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ABSTRACT
Causal consistency is the strongest consistency model that is
available in the presence of partitions and provides useful se-
mantics for human-facing distributed services. Here, we ex-
pose its serious and inherent scalability limitations due to write
propagation requirements and traditional dependency track-
ing mechanisms. As an alternative to classic potential causal-
ity, we advocate the use of explicit causality, or application-
defined happens-before relations. Explicit causality, a subset
of potential causality, tracks only relevant dependencies and
reduces several of the potential dangers of causal consistency.
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1 INTRODUCTION
Replicating distributed services requires making hard trade-
offs between multiple competing factors, which are exacer-
bated in wide-area settings. Returning a “highly consistent”
query response incurs high performance overheads due to ex-
pensive coordination [2] and may be unachievable in the pres-
ence of network partitions and failures [10]. A growing crowd
of distribution mechanisms and designs provide a spectrum of
data consistency guarantees, each making different trade-offs.

Recent work has identified causal consistency as a note-
worthy consistency model [19, 20]. First, it is the “strongest
achievable” model that is available in the presence of network
partitions. This is an attractive property in multi-datacenter
settings, as a causally consistent distributed data store can re-
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spond to queries locally without incurring long round-trip la-
tencies to other remote datacenters. This also enables data-
centers to safely serve requests in the presence of network
partitions and failures. Second, causal consistency provides
useful semantics, disallowing many scenarios that contradict
natural human expectations of system behavior. Causal con-
sistency guarantees that effects are observed only after their
causes: participants will not see data unless its dependencies
are also seen. For modern web services, this means message
replies will only be seen along with their parents, commenting
structures will be preserved, and users’ privacy settings will
work correctly in concealing scandalous Spring Break photos
from their families and employers [6, 19].

1.1 Lurking Dangers, Difficult Trade-offs
With useful semantics, low latency, partition tolerance, and,
recently, a demonstrably efficient architecture [19], causal con-
sistency appears an ideal model for the future of wide-area
distributed data stores. However, implementations of causal
consistency face serious scalability challenges.

In this paper, we identify a critical trade-off between write
throughput and visibility latency, or the amount of time that
each write is hidden from readers due to missing dependencies
(§3.1). This trade-off is influenced by two factors: the num-
ber of datacenters and the rate at which each datacenter can
check dependencies and apply new writes. First, scaling the
number of datacenters does not improve throughput: causal
dependencies are not cleanly partitionable and must be sent to
all datacenters, limiting sustainable throughput to that of the
slowest datacenter (effectively zero in the event of network
partitions)—or, alternatively, requiring unbounded visibility
latency. Scaling total throughput while adding more datacen-
ters requires quadratic increases in total server capacity (§3.2).
Second, each datacenter must buffer each write until it has ob-
served all of the write’s dependencies. This phenomenon is
well documented [5] but is amplified by the enormous causal
dependency graphs of modern services (§3.3). Combined,
these effects result in either severe peak write throughput lim-
itations or unacceptably high visibility latency.

1.2 Better Living Through Semantic Context
While these dangers are potentially prohibitive, we can de-
crease their severity by considering modern application con-
texts. In the three decades since Lamport’s seminal work
defining the causal happens-before relation [17], both prac-
titioners and theoreticians have almost exclusively considered



the problem of potential causality: each new write causally
depends on all writes (versions) that could have influenced it.
This is a useful model for closed systems and debugging (§5)
but is too general for modern real-world applications. Steve’s
latest Facebook comment was potentially influenced by the
hundreds of status updates he had recently read, but its pri-
mary dependency is Mary’s wall post—to which his comment
is attached—asking if he was planning to attend her party.

Modern, human-facing services already naturally express
semantic dependencies in their APIs and the data they pro-
duce; in most cases we can use these application-level rela-
tionships to explicitly define relevant dependencies instead of
having the system assume all potential causality patterns (§4).
This application-defined explicit causality [5, 16, 7] is a small
subset of traditional potential causality and dramatically re-
duces the depth and degree of the causality graph, ameliorating
scalability concerns. To quantitatively illustrate these effects,
we draw on a substantial body of literature studying behav-
ior patterns in modern Internet services (§4.1). Studies show
that explicit causality graphs for these services are often in
the tens of events and seldom in the hundreds or thousands of
events. As an example, Twitter conversation lengths average
approximately 11 Tweets [23, 29]. In contrast, if we capture
the potential causality for a year’s worth of Tweets, the result-
ing causality graph is around nine orders of magnitude larger.

Prior work by Cheriton and Skeen famously denounced the
semantics and scalability of causally ordered communication
systems (i.e., CATOCS) [4, 5]; in light of recent interest, we
revisit their concerns in the context of causally consistent data
stores. We embrace Cheriton and Skeen’s position that a com-
munication system is ill-suited to express or capture data-level
dependencies and believe these dependencies are best captured
at or above the storage level, where many of today’s systems
share data. While our causally consistent data storage pro-
vides a more natural model (§5), it presents new pitfalls (§3)
and requires a different approach (§4).

Explicit causality is not a perfect solution, yet it helps mit-
igate many of the difficulties operators will face in providing
causal consistency. Explicit causality decreases the number
of dependencies per write, which increases throughput, lowers
metadata overhead (particularly in the presence of partitions),
and improves concurrency (§4.2, §4.4). Many dependencies
are already captured by applications and present in their data
models; adopting explicit causality is often transparent or is a
simple extension to many applications (§4.3). Explicit causal-
ity does not solve the fundamental problems of all-to-all repli-
cation or guaranteed graceful partition tolerance but instead
reduces constant factor overheads by several orders of mag-
nitude. Given these scalability improvements and ease of use
in modern applications, we believe explicit causality will be a
key component in achieving causal consistency at scale under
real-world conditions.

2 A PRIMER ON CAUSAL CONSISTENCY
In this section, we provide definitions and an overview of
the dominant architectures for achieving causal consistency.
Readers familiar with causally consistent data stores may wish
to proceed to Section 3.

Informally, causal consistency guarantees that effects are
observable only after their causes. Consider the following sce-
nario on a social networking site like Facebook:

1 . Lewis posts status update L to his friends: “Jenny’s un-
conscious in the hospital! The doctors think it’s a coma.”

2 . Shortly afterwards, Jenny regains consciousness, and
Lewis edits his status update L, resulting in L∗: “Jenny’s
okay after all! Hooray!”

3 . Lewis’s friend Mary observes L∗ and posts comment M
in response: “What terrific news!”

If causality is not respected, another user, Stan, could perceive
effects before their causes; if Stan observes L and M but not L∗,
he might think that Mary is pleased to hear of Jenny’s would-
be coma! If the site had respected causality, Stan could not
have seen M without L∗.

2.1 Definitions
More formally, under causal consistency, the sequence of ver-
sions that each agent reads obeys a partial order called the
happens-before relation (→). If a causally consistent data
store contains three versions of a given object v1, v2, and v3
and v1 → v2 → v3, then two subsequent reads by an agent
can return v1 then v3 but not v3 then v2 or v3 then v1. Some
versions are incomparable under the happens-before relation
and can be safely returned as long as the partial order of oper-
ations is not violated.

The happens-before relation is traditionally defined ac-
cording to potential causality, which reflects three relation-
ships: (i) each agent’s program order (e.g., if a single agent
performs operations a and b, then a → b), (ii) reads-from
(e.g., if read b returns write a, then a→ b), and (iii) transi-
tivity (i.e., if a → b and b → c, then a → c) [3, 19]. The
happens-before relationship for a given write is called its
causal history, and the graph of causal dependencies forms a
partial order over writes. Schwarz and Mattern provide an in-
depth overview of causal relationships [26]. We will revisit
potential causality later on in the context of real-world appli-
cations (§3.3) and will propose an important modification to
the happens-before relation (§4).

In this paper, we consider the problem of achieving conver-
gent causal consistency (also known as causal+ consistency):
in addition to the properties above, if updates cease, all agents
will eventually read the same value (or set of values) of each
object [19, 20]. Convergence is an important criterion because
causal consistency by itself lacks any liveness guarantees. For
example, without the convergence requirement, it is possible
to satisfy causal consistency by never propagating writes be-
tween agents (preserving safety but resulting in undesirable
semantics).

2.2 Implementing Causal Consistency
Implementations of causally consistent data stores follow a
common pattern: each agent in the system maintains a set of
writes—or a local store—which can be safely (locally) mod-
ified and read from. When a new (remote) write originating
from another agent in the system arrives, the agent checks the
new write’s metadata to ensure that its causal dependencies are
satisfied by the writes in its current local store. If the depen-
dencies are satisfied, the agent applies the write to the local
store, and, if not (because one or more dependencies are miss-
ing), the agent waits to locally apply the new write until the
dependencies have themselves been applied to the local store.



A write only becomes visible to reads once it has been applied
to the local store against which the reads are performed.

Why Wait? One way to think about causal consistency
is as a temporary enforcement of data model integrity,
where constraints are determined for each data item by
its happens-before relation. Consider the status update
“Mary likes Greenpeace.” The “likes” relationship between
users and companies—in this case, between “Mary” and
“Greenpeace”— could be stored as a normalized set of
user-id to company-id mappings. If the status update prop-
agates to a remote datacenter before the company entry for
“Greenpeace,” then, without causal consistency, we might end
up with a dangling reference to the (empty) entry for “Green-
peace” in the company table. Implicitly, there is a dependency
between the company-id field of the “likes” relation and the
company table (similarly for the user-id field and a user ta-
ble). However, the constraint is only temporarily violated: we
know that the appropriate entry in the company table will even-
tually appear. We just need to wait to (locally) reveal this par-
ticular “likes” relationship.

Applications can perform this checking for themselves on
each read, but it is expensive to do so. Just because a ver-
sion’s immediately preceding dependencies have arrived does
not mean that the predecessors’ predecessors have arrived. If
an application implements causal consistency outside of the
data store, it must check all transitive dependencies on every
read. However, when implemented at the data store level, an
application reading a data item knows that its dependencies
are transitively satisfied; the application need not perform any
checking itself.

Implementing Waiting The causal memory implementa-
tion by Ahamad et al. [3] is standard; other designs are simi-
lar [19, 24]. When performing a write, an agent first updates
its local store, then sends the new write via reliable broadcast
to all other agents, who buffer it. An agent applies a buffered
write to its local data store once it has applied all of the write’s
causal dependencies. Since all messages are eventually deliv-
ered by the broadcast, all agents will eventually locally apply
all writes. Agents track the causal history of writes they have
applied to their local stores and attach a summary of relevant
history to each write. The storage format of this metadata and
write propagation are orthogonal to our concerns.

In a wide-area deployment, each datacenter may act as a
single causal agent [19]. A datacenter is comprised of multi-
ple servers, but local network latencies are often sufficiently
low that each cluster of servers can provide strong consistency
(acting as a single, atomic—or linearizable—local store [12]).
Each server within the cluster is responsible for a subset of the
key space in the local store, and, when a write arrives from
a remote datacenter, its dependencies are checked against the
servers responsible for each respective key. We will refer to
datacenters instead of agents for the remainder of this paper.

3 POTENTIAL DANGERS
Scaling causal consistency to multiple datacenters leads to
a trade-off between write throughput and latency visibility,
which is the time a write is delayed before it can be read (§3.1).
The severity of this trade-off is determined by two independent
variables: the number of datacenters and the rate of local write

application. The sustainable aggregate throughput of multiple
datacenters is limited to the rate at which the slowest datacen-
ter can locally apply new writes (zero during partitions) (§3.2),
while the large size of traditional, potential causality graphs in
modern applications limits the rate which each data center can
locally apply new writes (§3.3).

3.1 Throughput and Visibility Latency
Causally consistent systems face a trade-off between the rate
at which clients generate new writes (throughput) and visibility
latency. If a datacenter cannot apply a new write, it must wait
until its dependencies have arrived. The amount of time that
the update is buffered determines its visibility latency. Visibil-
ity latency is affected by both network latency and the rate at
which dependency checking can be performed (apply capac-
ity).1 Intuitively, visibility latency and throughput are com-
peting goals. If the aggregate (global) throughput limit across
datacenters is exceeded and new versions are generated faster
than they can be applied, visibility latency increases indefi-
nitely due to the formation of unstable queues.

The effects of this trade-off are magnified by the fact that
convergent causal consistency effectively requires that all dat-
acenters locally apply all writes: the global throughput limit is
limited to the minimum apply-capacity across datacenters. Po-
tential causality for most writes forms a complex graph struc-
ture that is not cleanly partitionable, meaning replication to all
datacenters is required to ensure that writes can be applied re-
motely. While weaker consistency models are often amenable
to partial replication (i.e., replicating to a subset of partici-
pants) [25], allowing “flexibility in the number of datacenters
required” in causally consistent replication currently “remains
an interesting aspect of future work” [19].2 At a minimum, to
ensure convergence, all versions—or, a suitable “final” version
of every key—must eventually be broadcast.

3.2 (Not) Scaling Throughput and Datacenters
Convergent causal consistency requires all-to-all replication
that limits global write throughput. Assume we have two data-
centers, each of which has an apply-capacity of A. To prevent
unstable queuing, whereby writes are generated at a rate that is
faster than they are applied remotely, the aggregate new write
throughput must be limited to A; if we allocate new throughput
equally between datacenters, each can locally generate new
writes at a rate of A

2 . Adding a third, equally powerful dat-
acenter does not improve the situation: the aggregate global

1Visibility latency is correlated with the amount of “buffer-
ing” of incoming writes (due to missing dependencies) [5].
However, visibility latency measures the observable effects of
buffering, not the required buffer sizes. In modern systems,
operation and visibility latencies are arguably more important
than the storage required for the buffered writes.
2All-to-all replication (at least of “final” values) appears
a necessary cost of convergence. The relevant difference
here between causal consistency and a weaker form of non-
convergent consistency is that causal graphs are not easily par-
titionable and intermediate values need to be replicated. While
we can attempt to arbitrarily limit the scope of causality to dis-
joint subsets of data and replicate them to different sets of dat-
acenter [5], this requires high WAN latencies to access remote
items that also become unavailable in the presence of parti-
tions, sacrificing the primary (latency and availability) benefits
of causal consistency.



write throughput is still A, and each datacenter can now gen-
erate writes at a rate of A

3 . With N datacenters, each can write
at a rate A

N . With heterogeneously powerful datacenters, the
sustainable aggregate write rate is limited to the local apply-
capacity of the weakest datacenter.

Maintaining per-datacenter write throughput requires to-
tal apply-capacity quadratic in the growth of datacenters (or,
equivalently, per-datacenter apply-capacity linear in the num-
ber of datacenters). For example, if we have 2 datacenters gen-
erating 1K new writes/s, then each datacenter must have apply
capacity of 2K new writes/s. If we want to add a third data-
center that can also locally generate writes at 1K new writes/s,
then each datacenter must now locally apply 3K new writes/s.
This means that the two existing datacenters must increase
apply-capacity by 50% and the new datacenter requires an ad-
ditional 75% apply-capacity over the existing datacenters: a
125% overall increase in total servers for a 33% increase in
throughput. More generally, moving from N datacenters to M
datacenters requires O(M2

N2 ) more capacity. This is problem-
atic because datacenters are often added to deal with limited
capacity of existing datacenters. With convergent causality,
the addition of another datacenter requires upgrading all exist-
ing datacenters’ capacity.3

Potential Danger: Sustainable write throughput is limited
to the slowest datacenter, so adding datacenters does not
increase throughput. Simultaneously scaling writes with
datacenters requires quadratic server capacity, and violat-
ing this limit leads to arbitrarily high visibility latency.

There are at least two common scenarios in which required
write throughput will exceed minimum apply-capacity. First,
network partitions and (equivalently) datacenter failures bring
the minimum local apply-capacity to zero. A failed datacenter
can build up a potentially infinite queue of writes and, after
a long enough period of time, will likely instead have to per-
form a possibly expensive bootstrap operation by “catching
up” from another datacenter. Healing multi-datacenter parti-
tions is likely to be even more expensive. Second, “future-
proofing” each datacenter becomes a key concern: once write
traffic exceeds a datacenter’s maximum capacity, the datacen-
ter will either become a bottleneck or have to be decommis-
sioned. Avoiding this scenario requires careful planning and
a potentially large amount of overprovisioning to achieve sus-
tainable scale-out (requiring worst-case server capacity from
each datacenter measured with respect to the entire lifetime of
the service or datacenter).

3.3 Potential Histories and Cluster Capacity
Sustainable write throughput is determined by the rate at
which the slowest datacenter can locally apply new writes,
which in turn depends on the causality graph. The causality
graph fanout (degree) determines the number of dependency
checks required, while its depth and connectivity determines
the degree of concurrency in performing checks. In practical
3Unlike in a causal communication system, which would cre-
ate additional causality links during all-to-all broadcast, this
storage-level limitation is largely independent of the causal
graph structure. Structural properties of the causal graph such
as its “diameter” and its “number of arcs” [5] affect capacity
and influence this trade-off (§3.3) but ultimately act as another
independent variable.

settings, potential causality graphs are on the order of hun-
dreds of millions of writes. As discussed in Section 2.1, clas-
sic causal consistency tracks each data item’s potential depen-
dencies. On a social network, if a user posts a status update
after viewing 10 other updates, the new update potentially de-
pends on all of them. This leads to a graph vertex degree (or
fanout) of 10. At the level of a storage system, given that
many modern applications are read-dominated, it is likely that
this number is much higher—in the hundreds or thousands of
dependencies. For many modern web services, it is rare—or
impossible—to post an update without viewing tens or hun-
dreds of data items upon which the update will potentially de-
pend. Each update’s dependencies’ dependencies are included
in the graph, along with those updates’ dependencies’ depen-
dencies’ dependencies—ad infinitum—until a (set of) terminal
source events is reached.

As an example, consider a user’s session on Twitter. Full po-
tential causality graphs are enormous. 20 tweets are displayed
on the Twitter homepage upon page load. Currently, scrolling
down the home page automatically fetches more tweets at a
rate of at least 600 tweets/minute. If a user authors a new tweet
after viewing just 20 others, the new tweet will have a poten-
tial causal history fanout of at least 20. Each of the tweets in
the history will in turn have causal histories, so the size of the
new history is exponentially increased. There is redundancy
between tweet causality relationships, but an upper bound on
the history size is equal to the number of tweets ever authored
(currently at 340 million tweets/day [1]). This requires a large
number of dependency checks.

Potential Danger: Potential causality graphs have large
fanout and depth, limiting local apply-capacities and, ac-
cordingly, maximum global throughput.

If all datacenters have applied a version—sometimes called
a “stable version” [5]—datacenters do not need to attach it in
dependency metadata for new writes or check for it remotely.
There is no utility in informing a remote datacenter that it
needs to check a given dependency for a given write if we
know that the dependency has already been applied there. This
greatly reduces the dependencies attached to each item [19].
However, this approach leads to two key challenges. First, it
requires global coordination, so, in the presence of any par-
titions, stability detection will stall and dependency metadata
sizes will balloon. Second, (even without partitions) in the
presence of the previously described throughput violations,
datacenters may slow in applying new versions, in turn de-
creasing the rate of stabilization.

4 AN EXPLICIT SOLUTION

Instead of tracking all potential dependencies, why not track
only those that matter?

Judea Pearl’s selection for the 2011 Turing Award was po-
tentially influenced by what he ate for lunch on July 3, 1980,
but it was mostly due to his pioneering research on Bayesian
networks. We cannot discount the possibility that Pearl’s lunch
in 1980 played a role in his Turing Award (or, for that mat-
ter, the lunch of his neighbor, or even the lunch—or potential
lack of lunch—of the reader on that date—or any other meal
leading up to the committee’s decision), but, for all practical



purposes, the majority of these potential causes are irrelevant.4

Full potential causality covers all possibilities, but it leads to a
deluge of relationships, many of which are meaningless.

To address these concerns, we consider explicit causality, or
application-specified causal dependencies. Instead of includ-
ing the entire set of possible influences in the happens-before
relation, we defer to the application to tell the data store which
dependencies matter. Each new write is accompanied by a set
of dependencies that determine its happens-before relation.
The causally consistent data store still enforces transitivity of
the provided happens-before relation but does not enforce
program order or reads-from relationships unless explicitly in-
structed to do so by the application.

This explicit causality does not solve the problem of all-to-
all replication, but it has important implications for the trade-
off between throughput and latency visibility (§4.2). For ex-
ample, in a threaded comment feature on a website, instead of
including all content a user has viewed, her comment’s imme-
diate happens-before dependency could consist entirely of
its in-reply-to field. Just as historians curate the entire his-
tory of the universe leading up to an event under study by ex-
tracting its relevant influences, explicit causality allows appli-
cations to pare the causality space. However, the application’s
task is often much easier than that of the historian (§4.3).

4.1 Explicit Causality in the Wild
While prior research briefly considered variants of explicit
causality in the form of “state”- and “client”-level dependency
tracking [4, 5, 16], its time has finally come: modern appli-
cations like social networking hugely benefit from semantic
pruning of causal relationships. To quantitatively study the
structure of explicit causality graphs, we surveyed existing lit-
erature on user behavior on several modern human-facing In-
ternet services.

Transitive explicit causality relationships across operations
are small: lengths are often in the tens of events and maximally
several thousand events. In recent analyses, 28% of Tweets
were part of conversations, with an average conversation depth
of 10.7 Tweets [29]. 69% of conversations were of depth two
(a Tweet and single reply) and the maximum observed length
was 243 Tweets [23]. On Facebook, causality chains of page
“fanning” (e.g., Patty “likes” Design) were maximally depth
82, with 75% of chains under length 3 and 98% of chains under
depth 18 [27]. Applications such as blogs (average comment
chain depth 6.3 to 93) [21, 28] , interactive websites (99th
percentile chain depth 1,000 comments) [11], corporate email
(80th percentile thread size of 8, average 4.1) [14, 15], and
chain emails (median depth 288) [18] exhibit similar trends.

Tracking explicit causality for human events is cheap: the
number of writes in any given explicit causal history will be
small (typically single-digit and, occasionally, hundreds or a
few thousands of writes), limiting the graph sizes. Similarly,
the number of participants in any given causality chain is also
limited, helping to limit the degree to which individual graphs
intersect. For major services like Twitter, the potential causal-

4To further illustrate the subtleties of this point, we cannot cat-
egorically reject all lunches as practically irrelevant to major
scientific progress: Richard Feynman famously describes the
experience of watching a plate’s motion in a Cornell cafeteria
as substantial motivation for the research that led to his 1965
Nobel Prize in Physics [8].

ity chains for even a year of operation are approximately nine
orders of magnitude larger than a pessimistic explicit causality
chain (e.g., 340M ∗365 vs. 100).

4.2 Benefits: Relieving the Pressure
Explicit causality’s quantitatively different graph structure
helps mitigate the potential dangers of causal consistency. Ex-
plicit causality does not directly address the problem of all-
to-all replication (§3.2) but increases each datacenter’s apply-
capacity (§3.3).

Smaller Degree: Faster Checks Each new write depends
on few others. This means that dependency checking will be
faster. Instead of checking whether hundreds or thousands of
other immediate dependencies in the causality graph have been
applied within a remote datacenter, the datacenter need only
check a small number. This lowers load on individual servers
within each datacenter, increasing capacity and lowering visi-
bility latency.

Smaller Degree: Decreased Metadata In addition to
speeding up dependency checks, the decreased fanout of each
write decreases metadata overheads. Simply, if each write de-
pends on fewer others, the storage and communication over-
head required for each write due to metadata will also de-
crease. If we assume 8 bytes per version identifier used to
identify each dependency for a given write (say 4 for the key
and 4 for the version), a modest degree of 10 results in a meta-
data overhead of 80 bytes. This is far improved from the po-
tential causality requirements. While potential causality over-
head may be reduced during normal operation due to garbage
collection (§3.3), we no longer need to rely on this mechanism
to keep metadata small. Accordingly, in the presence of parti-
tions, system behavior should degrade much more gracefully.

Fewer Vertices: Increased Concurrency Each update
is part of a small causality graph. Instead of having a potential
causality graph with a high degree of connectivity across all
updates (likely completely connected), explicit causality re-
sults in several smaller, disjoint graphs. Semantically unre-
lated updates are disconnected, so we have more independence
between sets of writes. Writes to each independent graph can
be applied in parallel, decreasing serial dependency bottle-
necks. If one graph is missing a critical update, it is likely
that there will be another that can be applied while we wait.

4.3 Application Programming Model
Explicit causality is powerful because it tracks only relevant
dependencies, yet this is potentially onerous for the applica-
tion programmer. However, for many applications, explicit
causality is easily captured and it is frequently already avail-
able in the data model. The studies in Section 4.1 were made
possible because services already recorded dependency infor-
mation, even if the dependencies are subtle, like Facebook
“fanning” chains. Service operators can use this data for many
tasks, like offline analyses of user behavior and targeted ad-
vertising and are also incentivized to collect it from a user
experience perspective: presenting a user with all possibly
relevant content can lead to information overload [13] (i.e.,
many times, users want to view a parent comment or follow
a reference to another resource, and providing a direct hyper-
link provides better navigation than having to perform a full



search). While these dependencies are likely recorded, they
are not necessarily (and, anecdotally, are not yet) used at run-
time for consistency purposes.

Under explicit causality, each application defines its own
happens-before relationships. This means that each write to
the data store must be accompanied by a (potentially empty)
set of dependencies supplied by the programmer. We dis-
cussed one causal consistency violation in Section 2. Under
explicit causality, the application would ensure that Lewis’s
event L∗ happens-before Mary’s reply M by specifying that
parent comments happen-before their children. If a chat
client wanted to enforce “program order” for each participant,
it would place each new message after its immediate pre-
decessor. More generally, applications can place earlier com-
ments and the original post before each new posted comment.
References are easily captured at the level of the data store
(e.g., referencing a unique identifier such as a comment ID or,
more generally, primary and foreign key references).

More complex scenarios are possible. For example, as we
alluded to in Section 1, recent work frequently refers to an
example of updating one’s privacy settings and subsequently
posting a sensitive update on a social network [6, 19]. If
the privacy setting replicates slower than the new update, the
new update might be shown to an unintended audience. Un-
der explicit causality, the application would ensure that each
user’s most recent privacy policy happens-before each of
their writes. This analogous to performing a memory fence
instruction with respect to the privacy change.

4.4 Limitations
Explicit causality has limitations. Users can still circumvent
causality-tracking mechanisms. For example, if a user’s sta-
tus update references an event in the system by name rather
than by reference (e.g., Jeremy: “You should see the picture I
just uploaded!”), the data store will not be automatically aware
of the dependency and users may observe dangling references
(e.g., Sue can’t find Jeremy’s picture). Moreover, this data
modeling is not free; although many applications already cap-
ture their explicit dependencies, application writers must now
consider explicit causality relationships as an integral part of
their application logic. Finally, convergent explicit causality
still faces the peak throughput problems of all-to-all replica-
tion, though the minimum datacenter throughput is likely in-
creased due to the factors described in Section 4.2.

5 DISCUSSION
In this section, we discuss causality at the communication,
storage, and application levels, hypothesize why potential
causality is so prevalent in the literature, and comment on ex-
isting architectures for causal consistency.

Communication and Storage APIs Potential causality
effectively presumes the existence of a “universal sensor” for
all events in a system. This sensor typically records “physi-
cal” events such as sending and receiving messages or read-
ing and writing data items. In contrast, explicit causality pre-
scribes the voluntary use of a logging API for recording rel-
evant events in a system. This logging is designed to capture
higher-level “logical” events from the application (e.g. “reply”
or “like”). The voluntary API is best utilized at system layers
in which causality is easy to understand and inexpensive to

capture. These layers are likely at a higher level than a storage
or communication library; in our discussion, we have focused
on application-level causality.

Potential Causality In light of the scalability bottlenecks
we describe in this paper, why has potential causality been
so popular? Much of the literature considers distributed reg-
isters or communication channels in isolation with arbitrary
reads and writes (or messages); it is difficult to advocate the
use of explicit causality without knowledge of an application
or higher-level semantics. However, this lack of situational
knowledge also helps explain why full potential causality is
often included in discussions of distributed debugging [9]: by
definition, the user does not know the root cause of the error
she is debugging. She may be able to rule out large portions of
the potential causes using expert knowledge, but this is not as
easy to express as the dependencies we consider here. Finally,
prior systems like Bayou [22] that implemented causal con-
sistency had more limited scale. Web-scale services involve
unprecedented volumes of data and user interaction, prompt-
ing a reassessment of prior approaches.

Existing Architectures This paper has exposed scalability
limitations of causally consistent stores. These problems are
fundamental to the formulation of causality: for effects to hap-
pen after their causes, we either need to perform dependency
checking or synchronize before sending updates. Our goal in
this work is not to criticize any particular existing architecture
but instead the prevalent definition of the happens-before
relation. Recent work—notably, the COPS architecture—
performs well, achieving high throughput and low latency in
the evaluation presented [19]. We address two facets of causal
consistency that this work did not investigate: peak through-
put in scaling to multiple datacenters and requirements for
real-world causality graphs. We expect that, under explicit
causality, COPS’s partitioned log shipping will achieve higher
throughput, better scale to 3 or more datacenters, and han-
dle partitions without severe metadata growth. The behav-
ior of convergent causal consistency under real-world (non-
synthetic) workloads remains an open question.

6 CONCLUSION
Causal consistency results in a tension between visibility la-
tency and throughput. Peak throughput remains constant as
more datacenters are added to a convergent causally consis-
tent system, and scaling throughput with datacenters requires
quadratic hardware provisioning. To alleviate these concerns,
we can decrease per-operation storage and processing costs via
application-level explicit causality. Instead of tracking all po-
tential influences, we advocate tracking only those that matter,
allowing applications to define their own happens-before re-
lations. Quantitative evidence from a variety of human-facing
applications demonstrates that, for a wide range of modern ser-
vices, explicit causality dependency graphs are a small frac-
tion of the size and complexity of traditional potential causal-
ity graphs. This allows faster, more parallelizable dependency
checking, helping mitigate the potential dangers we describe.
Ultimately, all-to-all version propagation limits sustainable
write throughput in current algorithms for convergent causal
consistency, but, by exploiting semantic information, we can
reduce the severity of the problem.



If convergent causal consistency is to be the preferred model
for future weakly consistent distributed data stores, these dan-
gers must be studied in greater detail. Explicit causality low-
ers the price of causal consistency, but whether even this de-
creased cost is offset by the benefits that causality provides
over weaker forms of convergent consistency is unknown. A
serious positive recommendation requires further considera-
tion of application semantics, realistic workloads, and both
expected and worst-case operating conditions.
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