ 1 to 65 do
if w = 1 then

via HTTP: delete mDepartment with id=i
else

via HTTP: create new mUser department_id=i
orphaned←execute(“SELECT m_department_id,

COUNT(*) FROM m_users AS U
LEFT OUTER JOIN m_departments AS D
ON U.m_department_id = D.id
WHERE D.id IS NULL
GROUP BY m_department_id
HAVING COUNT(*) > 0;”)

C.6 Association Workload Test
For the association workload test (Figure 5), we begin by creating a

variable number of departments (Figure 5 x-axis; D). We next have 64 con-
current clients simultaneously attempt to create users belonging to a random
department and delete random departments (in a 10:1 ratio of creations to
deletions, for 100 operations each). We end by counting the number of
orphaned users, as above.

for model m ∈ {Simple,Validated} do
for d← 1 to D do

via HTTP: create mDepartment with id=i
parfor w ∈ 1 to 64 do

d← uni f ormRandomInt([1,D])

if uni f ormRandomDouble([0,1])< 1
11 then

via HTTP: delete mDepartment with id=d
else

via HTTP: create new mUser department_id=d
orphaned← as above, in stress test

	Introduction
	Background
	Rails Tenets and MVC
	Databases and Deployment

	Feral Mechanisms in Rails
	Rails Concurrency Control Mechanisms
	Adoption in Practice
	Summary and Discussion

	Isolation and Integrity
	Understanding Validation Behavior
	Built-In Validations
	Custom Validations

	Quantifying Feral Anomalies
	Uniqueness Constraints and Isolation
	Quantifying Uniqueness Anomalies
	Association Validations and Isolation
	Quantifying Association Anomalies
	Takeaways and Discussion

	Other Frameworks
	Implications for Databases
	Summary: Shortcomings Today
	Domesticating Feral Mechanisms

	Related Work
	Conclusions
	References
	Analysis Methodology
	Detailed Validation Behavior
	Uniqueness Validation
	Association Validation

	Experimental Description
	Uniqueness Validation Schema
	Uniqueness Stress Test
	Uniqueness Workload Test
	Association Validation Schema
	Association Stress Test
	Association Workload Test

