
Prioritizing Attention in Fast Data: Principles and Promise

Peter Bailis, Edward Gan, Kexin Rong, Sahaana Suri
Stanford InfoLab

ABSTRACT
While data volumes continue to rise, the capacity of human attention
remains limited. As a result, users need analytics engines that can
assist in prioritizing attention in this fast data that is too large for
manual inspection. We present a set of design principles for the
design of fast data analytics engines that leverage the relative scarcity
of human attention and overabundance of data: return fewer results,
prioritize iterative analysis, and filter fast to compute less. We report
on our early experiences employing these principles in the design
and deployment of MacroBase, an open source analysis engine for
prioritizing attention in fast data. By combining streaming operators
for feature transformation, classification, and data summarization,
MacroBase provides users with interpretable explanations of key
behaviors, acting as a search engine for fast data.

1. INTRODUCTION
In an information-rich world, the wealth of information
means a dearth of something else: a scarcity of what-
ever it is that information consumes. What information
consumes is rather obvious: it consumes the attention
of its recipients. [23]

Today, 45 years after Herbert Simon’s above observation, each
of Facebook, Twitter, and LinkedIn ingest more than 12M events
per second [4, 22, 26]. Simultaneously, a rise in automated data
sources (i.e., the “Internet of Things”) is bringing even larger data
volumes that are predicted to double every two years [1]. These
volumes place a serious strain on analyst and analytic engine alike.
As an example, several of today’s best-of-class application operators
anecdotally reported using less than 6% of data they collect.

As a result, while the era of “big data” ushered an abundance of
data, we believe that the impending era of fast data will be marked
by an overabundance of data and a relative scarcity of resources to
process and interpret it. That is, as data volumes continue to rise,
human attention remains limited. The resulting challenge is to prior-
itize attention: information systems must—more than ever—assist
in highlighting and contextualizing important behaviors, quickly
and over large, diverse data sources. This problem is especially
acute in tasks including data exploration, debugging of complex
and predictive services, and high-volume monitoring. To illustrate

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2017.
8th Biennial Conference on Innovative Data Systems Research (CIDR ‘17)
January 8-11, 2017 , Chaminade, California, USA.

this difficulty, consider the following three questions, each of which
corresponds to a real scenario reported by domain experts:

• A developer releases her mobile application on today’s An-
droid ecosystem. She asks: is her application behaving reli-
ably on all 24,000 distinct Android device types, and combi-
nations of operating system and application releases?

• An industrial equipment manufacturer deploys tens of thou-
sands of battery subsystems worldwide. Following a catas-
trophic failure of one battery, the manufacturer asks: are other
batteries likely to also fail catastrophically?

• A geologist deploys an array of thousands of sensors, each
monitoring the Earth’s activity at 100Hz, for decades. The
geologist asks: are there significant seismic events captured
via small, coupled interactions observed by the sensors?

At high volumes, analysts report that delivering timely answers to
these questions via manual data analysis is infeasible. Moreover,
in addition to overwhelming human attention, high data volumes
can also overwhelm machine “attention,” or the ability to economi-
cally process this data due to computational overheads. As a result,
analysts report that important behaviors are frequently overlooked,
leading to inefficiency, outages, and unanswered questions.

To bridge this widening gap between limited attention and grow-
ing data volume, data-intensive systems must evolve. Just as the rise
of big data was both enabled by and influenced a new generation of
faster, cheaper, and often more capable analysis engines, the rise of
fast data demands yet another re-design. Specifically, in prioritiz-
ing the use of scarce human and computational resources, fast data
analysis engines must address three key challenges:

A.) Scarce resources for interpretation. In today’s high-volume
deployments, data volumes far exceed humans’ capability to man-
ually analyze events in real time. Users will be overwhelmed if
a fast data system reports even a handful of raw data points per
second. Exacerbating this problem, the combinatorial explosion of
data attributes (e.g., application and firmware versions, hardware
platforms) can mask important behaviors during manual inspection.

B.) Scarce resources for developing analyses. The statistical
and predictive models that are critical in prioritizing attention also
require many iterations of feature engineering, model selection, pa-
rameter tuning, performance optimization, and deployment. More-
over, accurately identifying important behaviors typically requires
domain knowledge from experts. As a result, there is often a dis-
crepancy between the skills of domain experts—who are unlikely
to also be experts in machine learning, statistics, or databases—and
the skills required to develop accurate, efficient analyses. Bridging
this gap via large supporting teams of data scientists and engineers
can be prohibitively expensive.



C.) Scarce resources for computation. Fast data exhibits ex-
tremely high volume, routinely in the millions of events per second
as at the web services above. Processing these volumes is a challenge
for any analytics engine, which will increasingly face difficult trade-
offs between accuracy, completeness, and speed. These trade-offs
are often unexplored in the statistics and machine learning literature,
which frequently optimizes for accuracy instead of computational
efficiency. Moreover, in many deployments, analytic models must
evolve quickly as conditions change, and volumes will grow.

To investigate these challenges, we are developing MacroBase, a
new analytics engine designed to prioritize attention in fast data.1

MacroBase i.) produces outputs designed to prioritize attention
while ii.) allowing iterative development of analyses and iii.) aggres-
sively prioritizing computation over input data. That is, MacroBase
ingests input from diverse, streaming data sources (e.g., relational
databases, video feeds) and outputs high-level results designed for
human consumption that contextualize and explain important be-
haviors (e.g., attributes of data that are disproportionately correlated
with degraded or improved performance). For example, in an indus-
trial deployment, MacroBase identified a buggy firmware release as
it was deployed to a device fleet; in a mobile application deployment,
MacroBase identified a previously unknown problematic interac-
tion between the application and the battery in a relatively rare
device model; in a third deployment, MacroBase identified poorly-
configured containers within a datacenter. Instead of outputting
all data points exhibiting these phenomena, MacroBase provided
users with high-level explanations (e.g., “devices running firmware
v42 are 73 times more likely to exhibit degraded performance”).
To enable this functionality, MacroBase employs a customizable
combination of high-performance streaming analytics operators for
feature extraction, classification, and explanation [6]. Combined,
MacroBase’s operators act as a search engine for fast data.

In this paper, we present design principles that enabled the above
analyses and other early use cases, and discuss our initial expe-
riences implementing, improving, and deploying the MacroBase
prototype, which continues to evolve today. First, in §2, we outline
a set of three design principles for prioritizing attention in fast data
analytics: prioritize output presented to users (§2.1), prioritize it-
eration in developing analyses (§2.2), and prioritize computation
on inputs (§2.3). The essence of this style can be captured by the
phrase “scarcity mandates prioritization.” Second, in §3, we report
on the early architecture, implementation, and use of the MacroBase
engine. We describe how MacroBase embodies the above principles
by producing interpretable, context-rich explanations and allowing
users to iteratively improve efficiency and accuracy. In §4, we out-
line several research challenges inspired by our early experiences
with the MacroBase prototype, which has performed analyses in at
least six external industrial organizations and recently received its
first external patches from engineers at two Internet services.

2. A FAST DATA MANIFESTO
Fast data analysis systems must prioritize the attention of end

users, developers, and machines to highlight behaviors in data that
matter. In this section, we introduce three design principles for
prioritizing scarce attention. Figure 1 illustrates how i.) domain ex-
pert attention can be focused by delivering output that summarizes,
aggregates, and contextualizes fast data (§2.1), ii.) engineering re-
sources can be intelligently allocated via interfaces that facilitate
iterative development (§2.2), and, iii.) closest to data sources, lim-
ited computational resources can be allocated discriminatively to
data that is most relevant to outputs (§2.3).
1Available at https://github.com/stanford-futuredata/macrobase/

Domain Expert,
Engineer

Fast
Data

Prioritized Computation

Defaults,
Feedback

Contextual
Explanations

Filtering,
Aggregation

Output
requirements

Compute

Abundant Scarce

Approximate,
Streaming

Prioritized Output

Prioritized Iteration

Figure 1: Fast Data System Design. A funnel of increasing scarcity from
data to computational resources and humans guides the design of the system.
Techniques for prioritizing computation and human attention exploit the
resource imbalances at each level.

2.1 Principle: Prioritize Output
Given data streams that routinely contain hundreds of thousands

or more events per second, fast data systems cannot afford to produce
results that expose raw data; a handful of data points per second
will overwhelm human operators. Even automated downstream
consumers may be unable to handle raw data streams at scale.

Prioritize Output: The design must deliver more in-
formation using less output. Each result provided to
the user costs attention. A few general results are better
than many specific results.

To prioritize attention, fast data systems must be judicious in
deciding which and what kind of results to return to end users. In
contrast, systems that return a large number of raw records (e.g.,
relational database scans, file systems, message queues) will squan-
der attention. To borrow from industrial designer Dieter Rams [17],
fast data systems should output fewer, but better results. Fast data
systems can prioritize attention by producing summaries and ag-
gregates that contextualize and highlight key behaviors within and
across records; for example, instead of reporting all 128K prob-
lematic records produced by device 1337, the system can simply
return the device ID and a count of records. Fast data systems can
further prioritize attention by presenting results in order of their
importance and relevance to users. Systems can exploit natural hier-
archies and ontologies to support aggregation and ranking, allowing
users to drill down as needed from coarser to finer detail (e.g., from
datacenter to rack, server, container, and process).

2.2 Principle: Prioritize Iteration
Iteration is key to developing high quality analyses. Modern

advanced analytics workflows consist of many steps—including
feature engineering, model selection, parameter tuning, and perfor-
mance engineering—that are each inherently iterative and feedback-
driven. This process is labor-intensive: today’s headline-grabbing
advances in machine learning and predictive data products are deliv-
ered by large, well-financed teams of highly-skilled data scientists,
statisticians, and DevOps engineers who perform these often tedious
tasks. Due to these overheads, many domain experts are unable to
translate their expertise into analyses. Fast data systems should both
lower the barrier to analysis and accelerate this feedback-driven
process by explicitly prioritizing iterative workflows.

Prioritize Iteration: The design should allow iterative,
feedback-driven development. Give useful defaults, and
make it easy to tune analysis pipelines and routines. It
is slightly better to be flexible than perfectly precise.

https://github.com/stanford-futuredata/macrobase/


Fast data systems must impose little burden on end users while
providing means of easily tuning analyses to improve accuracy and
scale. The first model is rarely the final model, but good defaults (or
default packages) can provide rapid feedback. Subsequently, users
should be empowered to quickly iterate and provide feedback on
analyses while receiving timely results. Simultaneously, systems
should provide power tools to more skilled end users that allow
advanced configuration as needed.

Today’s imperative, ad-hoc “hairball” architectures hamper it-
erative development. The few systems that manage to solve one
problem well are rarely amenable to repurposing in new tasks. In-
stead, fast data systems should instead be designed for modularity
and incremental extensibility. Systems should allow end-users to
make best use of their domain knowledge while absorbing as much
of the burden of end-to-end model deployment as possible. They
should augment the abilities of domain experts (and any supporting
programmers and data scientists) by automating error-prone, tedious
tasks while scaling best-of-class analyses to increasing volumes.

2.3 Principle: Prioritize Computation
At high volume, efficiently prioritizing limited computational

resources is essential. Engines that provide advanced predictive
analytics are usually focused on batch-oriented, less time-sensitive
offline analyses, but online stream processing systems such as Storm
and Spark Streaming leave the design and implementation of most
complex analysis routines as an exercise for the end-user. Simulta-
neously, the machine learning and statistics community have histor-
ically optimized for prediction quality. As a result, the trade-offs
between quality and speed in a given domain are often unexplored.

Fast data analysis engines should provide techniques for accurate,
high-volume stream processing. To do so, they can leverage a key
property of fast data: not all inputs contribute equally to the output.

Prioritize Computation: The design must prioritize
computation on inputs that most affect its output. The
fastest way to compute is to avoid computation. Avoid
computation on inputs that contribute less to output.

Fast data systems should start from the output and work back-
wards to the input, doing as little work as needed on each piece of
data, prioritizing computation over data that matters most. Gluing
together black-box functions that are unaware of the final output
will miss critical opportunities for fast compute; if a component is
unaware of the final output, it is likely to waste time and resources.
By quickly identifying inputs that most contribute to the output, we
can aggressively prune the amount of computation required. This
prioritizing fast compute presents many opportunities for sampling
and pre-aggregation. Incremental algorithms that cache and re-
use expensive computations are especially beneficial. To compute
quickly, filter fast and compute less.

3. MACROBASE: A FAST DATA SYSTEM
To embody the principles in §2 and begin addressing the chal-

lenges of prioritizing attention, we have spent the last twelve months
building a new fast data analysis engine called MacroBase. In this
section, we report on our initial design decisions, experiences de-
ploying the MacroBase prototype, and ongoing research within
the system, which currently serves as an active vehicle for both
research and a handful of production analyses. [6] and forthcoming
publications provide additional details.

3.1 System Design
Recognizing the many challenges of prioritizing attention in fast

data, when designing MacroBase, we decided it was better to begin

Non-programmers
Data analysts

Scripters
DevOps

Data engineers
Data scientists

command line,
feature transforms

custom pipelines,
operators

GUI exploration,
dashboards

USER INTERFACES
USERS

Ingestion 
and ETL

CONFIGURABLE PIPELINES OF CORE ATTENTION PRIORITIZATION OPERATORS

Result Export
(e.g., REST, PagerDuty)

Dataflow Engines
(internal or e.g., Heron)

Data
Explanation

EXTERNAL INTERFACES

Data Sources
(e.g., Postgres, Kafka)

Feature
Transform Classification

Figure 2: MacroBase System Architecture. MacroBase executes config-
urable dataflow pipelines of statistical analysis operators designed to priori-
tize attention in fast data streams.

by doing one thing well—and later do a few things well—than to do
many things poorly at the outset. As a result, MacroBase started as
a relatively lean open source prototype, targeting a single analytics
workflow our collaborators struggled with: detecting and under-
standing systematic anomalies in their mobile telematics application
(e.g., adverse interactions between users’ hardware devices and the
application’s trip detector). Subsequently, via engagements in indus-
trials, online services, and automotive vehicles, we have begun to
expand the set of functionality to include filtering, visualizing, and
summarizing behaviors in both streaming and offline data.

Twelve months in, the system has a well-defined architecture and
growing set of key operators, which we describe in this section. We
believe it provides a useful template for designing search engine-like
systems for diverse fast data scenarios.

3.1.1 System Architecture

Modularity. As an analytic engine for prioritizing attention in
fast data, MacroBase provides an extensible set of interfaces and
modules to aid users in quickly understanding important behaviors
in high-volume data streams. It was apparent early on that different
data sources and domains required customization to express features
that matter most: for example, tabular, relational, time series, and
image data could all leverage common outlier detection and expla-
nation operators, but each domain required different pre-processing
and feature extraction steps. As a result, one of MacroBase’s major
design objectives is to facilitate easy extension and reconfigura-
tion of the provided functionality without having to reason about
low-level systems concerns (e.g., robustness, streaming execution).

Concretely, MacroBase provides a set of composable, streaming
dataflow operators designed to prioritize attention. These operators
perform tasks including feature extraction, supervised and unsu-
pervised classification, explanation and summarization. Unlike a
traditional relational database, with its clear set of logical function-
ality such as operators for selection, projection, and join operations,
the core set of logical operators required to prioritize attention has
yet to be designed and implemented. As a result, both interface
design and efficient operator implementation are core research chal-
lenges; we describe progress on each in detail here.

Dataflow. Although MacroBase’s core computational primitives
continue to evolve, we have found that expressing them via a
dataflow computation model is useful. Many developers of recent
specialized analytics engines expended considerable effort devising
new techniques for scheduling, partitioning, and scaling their spe-
cialized analytics (most notably, in graph processing), only to see
most performance gains recouped (or even surpassed) by traditional,
dataflow-oriented engines [2, 11, 13]. In MacroBase, we sought to
learn from this history, short-circuiting the process by developing
specialized dataflow operators from (almost) the start; our early



Figure 3: MacroBase’s Default Input and Output. By default, MacroBase
users select key performance metrics and attributes in their input data; Mac-
roBase subsequently reports combinations of attributes that are correlated
with abnormal metric readings. In this example, MacroBase shows device
ID 2030 is disproportionately correlated with high power drain readings;
MacroBase provides a list of such explanations, ranked by their risk ratio.

non-dataflow, imperatively-specified prototypes were brittle to adapt
in a rapidly-expanding set of early use cases.

The use of dataflow confers several benefits. MacroBase’s op-
erators can be interleaved with traditional (e.g., relational) analyt-
ics operators, or re-used across task-specific dataflow graphs (i.e.,
pipelines). Decoupling dataflow specification from execution (i.e.,
operator placement and scheduling) also allows us to execute opera-
tor pipelines in a number of execution modes.

MacroBase’s core dataflow pipelines currently contain a sequence
of data ingestion, feature extraction, classification, and explanation
operators (Figure 2). As we describe below and in [6], within this
pipeline, individual operators for each task—as well as the entire
pipeline structure—is reconfigurable, and the system contains a
growing library of alternative operators to draw from.

Execution Modes. MacroBase operates in two major modes.
First, since all operators are expressed using a streaming dataflow
interface, MacroBase can continuously process input data. Sec-
ond, MacroBase can execute pipelines in a “one-pass” batch ex-
ecution, typically reserved for historical and exploratory analysis.
The dataflow architecture shown in Figure 2 makes it easy to re-use
the same operators in each mode. This allowing users with varying
skill levels to obtain results by clicking on simple graphical UIs
(Figure 3), configuring pipelines in YAML markdown or Java, or
encoding new statistical operators for use in custom pipelines.

Non-goals: low-level dataflow, data storage. In designing Mac-
roBase, we sought to capitalize on two trends. First, streaming
distributed dataflow engines (e.g., Storm, Spark Streaming, Heron)
have become commoditized. It seemed ill-advised to reimplement
this basic functionality (e.g., scheduling, distribution, fault toler-
ance). Instead, we focused on the task of implementing end-to-end
streaming analyses: what computations should a streaming dataflow
engine actually perform? Thus, MacroBase uses dataflow but our
core efforts are not centered on the low-level details of dataflow exe-
cution. Instead, our focus is on accurate and efficient core compu-
tational operators that prioritize user attention. Second, large-scale
storage systems are also increasingly commoditized (e.g., HDFS,
Kafka). In response, we chose to delegate almost all aspects of data
storage to external systems.

As a result, MacroBase’s design is focused on computation, bridg-
ing the modularity and extensibility of tuple-at-a-time dataflow en-
gines and the functionality of domain-specific analysis tools (e.g.,
financial fraud and network intrusion detection systems).

3.1.2 Prioritizing Output
MacroBase’s design for prioritizing output was informed by chal-

lenges that even highly capable engineers reported in making use of

new	LinearMetricNormalizer()
								.then(new	MBGroupBy(groupByIndex,
																												()	->	new	FeatureTransform(conf)))
								.then(new	BatchingPercentileClassifier(conf))
								.then(new	BatchSummarizer(conf))
							.consume(conf.constructIngester().getStream().drain());

Point
and
Click

Custom
Dataflow
Operators

Java

Java / C++

Custom
Pipeline
Config

http://macrobase.io

Web Browser

Dataflow
Pipeline

Streaming Operator

IN FT OD DE

Basic

Intermediate

Advanced

Web Interface

Script,
Stream

int	k	=	data.get(0).metrics().getDimension();
int	n	=	data.size();
List<double[]>	metrics	=	new	ArrayList<>(n);
for	(Datum	curDatum	:	data)	
								metrics.add(curDatum.metrics().toArray());
List<double[]>	trimmedMetrics	=	trimmer.process(metrics);
gModel	=	new	Gaussian().fit(trimmedMetrics);

Figure 4: MacroBase Interfaces. MacroBase provides a range of interfaces
for users of varying skill to perform analyses. A web-based point-and-click
UI allows easy data exploration and export to command-line scripting and/or
streaming. MacroBase also provides interfaces for users to configure custom
pipelines of analytic operators (e.g., using feature transforms, or combining
with relational operators including group-by) and for expert users to author
their own streaming operators.

fast data volumes generated by their production applications. For
example, similar to the difficulties we encountered in mobile appli-
cation deployments, engineers at a major online service reported
difficulty in determining if exceptions reported from end-user de-
vices are correlated with hardware make and model, application
version, and/or users’ physical locations. Today, the engineers can
spend hours to days manually grouping the exceptions to identify
significant commonalities. In response, we designed MacroBase’s
outputs to automate this tedious process, enabling users to focus
on a few trends and attributes that are disproportionately correlated
with exceptions, rather than on thousands of error messages.

In MacroBase’s default analysis routine [6], users highlight fields
of interest within each input data point (e.g., power_drain, user_id)
as either a key performance metric (e.g., power_drain should not be
too high) or as an explanatory attribute (e.g., user_id). MacroBase
then outputs a set of explanations regarding correlated behaviors
within the selected metrics: if a user highlights power_drain as
a target metric and device_type as a target attribute, MacroBase
might report that devices of type D104 are 12.4 times more likely
to have abnormally high power drain than the overall population.
MacroBase delivers a ranked list of these explanations according to
their corresponding prevalence and degree of severity.

3.1.3 Prioritizing Iteration
Several user profiles have emerged during our initial MacroBase

deployments, ranging from domain analysts with limited program-
ming experience to seasoned infrastructure engineers capable of
linking against the core MacroBase operators in their own dataflow
engines. To accommodate such diverse user backgrounds, Mac-
roBase provides a range of interfaces, from a point-and-click inter-
face to a programmable pipeline interface to interfaces for authoring
custom operators (Figure 4). These interfaces enable users of vary-
ing skill levels to quickly obtain initial results and further improve
result quality by iteratively refining their analyses.

Easy: Point-and-Click. The simplest MacroBase interface is
a web-based graphical user interface. The user inputs a database
server and base table (e.g., SELECT * FROM sensor_data;) from
which MacroBase ingests data. MacroBase then presents the user
with the data schema, from which he can mark columns of interest
as either a key performance metric or as an explanatory attribute. As
above, MacroBase subsequently produces results in the form of ex-
planations, or combinations of attributes that are disproportionately
correlated with abnormal metrics. The user can see an overview



of the distributions corresponding to each explanation as well as
the overall data and/or drill down into the raw records. Moreover,
he can save the configured query and run it programmatically as a
one-shot batch job or as a streaming query.

Intermediate: Custom Pipelines. While the GUI provides easy
out of the box experience for many users, it is currently limited to
a relatively simple analysis pipeline. Users may wish to customize
their analyses: for example, instead of finding the highest latencies
in a datacenter, a system operator wanted to find high latencies on
a per-task basis. Accordingly, users can author custom pipelines,
typically modifications of the default analysis. In the monitoring
example above, MacroBase performed a per-task analysis by com-
bining the default classification operator with a group-by operator.

This pipeline interface is especially useful in incorporating do-
main expertise and prior knowledge. For example, a dataset cap-
turing electrical usage exhibited regular spikes, corresponding to
refrigerator cooling; rather than classifying each spike as anoma-
lous, we sought to identify instances when the duration of the spike
lengthened, indicating increased activity. Compared to analyzing
individual points as in the point-and-click GUI, this scenario re-
quired the system to operate on a different data type (time series)
and perform an additional pre-processing step (a short-time Fourier
transform) to extract the waveform. For many similar scenarios,
simply adding an extra feature transformation to the pipeline—via
temporal restructuring, domain-specific processing functions, or
manually combining metrics—can enable a wider range of analyses
without modifying the remainder of the pipeline. MacroBase allows
users to combine existing operators and feature transformations via
this intermediate pipeline interface (currently expressed in Java).

Advanced: Custom Operators. In addition to composing custom
pipelines, users should also be allowed to iteratively tune models.
Users may wish to expressing high-level rules based on prior infor-
mation, domain expertise, or labeled data: for example, an automo-
tive engineer may wish to be alerted if a particular class of vehicles
has nitrogen-oxide emissions in excess of regulatory guidelines.
The system should allow users to encode this knowledge. Moreover,
users with expertise in statistics and machine learning may wish to
perform their own low-level streaming model implementation and
hyperparameter tuning.

For these tasks, MacroBase provides another set of interfaces
for implementing new analytics operators, with well-defined static
typing for common kinds of operators (feature transformation, clas-
sification, explanation) to enable interoperability [6]. As MacroBase
committers, we use these advanced interfaces to develop and expose
new functionality (e.g., §3.2), which can be used and composed in
custom operator pipelines.

3.1.4 Prioritized Computation
To prioritize attention, MacroBase draws upon an array of ex-

isting techniques in statistics and machine learning. However, we
have regularly found that the most accurate techniques for each task
were far too slow for our needs. For example, initial prototypes for
an explanation operator revealed that combining standard outlier
detection with out-of-the-box itemset mining and Lasso-based tech-
niques yielded valuable results but required painful delays on even
moderately-sized (i.e., 100k points) datasets.

Existing machine learning and data mining algorithms are already
highly optimized to scale with growing data volume in analytics.
However, while implementing MacroBase we found that the imbal-
ance between plentiful data and the small handful of desired human
results provided multiple opportunities for improving existing algo-
rithms. Applying classic systems techniques—including predicate

pushdown, incremental memorization, partial materialization, cardi-
nality estimation, approximate query processing, and shared scans—
has accelerated common operations in MacroBase. Per the principle
of prioritizing computation, by focusing on the end results of the
computation, we can avoid a great deal of unnecessary work. Two
simple examples from [6] illustrate this potential:

• A naïve strategy for summarizing results of an outlier detector
via the risk ratio is to compute correlations in the inlying
and outlying points independently, then compare them. How-
ever, we can instead appeal to one of the oldest techniques
in database query optimization: cardinality estimation. The
number of outlying data points is usually much smaller than
the number of inlying data points; therefore, if we first find
correlations with the smaller set of outlying data points, we
can aggressively prune computation when looking for corre-
lations in the inlying data points.

• One of MacroBase’s explanation operators is based on a heavy
hitters “top K” sketch. Typically, heavy hitters sketches as-
sume worst-case arrival of items in a stream; again, we can
appeal to the structure of the data stream to improve running
time. Because many fast data sources repeatedly generate data
points, each item in the stream is likely to appear more than
once. Therefore, MacroBase uses a new heavy-hitters sketch
that amortizes the overhead of maintenance across multiple
points. This leads to speedups of over an order of magnitude
over existing sketches, which use less memory but exhibit
slower update speed.

Stacked end-to-end, the several order-of-magnitude speedups we
have achieved via the above techniques enable analysis over larger
data sets. For a modestly-sized dataset such as the US campaign
contributions from the last four presidential elections, this can mean
the difference between response times of seconds instead of hours.

3.2 Ongoing and Future Work
MacroBase’s existing operators and pipelines have proven useful

in several deployments. However, there are many promising and
high-value opportunities for continued progress at several levels of
the stack. Diverse data modalities (e.g., time series, video) merit dif-
ferent forms of output and corresponding computational operators.
Efficient, accurate query specification remains challenging: new
declarative interfaces and use of techniques including weak supervi-
sion and model ensembles can assist. Scale is a perennial concern,
and a focus on end-to-end pipelines offers many opportunities for
reuse of classic systems techniques including memoization, sketch-
ing, and approximate incremental computation. In this section, we
illustrate this potential by reporting on ongoing improvements in
prioritizing output, iteration, and computation.

3.2.1 Improving Output
Different data modalities are best understood using different

forms of output. MacroBase’s default risk-ratio explanations work
well for tabular numeric data but are less useful for time-series anal-
yses where trends and waveforms are key to interpretability. For
example, in modern application monitoring, time-series visualiza-
tion via charting is increasingly important for tracking application
behavior. However, raw data can be noisy and obscure significant
trends in the overall system. For example, the top plot below il-
lustrates an hourly moving average of transportation volume. The
regular fluctuations obscure a much larger drop in volume during the
week of Thanksgiving (11/27), which is only visible after the series
is smoothed according to a weekly average (center). Identifying
the best choice of window size that highlights this activity is non-



trivial; too large of a window obscures the trend entirely (bottom).
In MacroBase, we are developing new techniques to automate this
hyperparameter search for streaming time series data visualization.

10/01 10/08 10/15 10/22 10/29 11/05 11/12 11/19 11/26 12/03 12/10

Oversmoothed

Raw Data

Smoothed

We believe that alternative, multi-modal techniques for displaying
results will be complementary. For example, coupling the above
temporal output with the risk ratio metric should enable the auto-
mated curation of an ideal set of dashboards for tracking important
time-varying metrics that evolve as conditions change. Further de-
veloping prioritized output for high-dimensional, categorical, and
video data is especially promising

3.2.2 Improving Iteration
MacroBase currently allows domain experts to quickly examine

different sets of metrics and explanation attributes, and domain
engineers to prototype new transforms and data pipelines. However,
we are interested in further simplifying the process of using the
system, especially for non-expert users.

For example, time series and multimodal input streams (e.g.,
video and sensors) are especially difficult to analyze when they are
high dimensional, but similarity search and outlier classification
remain key operations on these data streams. Dimensionality re-
duction provides a powerful tool for reducing data complexity [14],
but many methods (e.g., PCA) are expensive, while others (e.g.,
Locality Sensitive Hashing) require time-consuming hyperparam-
eter tuning, and the best tool for the job may vary from dataset to
dataset. We have developed a new optimizer that evaluates a range
of dimensionality reduction techniques and selects the best one that
preserves a specified error bound. This is feasible, in part, due to
the highly structured nature of many fast data streams (e.g., EEG
data, power usage), such as those below:

Variable Star Brightness Fan Power Consumption

The result of this structure is two-fold. First, it allows dimen-
sionality reductions far in excess of what pessimistic theoretical
bounds otherwise suggest. Second, few data points are required
to characterize most of the dataset. This permits aggressive sam-
pling, allowing efficient fitting while preserving confidence on result
quality. Automating much this process via an intelligent optimizer
makes these techniques accessible to end users.

In the near term, we believe it is most beneficial to continue
automating the many tasks that analysts report to be tedious. For
exmaple, we can leverage techniques like distant supervision [20]
and active learning [9] to enable faster specification and validation of
models. Optimizing for end-user behavior can further improve per-
formance: for example, when developing a semi-automated method
for selecting visualizations, we were able to prune the search space
by eliminating visually indistinguishable alternatives. Broadly, we
are excited by the potential of even incremental progress towards
lowering the barrier to accessibility of (and cost of developing)
complex, high-fidelity analytics.

3.2.3 Improving Scalability
Performance remains a core focus of our work. The key oppor-

tunity here is to marry systems-oriented performance optimization
and the statistics and machine learning literature.

For many analyses, a small fraction of data is responsible for
the majority of relevant results. Following the principle of prior-
itizing computation, once the engine has characterized “normal”
behavior, as little computation as possible should be spent on non-
anomalous data. For example, when using Kernel Density Esti-
mation (KDE) [25]—a highly accurate but expensive statistical
estimation technique—to model complex distributions and identify
outlying data points, MacroBase avoids evaluating the actual den-
sities: many analyses simply require identifying whether points lie
in “sparse” and “dense” regions. The figures below illustrate the
difference between this expensive, classic KDE (left) and binary
KDE-based outlier classification (right) on a sensor dataset:

Kernel Density Classification

As most points are located in dense regions, we avoid expensive
kernel evaluations by building a spatial index over the space and
applying pruning rules to stop computing densities when they are
known to be above or below the target threshold. This “predicate
pushdown” allows empirical speedups of three to four orders of
magnitude while still preserving KDE’s accuracy.

Determining which models are best-suited to operate at high vol-
ume (and retrain with low latency) and how to dynamically adapt
model hyperparameters to changes in data streams remain open
questions. The literature contains thousands of models with varying
accuracy-speed trade-offs. For example, LSTM networks [15] are
adept at automatically featurizing time-series data but are consider-
ably slower than linear models or rules. Harnessing the predictive
power of these models without compromising on scale is non-trivial.
A key commonality among time-varying models is that few models—
from convolutional networks to LSTMs—leverage temporal locality
at test time. That is, most models simply evaluate each data point
(e.g., video frame) without taking into account the fact that pre-
vious data points are similar (and are therefore computationally
similar). In these regimes, memoizing and computing incremental
approximation results has delivered exciting preliminary results.

4. EARLY EXPERIENCE
Several early use cases shaped MacroBase’s design. In this sec-

tion, we describe several lessons learned from external users and
analyses in a handful of domains.

Onboarding and Architectural Layering. MacroBase usage has
largely mirrored its architectural layering: most users interact with
the web UI, several use custom pipelines, and few write custom
operators. That is, today, most users of the system begin with Mac-
roBase’s web UI for preliminary data exploration. Again, the UI
performs one analysis reliably with limited configuration, providing
some functionality with limited effort. Subsequently, users typically
reach out to our team or post GitHub issues to request additional
functionality. For a majority of these requests, our team has re-
sponded by authoring custom pipelines, which now requires from
ten minutes (for a simple group-by) to several hours (for a more com-
plex explanation, or custom data import). For a handful of remaining
requests, we (or our users) developed custom operators to provide



missing functionality. Looking forward, we hope to lower the bar
to usability of complex functionality, especially around authoring
custom pipelines, so they become mostly self-service like the web
UI. A declarative or graphical representation appears promising

Domain Expert Usage. Bridging the gap between domain exper-
tise and statistical machine learning skills has been a prominent
theme in our user interactions. Several MacroBase users are world
experts in their application domains, but lack the experience, time,
or resources to take advantage of complex statistical analysis. For
example, hardware engineers from a major industrial manufacturer
wished to identify interactions between firmware releases, battery
behavior, and equipment metrics. Though domain experts, they pos-
sessed limited experience dealing with large amounts of data. They
required a tool capable of ingesting data from their data warehouse
and exporting results to spreadsheets for further analysis with min-
imal configuration. These experts reported that MacroBase’s web
UI highlighted a problematic firmware release as it was deployed to
their device fleet. Here, MacroBase’s initial emphasis on doing one
thing well—attribute correlation over unsupervised classification of
abnormal behavior—was a good fit for expert needs. We hope to
make subsequent core analyses as easy to use.

Systems Expert Usage. We have also found that MacroBase’s
operators are useful for expert systems engineers who are less famil-
iar with high-volume, streaming classification and explanation. For
instance, every major online service has a data engineering team for
collecting large numbers of metrics. However, analyzing this data at
scale, with limited resources, remains a serious problem.

As an example, infrastructure engineers at a large Internet com-
pany wished to identify transient failures and slowdowns across a
hierarchy of machines and processes. Having excellent knowledge
of systems engineering, these engineers were able to build a moni-
toring tool that used hand-tuned rules and thresholds to identify ab-
normalities. However, their system relied heavily on past experience
from application developers utilizing the data pipeline—the system
had to know what it was looking for to identify it. MacroBase’s un-
supervised classification and statistical explanation operators were a
useful complement to their static rules and thresholds, identifying
issues that were below the error threshold but deserved attention.

Beyond Errors. Prioritizing attention is not just about finding crit-
ical errors. As the above discussion highlights, many deployments
already have a set of static thresholds to generate alerts and warnings.
We believe opportunity also lies in detecting both degraded and im-
proved behavior, especially in behaviors that are highly correlated
with a possibly small subset of the overall population. For exam-
ple, application developers at a mobile application startup wished
to find abnormal, platform-specific app behaviors. Despite having
thorough application logs, these issues were difficult to detect proac-
tively at scale—the low overall error rate obscured the fact that
small subsets of customers can experience high error rates. Instead,
developers often relied on end-users to identify such problematic
behavior. MacroBase’s use of the risk ratio to identify subgroups
where anomalies are most likely to occur helped discover previously
unknown application behaviors. In these cases, MacroBase’s output
acted less as an alert and more as a report (i.e., not suitable for
paging on-call staff at 3AM but likely worthy of a 10AM report).
We are excited about the potential to prioritize attention in similar
proactive scenarios.

Looking forward, we believe current practice in high-volume error
explanation and diagnosis is especially ripe for improvement. Many
application operators report that large data volumes (often collected
from a diverse internal services) rule out many computationally-
intensive and labor-intensive methods. However, from a statistical

perspective, this scale is an advantage: with many points, we can test
more hypotheses (e.g., attribute risk-ratio calculations) than would
otherwise be statistically valid [6]. Thus, utilizing metrics like the
risk ratio that are intuitive and efficient to compute is promising.

5. RELATED WORK
MacroBase draws inspiration from conventional dataflow engines,

statistical machine learning, and human-computer interaction.

Existing analysis techniques and systems. The literature contains a
rich set of outlier detection and data explanation algorithms to draw
upon in prioritizing attention [16,18]. However, in applying many of
these existing methods, we have found that the scale of fast data re-
quires non-trivial adaptations, especially in the streaming setting. In
particular, a prominent focus on accuracy—as opposed to trade-offs
between speed and accuracy—leaves many relevant portions of the
algorithmic design space unexplored. Several existing libraries for
machine learning—including scikit-learn and MLlib [19]—provide
useful collections of analysis operators (which we have ourselves
utilized in developing early prototype analyses) but are generally
not designed to produce interpretable output by default and seldom
support streaming execution. As we have discussed, prioritizing
output in high-volume streams offers new algorithmic opportunities
that can improve scalability.

Perhaps most importantly, there is effectively no system that inte-
grates core operators for prioritizing attention in a single framework
(and certainly no streaming system that does so at scale). As a re-
sult, it is unclear how to compose operators and how to incorporate
them into modular, scalable infrastructure. There are many domain-
specific examples of success (e.g., in financial activity monitoring,
network intrusion detection) [7], but there is little work on how the
many potentially useful statistical and machine learning techniques
behind each can be reused via extensible interfaces or combined and
optimized in an end-to-end solution. It is as if we had thousands of
papers on cost estimation, storage access methods, and concurrency
control protocols and somehow expected the lessons and architec-
tures developed in projects such as System R [5], Ingres [24], and
Gamma [12] to magically materialize. The result is a wonderful
opportunity for systems research.

State of practice. The number of scalable dataflow frameworks is
likely at an all-time high [21]. However, the actual implementation
of scalable streaming complex analysis operators is typically left as
an exercise for the user. As a result, practitioners often need to author
their own operators for prioritizing attention—a time-consuming,
costly process. Most applications for prioritizing attention we have
encountered at scale (primarily in monitoring) rely on simple, static
rules that scale well but fail to account for all but the most severe
behaviors. Compared with these dataflow engines, our concerns
are higher in the stack: determining effective semantics, compo-
sition, and implementation of core operators that deliver richer,
more accurate results than the static thresholds prevalent in industry.
Combining this new class of computational operators for prioritizing
attention with existing relational stream processing concepts (e.g.,
[3, 8]) is especially promising; optimized operators for streaming
complex analytics should execute alongside operators for streaming
relational algebra. [6] provides more detail on MacroBase’s current
default set of operators; this paper describes the design process,
principles, and recurring challenges that have arisen thus far.

Data Mining. While MacroBase’s goals are conceptually similar to
those of data mining, we approach the problem from three histori-
cally separate traditions. First, from an algorithmic perspective, we
are most interested in leveraging (and scaling up) recent advances in



Design Principle Impact on System Design

Prioritize Output (§2.1):
Deliver more information using less output.

Produce summaries and explanations instead of raw results for interpretability
Rank results by relevance and severity to users
Highlight unusual behaviors captured by unsupervised and semi-supervised learning

Prioritize Iteration (§2.2):
Allow iterative feedback-driven development.

Provide reasonable defaults to jumpstart basic usage
Expose a composable set of core operators for easy customization
Make use of user feedback to tune all levels of the pipeline

Prioritize Computation (§2.3):
Focus on operations that most affect output.

Aggressively prune computation via filtering, sampling, and branch-and-bound
Trade off accuracy and completeness for performance where it has low impact
Accelerate streaming operations via sketching and incremental data structures

Table 1: Impact of design principles on MacroBase’s system design choices described in this paper.

statistical machine learning while preserving their frequently rigor-
ous quality guarantees. Second, from a systems perspective, we are
interested in bringing more modular, functional system design to a
traditionally less architecturally-inclined set of fields (i.e., machine
learning and statistics) by building the next layer of functionality
above commodity dataflow engines. Third, we view MacroBase as
a concrete instantiation of a larger trend towards systems that not
only train models but also enable end-to-end data product develop-
ment and model deployment [10]; solely addressing model training
ignores both the end-to-end needs of users and opportunities for
optimization throughout the analysis pipeline. We believe the study
of systems that enable modular, usable, efficient, and statistically-
motivated analyses is especially promising and profitable given
growing data volumes and analyst requirements.

6. CONCLUSIONS
The rise of fast data demands the development of data infrastruc-

ture to prioritize attention. In this paper, we outlined three design
principles for prioritizing attention in fast data—prioritize output
presented to users, prioritize iteration in developing analyses, and
prioritize computation on inputs—that arose from and are embodied
in a new analytics engine we are developing, called MacroBase
(Table 1). In combining streaming feature extraction, classification,
and explanation operators, MacroBase acts as a search engine for
fast data. As we have reported, the initial reaction to the MacroBase
prototype has been encouraging, with at least six independent suc-
cessful deployments (to varying degrees of production-readiness) of
the engine external to our lab (in addition to a number of internal
trials) over a twelve-month period from project inception to present
day. The principles, goals, and directions outlined in this short paper
are a reflection of our experiences thus far.

There are many unanswered questions in prioritizing attention
in fast data, a handful of which we have outlined. We intend to
answer many over the next several years, and we hope others do
the same. The opportunity for systems-oriented research to deliver
reusable, composable, and efficient streaming complex analytics
operators—beyond relational algebra—is substantial and is of in-
creasing practical consequence. The early traction and the problems
we have encountered have confirmed our belief in the importance of
this problem domain. We cannot turn away our attention.

Acknowledgments
We thank the many members of the Stanford InfoLab, our collab-
orators at MIT and Waterloo, and the early adopters of the Mac-
roBase prototype for providing feedback on and inspiration for this
work. This research was supported in part by Toyota Research In-
stitute, Intel, RWE AG, Visa, Keysight Technologies, Facebook,
and VMWare and by the NSF Graduate Research Fellowship under

grants DGE-114747 and DGE-1656518. As MacroBase is open
source and publicly available, there is no correspondence—either
direct or implied—between the use cases described in this work and
the above institutions that supported this research.

7. REFERENCES
[1] Dell EMC Digital Universe Survey: The Digital Universe of Opportunities:

Rich Data and the Increasing Value of the Internet of Things, 2014.
http://www.emc.com/leadership/digital-universe/.

[2] M. Abadi et al. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. In OSDI, 2016.

[3] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:
semantic foundations and query execution. VLDBJ, 15(2):121–142, 2006.

[4] A. Asta. Observability at Twitter: technical overview, part I, 2016.
https://blog.twitter.com/2016/
observability-at-twitter-technical-overview-part-i.

[5] M. M. Astrahan et al. System r: relational approach to database management.
TODS, 1(2):97–137, 1976.

[6] P. Bailis, E. Gan, S. Madden, D. Narayanan, K. Rong, and S. Suri. MacroBase:
Prioritizing Attention in Fast Data. In SIGMOD, 2017.

[7] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
computing surveys (CSUR), 41(3):15, 2009.

[8] S. Chandrasekaran et al. TelegraphCQ: Continuous dataflow processing for an
uncertain world. In CIDR, 2003.

[9] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical
models. JAIR, 1996.

[10] D. Crankshaw et al. The missing piece in complex analytics: Low latency,
scalable model management and serving with Velox. In CIDR, 2015.

[11] A. Dave et al. GraphFrames: An integrated API for mixing graph and relational
queries. In GRADES, 2016.

[12] D. J. DeWitt et al. The Gamma database machine project. TKDE, 2(1):44–62,
1990.

[13] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a unified architecture for
in-RDBMS analytics. In SIGMOD, 2012.

[14] I. K. Fodor. A survey of dimension reduction techniques, 2002. Technical
Report UCRL-ID-148494, Lawrence Livermore National Laboratory.

[15] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[16] V. J. Hodge and J. Austin. A survey of outlier detection methodologies.
Artificial Intelligence Review, 22(2):85–126, 2004.

[17] S. Lovell, J. Ive, and K. Kemp. Dieter Rams: As Little Design as Possible.
Phaidon Press, 2011.

[18] A. Meliou, S. Roy, and D. Suciu. Causality and explanations in databases. In
VLDB, 2014.

[19] X. Meng et al. MLlib: Machine learning in Apache Spark. JMLR, 17(34), 2016.
[20] M. Mintz et al. Distant supervision for relation extraction without labeled data.

In ACL, 2009.
[21] J. MSV. All the Apache streaming projects: An exploratory guide, 2016. http:

//thenewstack.io/apache-streaming-projects-exploratory-guide/.
[22] T. Pelkonen et al. Gorilla: A fast, scalable, in-memory time series database. In

VLDB, 2015.
[23] H. A. Simon. Designing organizations for an information rich world. In

Computers, communications, and the public interest, pages 37–72. 1971.
[24] M. Stonebraker, G. Held, E. Wong, and P. Kreps. The design and

implementation of ingres. TODS, 1(3):189–222, 1976.
[25] M. Wand and M. Jones. Kernel Smoothing. Chapman & Hall/CRC Monographs

on Statistics & Applied Probability. Taylor & Francis, 1994.
[26] A. Woodie. Kafka tops 1 trillion messages per day at LinkedIn. Datanami,

September 2015. http://www.datanami.com/2015/09/02/.

http://www.emc.com/leadership/digital-universe/
https://blog.twitter.com/2016/observability-at-twitter-technical-overview-part-i
https://blog.twitter.com/2016/observability-at-twitter-technical-overview-part-i
http://thenewstack.io/apache-streaming-projects-exploratory-guide/
http://thenewstack.io/apache-streaming-projects-exploratory-guide/
http://www.datanami.com/2015/09/02/

	Introduction
	A Fast Data Manifesto
	Principle: Prioritize Output
	Principle: Prioritize Iteration
	Principle: Prioritize Computation

	MacroBase: A Fast Data System
	System Design
	System Architecture
	Prioritizing Output
	Prioritizing Iteration
	Prioritized Computation

	Ongoing and Future Work
	Improving Output
	Improving Iteration
	Improving Scalability


	Early Experience
	Related Work
	Conclusions
	References

