
DATABASES

1

Eventual Consistency Today:
Limitations, Extensions, and Beyond

How can applications be built on eventually consistent infrastructure given no guarantee of safety?

Peter Bailis and Ali Ghodsi, UC Berkeley

In a July 2000 conference keynote, Eric Brewer, now VP of engineering at Google and a professor
at the University of California, Berkeley, publicly postulated the CAP (consistency, availability, and
partition tolerance) theorem, which would change the landscape of how distributed storage systems
were architected.8 Brewer’s conjecture—based on his experiences building infrastructure for some
of the first Internet search engines at Inktomi—states that distributed systems requiring always-
on, highly available operation cannot guarantee the illusion of coherent, consistent single-system
operation in the presence of network partitions, which cut communication between active servers.
Brewer’s conjecture proved prescient: in the following decade, with the continued rise of large-scale
Internet services, distributed-system architects frequently dropped “strong” guarantees in favor of
weaker models—the most notable being eventual consistency.

Eventual consistency provides few guarantees. Informally, it guarantees that, if no additional
updates are made to a given data item, all reads to that item will eventually return the same value.
This is a particularly weak model. At no given time can the user rule out the possibility of inconsistent
behavior: the system can return any data and still be eventually consistent—as it might “converge” at
some later point. The only guarantee is that, at some point in the future, something good will happen.
Yet, despite this apparent lack of useful guarantees, scores of usable applications and profitable
businesses are built on top of eventually consistent infrastructure. How?

This article begins to answer this question by describing several notable developments in the
theory and practice of eventual consistency, with a focus on immediately applicable takeaways for
practitioners running distributed systems in the wild. As production deployments have increasingly
adopted weak consistency models such as eventual consistency, we have learned several lessons
about how to reason about, program, and strengthen these weak models.

We will primarily focus on three questions and some preliminary answers:
How eventual is eventual consistency? If the scores of system architects advocating eventual

consistency are any indication, eventual consistency seems to work “well enough” in practice. How
is this possible when it provides such weak guarantees? New prediction and measurement techniques
allow system architects to quantify the behavior of real-world eventually consistent systems. When verified via
measurement, these systems appear strongly consistent most of the time.

How should one program under eventual consistency? How can system architects cope with
the lack of guarantees provided by eventual consistency? How do they program without strong
ordering guarantees? New research enables system architects to deal with inconsistencies, either via external
compensation outside of the system or by limiting themselves to data structures that avoid inconsistencies
altogether.

Is it possible to provide stronger guarantees than eventual consistency without losing its
benefits? In addition to guaranteeing eventual consistency and high availability, what other

DATABASES

2

guarantees can be provided? Recent results show that it’s possible to achieve the benefits of eventual
consistency while providing substantially stronger guarantees, including causality and several ACID (atomicity,
consistency, isolation, durability) properties from traditional database systems while still remaining highly
available.

This article is not intended as a formal survey of the literature surrounding eventual consistency.
Rather, it is a pragmatic introduction to several developments on the cutting edge of our
understanding of eventually consistent systems. The goal is to provide the necessary background for
understanding both how and why eventually consistent systems are programmed, are deployed, and
have evolved, as well as where the systems of tomorrow are heading.

EVENTUAL CONSISTENCY: HISTORY AND CONCEPTS
Brewer’s CAP theorem dictates that it is impossible simultaneously to achieve always-on experience
(availability) and to ensure that users read the latest written version of a distributed database
(consistency—as formally proven, a property known as “linearizability”11) in the presence of partial
failure (partitions).8 CAP pithily summarizes tradeoffs inherent in decades of distributed-system
designs (e.g., RFC 67714 from 1975) and shows that maintaining an SSI (single-system image) in a
distributed system has a cost10. If two processes (or groups of processes) within a distributed system
cannot communicate (are partitioned)—either because of a network failure or the failure of one of the
components—then updates cannot be synchronously propagated to all processes without blocking.
Under partitions, an SSI system cannot safely complete updates and hence is unavailable to some or
all of its users. Moreover, even without partitions, a system that chooses availability over consistency
enjoys benefits of low latency: if a server can safely respond to a user’s request when it is partitioned
from all other servers, then it can also respond to a user’s request without contacting other servers
even when it is able to do so.1 (Note that you can’t “sacrifice” partition tolerance!12 The choice is
between consistency and availability.)

As services are increasingly replicated to provide fault tolerance (ensuring that services remain
online despite individual server failures) and capacity (to allow systems to scale with variable request
rates), architects must face these consistency-availability and consistency-latency tradeoffs head on.
In a dynamic, partitionable Internet, services requiring guaranteed low latency must often relax their
expectations of data consistency.

EVENTUAL CONSISTENCY AS AN AVAILABLE ALTERNATIVE

Given the CAP impossibility result, distributed-database designers sought weaker consistency
models that would enable both availability and high performance. While weak consistency has been
studied and deployed in various forms since the 1970s,19 the eventual consistency model has become
prominent, particularly among emerging, highly scalable NoSQL stores.

One of the earliest definitions of eventual consistency comes from a 1988 paper describing a group
communication system15 not unlike a shared text editor such as Google Docs today: “…changes made
to one copy eventually migrate to all. If all update activity stops, after a period of time all replicas
of the database will converge to be logically equivalent: each copy of the database will contain, in a
predictable order, the same documents; replicas of each document will contain the same fields.”

Under eventual consistency, all servers eventually “converge” to the same state; at some point
in the future, servers are indistinguishable from one another. This eventual convergence, however,

DATABASES

3

does not provide SSI semantics. First, the “predictable order” will not necessarily correspond to an
execution that could have arisen under SSI; eventual consistency does not specify which value is
eventually chosen. Second, there is an unspecified window before convergence is reached, during
which the system will not provide SSI semantics, but rather arbitrary values. As will be seen shortly,
this promise of eventual convergence is a rather weak property. Finally, a system with SSI provides
eventual consistency—the “eventuality” is immediate—but not vice versa.

Why is eventual consistency useful? Pretend you are in charge of the data infrastructure at a social
network where users post new status updates that are sent to their followers’ timelines, represented
by separate lists—one per user. Because of large scale and frequent server failures, the database of
timelines is stored across multiple physical servers. In the event of a partition between two servers,
however, you cannot deliver each update to all timelines. What should you do? Should you tell
the user that he or she cannot post an update, or should you wait until the partition heals before
providing a response? Both of these strategies choose consistency over availability, at the cost of user
experience.

Instead, what if you propagate the update to the reachable set of followers’ timelines, return
to the user, and delay delivering the update to the other followers until the partition heals? In
choosing this option, you give up the guarantee that all users see the same set of updates at every
point in time (and admit the possibility of timeline reordering as partitions heal), but you gain
high availability and (arguably) a better user experience. Moreover, because updates are eventually
delivered, all users eventually see the same timeline with all of the updates that users posted.

IMPLEMENTING EVENTUAL CONSISTENCY

A key benefit of eventual consistency is that it is fairly straightforward to implement. To ensure
convergence, replicas must exchange information with one another about which writes they have
seen. This information exchange is often called anti-entropy, a homage to the process of reversing
entropy, or thermodynamic randomness, in a physical system.19 Protocols for achieving anti-entropy
take a variety of forms; one simple solution is to use an asynchronous all-to-all broadcast: when a
replica receives a write to a data item, it immediately responds to the user, then, in the background,
sends the write to all other replicas, which in turn update their locally stored data items. In the event
of concurrent writes to a given data item, replicas deterministically choose a “winning” value, often
using a simple rule such as “last writer wins” (e.g., via a clock value embedded in each write).22

Suppose you want to make a single-node database into an eventually consistent distributed
database. When you get a request, you route it to any server you can contact. When a server performs
a write to its local key-value store, it can send the write to all other servers in the cluster. This write-
forwarding becomes the anti-entropy process. Be careful, however, when sending the write to the
other servers. If you wait for other servers to respond before acknowledging the local write, then,
if another server is down or partitioned from you, the write request will hang indefinitely. Instead,
you should send the request in the background; anti-entropy should be an asynchronous process.
Implicitly, the model for eventual consistency assumes that system partitions are eventually healed
and updates are eventually propagated, or that partitioned nodes eventually die and the system ends
up operating in a single partition.

The eventually consistent system has some great properties. It does not require writing difficult
“corner-case” code to deal with complicated scenarios such as downed replicas or network

DATABASES

4

partitions—anti-entropy will simply stall—or writing complex code for coordination such as master
election. All operations complete locally, meaning latency will be bounded. In a geo-replicated
scenario, with replicas located in different data centers, you don’t have to endure long-haul wide-area
network latencies on the order of hundreds of milliseconds on the request fast path. The mechanism
just described, returning immediately on the local write, can put data durability at risk. An
intermediate point in trading between durability and availability is to return after W replicas have
acknowledged the write, thus allowing the write to survive W-1 replica failures. Anti-entropy can be
run as often or as rarely as desired without violating any guarantees. What’s not to like?

SAFETY AND LIVENESS

While eventual consistency is relatively easy to achieve, the current definition leaves some
unfortunate holes. First, what is the eventual state of the database? A database always returning
the value 42 is eventually consistent, even if 42 was never written. Amazon CTO Werner Vogels’
preferred definition specifies that “eventually all accesses return the last updated value”; accordingly,
the database cannot converge to an arbitrary value.23 Even this new definition has another problem:
what values can be returned before the eventual state of the database is reached? If replicas have not
yet converged, what guarantees can be made about the data returned?

These questions stem from two kinds of properties possessed by all distributed systems: safety
and liveness.2 A safety property guarantees that “nothing bad happens;” for example, every value
that is read was, at some point in time, written to the database. A liveness property guarantees that
“something good eventually happens”; for example, all requests eventually receive a response.

The difficulty with eventual consistency is that it makes no safety guarantees—eventual consistency
is purely a liveness property. Something good eventually happens—the replicas agree—but there
are no guarantees with respect to what happens, and no behavior is ruled out in the meantime! For
meaningful guarantees, safety and liveness properties need to be taken together: without one or the
other, you can have trivial implementations that provide less-than-satisfactory results.

Virtually every other model that is stronger than eventual provides some form of safety
guarantees. For almost all production systems, however, eventual consistency should be considered
a bare-minimum requirement for data consistency. A system that does not guarantee replica
convergence is remarkably difficult to reason about.

HOW EVENTUAL IS EVENTUAL CONSISTENCY?
Despite the lack of safety guarantees, eventually consistent data stores are widely deployed. Why?
While eventually consistent stores don’t promise safety, there is evidence that eventual consistency
works well in practice. Eventual consistency is “good enough,” given its latency and availability
benefits. For the many stores that offer a choice between eventual consistency and stronger
consistency models, scores of practitioners advocate eventual consistency.

The behavior of eventually consistent stores can be quantified. Just because eventual consistency
doesn’t promise safety doesn’t mean safety isn’t often provided—and you can both measure and
predict these properties of eventually consistent systems using a range of techniques that have
recently been developed and are making their way to production stores. These techniques—which
we discuss next—have surprisingly shown that eventual consistency often behaves like strong
consistency in production stores.

DATABASES

5

METRICS AND MECHANISMS

One common metric for eventual consistency is time: how long will it take for writes to become visible
to readers? This captures the “window of consistency” measured according to the wall clock. Another
metric is versions: how many versions old will a given read be? This information can be used to ensure
that readers never go back in time, but always observe progressively newer versions of the database.
While time and versions are perhaps the most intuitive metrics, there are a range of others, such as
numerical drift from the “true” value of each data item and various combinations of these metrics.25

The two main kinds of mechanisms for quantifying eventual consistency are measurement and
prediction. Measurement answers the question, “How consistent is my store under my given workload
right now?”18 while prediction answers the question, “How consistent will my store be under a given
configuration and workload?”4 Measurement is useful for runtime monitoring and alerts or verifying
compliance with SLOs (service-level objectives). Prediction is useful for probabilistic what-if analyses
such as the effect of configuration and workload changes and for dynamically tuning system
behavior. Taken together, measurement and prediction form a useful toolkit.

PROBABILISTICALLY BOUNDED STALENESS

As a brief deep dive into how to quantify eventually consistent behavior, we will discuss our
experiences developing, deploying, and integrating state-of-the art prediction techniques into
Cassandra, a popular NoSQL. Probabilistically Bounded Staleness, or PBS, provides an expectation of
recency for reads of data items.4 This allows us to measure how far an eventually consistent store’s
behavior deviates from that of a strongly consistent, linearizable (or regular) store. PBS enables
metrics of the form: “100 milliseconds after a write completes, 99.9 percent of reads will return the
most recent version,” and “85 percent of reads will return a version that is within two of the most
recent.”

BUILDING PBS

How does PBS work? Intuitively, the degree of inconsistency is determined by the rate of anti-
entropy. If replicas constantly exchange their last-written writes, then the window of inconsistency
should be bounded by the network delay and local processing delay at each node. If replicas delay
anti-entropy (possibly to save bandwidth or processing time), then this delay is added to the window
of inconsistency; many systems (Amazon’s Dynamo, for example) offer settings in the replication
protocol to control these delays. Given the anti-entropy protocol, then—given the configured
anti-entropy rate, the network delay, and local processing delay—you can calculate the expected
consistency. In Cassandra, we piggyback timing information on top of the write distribution
protocol (the primary source of anti-entropy) and maintain a running sample. When a user wants
to know the effect of a given replication configuration, we use the collected sample in a Monte Carlo
simulation of the protocol to return an expected value for the consistency of the data store, which
closely matches consistency measurements on our Cassandra clusters at Berkeley.

PBS IN THE WILD

Using our PBS consistency prediction tool, and with the help of several friends at LinkedIn and
Yammer, we quantified the consistency of three eventually consistent stores running in production.
PBS models predicted that LinkedIn’s data stores returned consistent data 99.9 percent of the

DATABASES

6

time within 13.6 ms, and on SSDs (solid-state drives) within 1.63 ms. These eventually consistent
configurations were 16.5 percent and 59.5 percent faster than their strongly consistent counterparts
at the 99.9th percentile. Yammer’s data stores experienced a 99.9 percent inconsistency window of
202 ms at 81.1 percent latency reduction. The results confirmed the anecdotal evidence: eventually
consistent stores are often faster than their strongly consistent counterparts, and they are frequently
consistent within tens or hundreds of milliseconds.

In order to make consistency prediction more accessible, with the help of the Cassandra
community, we recently released support for PBS predictions in Cassandra 1.2.0. Cassandra users
can now run predictions on their own production clusters to tune their consistency parameters and
perform what-if analyses for normal-case, failure-free operation. For example, to explore the effect
of adding SSDs to a set of servers, users can adjust the expected distribution of read and write speeds
on the local node. These predictions are inexpensive; a JavaScript-based demonstration we created4

completes tens of thousands of trials in less than a second.
Of course, prediction is not without faults: predictions are only as good as the underlying model

and input data. As statistician George E.P. Box famously stated, “All models are wrong, but some are
useful.” Failure to account for an important aspect of the system or anti-entropy protocol may lead
to inaccurate predictions. Similarly, prediction works by assuming that past behavior is correlated
with future behavior. If environmental conditions change, predictions may be of limited accuracy.
These issues are fundamental to the problem at hand, and they are a reminder that prediction is best
paired with measurement to ensure accuracy.

EVENTUAL CONSISTENCY IS OFTEN STRONGLY CONSISTENT

In addition to PBS, several recent projects have verified the consistency of real-world eventually
consistent stores. One study found that Amazon SimpleDB’s inconsistency window for eventually
consistent reads was almost always less than 500 ms,24 while another study found that Amazon S3’s
inconsistency window lasted up to 12 seconds.7 Other recent work shows results similar to those
presented for PBS, with Cassandra closing its inconsistency window within around 200 ms.18

These results confirm the anecdotal evidence that eventual consistency is often “good enough”
by providing quantitative metrics for system behavior. As techniques such as PBS and consistency
measurement continue to make their way into more production infrastructure, reasoning about the
behavior of eventual consistency across deployments, failures, and system configurations will be
increasingly straightforward.

PROGRAMMING EVENTUAL CONSISTENCY
While users can verify and predict the consistency behavior of eventually consistent systems, these
techniques do not provide absolute guarantees against safety violations. What if an application
requires that safety is always respected? There is a growing body of knowledge about how to program
and reason about eventually consistent stores.

COMPENSATION, COSTS, AND BENEFITS

Programming around consistency anomalies is similar to speculation: you don’t know what the
latest value of a given data item is, but you can proceed as if the value presented is the latest. When
you’ve guessed wrong, you have to compensate for any incorrect actions taken in the interim.

DATABASES

7

In effect, compensation is a way to achieve safety retroactively—to restore guarantees to users.13
Compensation ensures that mistakes are eventually corrected but does not guarantee that no
mistakes are made.

As an example of speculation and compensation, consider running an ATM machine.8,13 Without
strong consistency, two users might simultaneously withdraw money from an account and end up
with more money than the account ever held. Would a bank ever want this behavior? In practice,
yes. An ATM’s ability to dispense money (availability) outweighs the cost of temporary inconsistency
in the event that an ATM is partitioned from the master bank branch’s servers. In the event of
overdrawing an account, banks have a well-defined system of external compensating actions: for
example, overdraft fees charged to the user. Banking software is often used to illustrate the need
for strong consistency, but in practice the socio-technical system of the bank can deal with data
inconsistency just as well as with other errors such as data-entry mistakes.

An application designer deciding whether to use eventual consistency faces a choice. In effect,
the designer needs to weigh the benefit of weak consistency B (in terms of high availability or low
latency) against the cost C of each inconsistency anomaly multiplied by the rate of anomalies R:

maximize B-CR

This decision is, by necessity, application- and deployment-specific. The cost of anomalies is
determined by the cost of compensation: too many overdrafts might cause customers to leave a
bank, while too-slow propagation of status updates might cause users to leave a social network.
The rate of anomalies—as seen before—depends on the system architecture, configuration, and
deployment. Similarly, the benefit of weak consistency is itself possibly a compound term composed
of factors such as the incidence of communication failures and communication latency.

Second, application designers actually have to design for compensation. Writing corner-case
compensation code is nontrivial. Determining the correct business application logic to handle each
type of consistency anomaly is a difficult task. Carefully reasoning about each possible sequence of
anomalies and the correct “apologies” to make to the user for each can become more onerous than
designing a solution for strong consistency. In general, when the cost of inconsistency is high, with
tangible monetary consequences (e.g., ATMs), compensation is more likely to be well thought out.
Additionally, depending on the application, it is possible that some compensation protocols already
exist. For example, even if a database is perfectly consistent, a forklift may run over a pallet of
inventory in a warehouse or packages may be lost in transit.13

For some applications, however, the rate of anomalies may be low enough or the cost of
inconsistency may be small enough that the application designer may choose to forgo including
compensation entirely. If the chance of inconsistency is sufficiently low, users may experience
anomalies in only a small number of cases. Anecdotally, many online services such as social
networking largely operate with weakly consistent configurations: if a user’s status update takes
seconds or even minutes to propagate to followers, they are unlikely to notice or even care. The
complexities of operating a strongly consistent service at this scale may outweigh the benefit of, say,
preventing an off-by-one error in Justin Bieber’s follower count on Twitter.

DATABASES

8

COMPENSATION BY DESIGN

Compensation is error-prone and laborious, and it exposes the programmer (and sometimes the
application) to the effects of replication. What if you could program without it? Recent research has
provided “compensation-free” programming for many eventually consistent applications.

The formal underpinnings of eventually consistent programs that are consistent by design are
captured by the CALM theorem, indicating which programs are safe under eventual consistency
and also (conservatively) which aren’t.3 Formally, CALM means consistency as logical monotonicity;
informally, it means that programs that are monotonic, or compute an ever-growing set of facts (by,
e.g., receiving new messages or performing operations on behalf of a client) and do not ever “retract”
facts that they emit (i.e., the basis for decisions the program has already made doesn’t change), can
always be safely run on an eventually consistent store. (Full disclosure: CALM was developed by our
colleagues at UC Berkeley). Accordingly, CALM tells programmers which operations and programs
can guarantee safety when used in an eventually consistent system. Any code that fails CALM tests is
a candidate for stronger coordination mechanisms.

As a concrete example of this logical monotonicity, consider building a database for queries on
stock trades. Once completed, trades cannot change, so any answers that are based solely on the
immutable historical data will remain true. However, if your database keeps track of the value of the
latest trade, then new information—such new stock prices—might retract old information, as new
stock prices overwrite the latest ones in the database. Without coordination between replica copies,
the second database might return inconsistent data.

By analyzing programs for monotonicity, you can “bless” monotonic programs as “safe” under
eventual consistency and encourage the use of coordination protocols (i.e., strong consistency)
in the presence of non-monotonicity. As a general rule, operations such as initializing variables,
accumulating set members, and testing a threshold condition are monotonic. In contrast, operations
such as variable overwrites, set deletion, counter resets, and negation (e.g., “there does not exist a
trade such that…”) are generally not logically monotonic.

CALM captures a wide space of design patterns sometimes referred to as ACID 2.0 (associativity,
commutativity, idempotence, and distributed)13. Associativity means that you can apply a function in
any order:

f(a, f(b, c)) = f(f(a,b),c)
Commutativity means that a function’s arguments are order-insensitive:
 f(a,b) = f(b,a)
Commutative and associative programs are order-insensitive and can tolerate message re-ordering, as
in eventual consistency. Idempotence means you can call a function on the same input any number
of times and get the same result:
 f(f(x))=f(x) (e.g., max(42, max(42, 42)) = 42)
Idempotence allows the use of at-least-once message delivery, instead of at-most-once delivery (which
is more expensive to guarantee). Distributed is primarily a placeholder for D in the acronym (!) but
symbolizes the fact that ACID 2.0 is all about distributed systems. Carefully applying these design
patterns can achieve logical monotonicity.

Recent work on CRDTs (commutative, replicated data types) embodies CALM and ACID 2.0
principles within a variety of standard data types, providing provably eventually consistent data
structures including sets, graphs, and sequences.20 Any program that correctly uses these predefined,
well-specified data structures is guaranteed to never produce any safety violations.

DATABASES

9

To understand CRDTs, consider building an increment-only counter that is replicated on two
servers. We might implement the increment operation by first reading the counter’s value on one
replica, incrementing the value by one, and writing the new value back on every replica. If the
counter is initially at 0 and two different users simultaneously initiate increment operations on
separate servers, both users may read 0 and then distribute the value 1 to the replicas; the counter
ends up with a value of 1 instead of the correct value of 2. Instead, we can use a G-counter CRDT,
which relies on the fact that increment is a commutative operation—it doesn’t matter in what
order the two increment operations are applied, as long as they are both eventually applied at all
sites. With a G-counter, the current counter status is represented as the count of distinct increment
invocations, similar to how counting is introduced at the grade-school level: by making a tally mark
for every increment then summing the total. In our example, instead of reading and writing counter
values, each invocation distributes an increment operation. All replicas end up with two increment
operations, which sum to the correct value of 2. This works because the replicas understand the
semantics of increment operations instead of providing general-purpose read/write operations, which
are not commutative.

A key property of these advances is that they separate data store and application-level consistency
concerns. While the underlying store may return inconsistent data at the level of reads and writes,
CALM, ACID 2.0, and CRDT appeal to higher-level consistency criteria, typically in the form of
application-level invariants that the application maintains. Instead of requiring that every read
and write to and from the data store is strongly consistent, the application simply has to ensure
a semantic guarantee (such as “the counter is strictly increasing”)—granting considerable leeway
in how reads and writes are processed. This distinction between application-level and read/
write consistency is often ambiguous and poorly defined (for example, what does database ACID
“consistency” have to do with “strong consistency”?). Fortunately, by identifying a large class of
programs and data types that are tolerant of weak consistency, programmers can enjoy “strong”
application consistency, while reaping the benefits of “weak” distributed read/write consistency.

Taken together, the CALM theorem and CRDTs make a powerful toolkit for achieving “consistency
without concurrency control,” which is making its way into real-world systems. Our team’s work
on the Bloom language3 embodies CALM principles. Bloom encourages the use of order-insensitive
disorderly programming, which is key to architecting eventually consistent systems. Some of our
recent work focuses on building custom eventually consistent data types whose correctness is
grounded in formal mathematical lattice theory. Concurrently, several open source projects such
as Statebox21 provide CRDT-like primitives as client-side extensions to eventually consistent stores,
while one eventually consistent store—Riak—recently announced alpha support for CRDTs as a first-
class server-side primitive.9

STRONGER THAN EVENTUAL
While compensating actions and CALM/CRDTs provide a way around eventual consistency, they
have shortcomings of their own. The former requires dealing with inconsistencies outside the system
and the latter limits the operations that an application writer can employ. However, it turns out that
it is possible to provide even stronger guarantees than eventual consistency—albeit weaker than
SSI—for general-purpose operations while still providing availability.

The CAP theorem dictates that strong consistency (SSI) and availability are unachievable in the

DATABASES

10

presence of partitions. But how weak does the consistency model have to be in order for it to be
available? Clearly, eventual consistency, which simply provides a liveness guarantee, is available. Is
it possible to strengthen eventual consistency by adding safety guarantees to it without losing its
benefits?

PUSHING THE LIMITS

A recent technical report from the University of Texas at Austin claims that no consistency model
stronger than causal consistency is available in the presence of partitions.17 Causal consistency
guarantees that each process’s writes are seen in order, that writes follow reads (if a user reads a value
A=5 and then writes B=10, then another user cannot read B=10 and subsequently read an older
value of A than 5), and that transitive data dependencies hold. This causal consistency is useful in
making sure, for example, that comment threads are seen in the correct order, without dangling
replies, and that users’ privacy settings are applied to the appropriate data. The UT Austin report
demonstrates that it is not possible to have a stronger model than causal consistency (that accepts
fewer outcomes) without either violating high availability or giving up the assurance that, if two
servers communicate, they will agree on the same set of values for their data items. While many
other available models are neither stronger nor weaker than causal consistency, this impossibility
result is useful because it places an upper bound on a very familiar consistency model.

Especially in light of this result, it is worth noting that several new data storage designs provide
causal consistency. The COPS and Eiger systems16 developed by a team from Princeton, CMU, and
Intel Research provide causal consistency without incurring high latencies across geographically
distant datacenters or the loss of availability in the event of datacenter failures. These systems
perform particularly well, at a near-negligible cost to performance when compared to eventual
consistency; Eiger, which was prototyped within the Cassandra system, incurs less than 7% overhead
for one of Facebook’s workloads. In our recent work, we demonstrated how existing data stores
that are already deployed in production but provide eventual consistency can be augmented with
causality as an added safety guarantee.6 Causality can be bolted-on without compromising high
availability, enabling system designs in which safety and liveness are cleanly decomposed into
separate architectural layers.

In addition to causality, we can consider the relationship between ACID transactions and the
CAP theorem. While it’s impossible to provide the gold standard of ACID isolation—serializability,
or SSI—it turns out that many ACID databases provide a weaker form of isolation, such as read
committed, often by default and, in some cases, as the maximum offered. Some of our recent
results show that many of these weaker models can be implemented in a distributed environment
while providing high availability.5 Current databases providing these weak isolation models are
unavailable, but this is only because they have been implemented with unavailable algorithms.

We—and several others—are developing transactional algorithms that show this need not be the
case. By rethinking the concurrency-control mechanisms and re-architecting distributed databases
from the ground up, we can provide safety guarantees in the form of transactional atomicity, ANSI
SQL Read Committed and Repeatable Read, and causality between transactions—matching many
existing ACID databases—without violating high availability. This is somewhat surprising, as many
in the past have assumed that, in a highly available system, arbitrary multi-object transactions are
out of the question.

DATABASES

11

RECOGNIZING THE LIMITS

While these results push the limits of what is achievable with high availability, there are several
properties that a weakly consistent system will never be able to provide; there is a fundamental cost
to remaining highly available (and providing guaranteed low latency). The CAP theorem states that
staleness guarantees are impossible in a highly available system. Reads that specify a constraint
on data recency (e.g., “give me the latest value” or “give me the latest value as of 10 minutes ago”)
are not generally available in the presence of long-lasting network partitions. Similarly, we cannot
maintain arbitrary global correctness constraints over sets of data items such as uniqueness
requirements (e.g., “create bank account with ID 50 if the account does not exist”) and, in certain
cases (e.g., arbitrary reads and writes), even correctness constraints on individual data items are
not achievable (e.g., “the bank account balance should be non-negative”). These challenges are an
inherent cost of choosing weak consistency—whether eventual or a stronger but still “weak” model.

CONCLUSIONS
By simplifying the design and operation of distributed services, eventual consistency improves
availability and performance at the cost of semantic guarantees to applications. While eventual
consistency is a particularly weak property, eventually consistent stores often deliver consistent data,
and new techniques for measurement and prediction grant us insight into the behavior of eventually
consistent stores. Concurrently, new research and prototypes for building eventually consistent
data types and programs are easing the burden of reasoning about disorder in distributed systems.
These techniques, coupled with new results that push the boundaries of highly available systems—
including causality and transactions—make a strong case for the continued adoption of weakly
consistent systems. While eventual consistency and its weakly consistent cousins are not perfect for
every task, their performance and availability will likely continue to accrue admirers and advocates
in the future.

ACKNOWLEDGMENTS

The authors would like to thank Peter Alvaro, Carlos Baquero, Neil Conway, Alan Fekete, Joe
Hellerstein, Marc Shapiro, and Ion Stoica for feedback on earlier drafts of this article.

This work was supported by gifts from Google, SAP, Amazon Web Services, Blue Goji, Cloudera,
Ericsson, General Electric, Hewlett Packard, Huawei, IBM, Intel, MarkLogic, Microsoft, NEC Labs,
NetApp, NTT Multimedia Communications Laboratories, Oracle, Quanta, Splunk, and VMware.
This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship under Grant DGE 1106400, National Science Foundation Grants IIS-0713661, CNS-
0722077, and IIS-0803690, the Air Force Office of Scientific Research Grant FA95500810352, and
DARPA contract FA865011C7136.

REFERENCES

1. Abadi, D. 2012. Consistency tradeoffs in modern distributed database system design: CAP is only
part of the story. IEEE Computer (February).

2. Alpern, B., Schneider, F.B. 1985. Defining liveness. Information Processing Letters 21 (October).
3. Alvaro, P., Conway, N., Hellerstein, J., Marczak, W. 2011. Consistency analysis in Bloom: a CALM

and collected approach. CIDR (Conference on Innovative Data Systems Research).

DATABASES

12

4. Bailis, P., Venkataraman, S., Franklin, M., Hellerstein, J., Stoica, I. 2012. Probabilistically bounded
staleness for practical partial quorums. VLDB (Very Large Databases). (Demo from text: http://
pbs.cs.berkeley.edu/#demo)

5. Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J., Stoica, I. 2013. HAT, not CAP: highly available
transactions. arXiv:1302.0309 [cs.DB] (February).

6. Bailis, P., Ghodsi, A., Hellerstein, J., Stoica, I. 2013. Bolt-on causal consistency. ACM SIGMOD.
7. Bermbach, D., Tai, S. 2011. Eventual consistency: how soon is eventual? An evaluation of Amazon

S3’s consistency behavior. MW4SOC (Workshop on Middleware for Service-oriented Computing).
8. Brewer, E. 2012. CAP twelve years later: how the “rules” have changed. IEEE Computer

(February).
9. Brown, R., Cribbs, S. 2012. Data structures in Riak; https://speakerdeck.com/basho/data-

structures-in-riak. RICON Conference.
10. Davidson, S., Garcia-Molina, H., Skeen, D. 1985. Consistency in a partitioned network: a survey.

ACM Computing Surveys Volume 17, Issue 3.

11. Gilbert, S., Lynch. N. 2002. Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. ACM SIGACT News Volume 33, Issue 2 (June).

12. Hale, C. 2010. You can’t sacrifice partition tolerance. http://codahale.com/you-cant-sacrifice-

partition-tolerance/

13. Helland, P., Campbell, D. 2009. Building on quicksand. CIDR (Conference on Innovative Data

Systems Research).

14. Johnson, P. R., Thomas, R. H. 1975. Maintenance of duplicate databases; RFC 677; http://www.

faqs.org/rfcs/rfc677.html.
15. Kawell Jr., L., Beckhardt, S., Halvorsen, T., Ozzie, R., Greif, I. 1988. Replicated document

management in a group communication system. Proceedings of the 1988 ACM Conference on
Computer-supported Cooperative Work: 395; http://dl.acm.org/citation.cfm?id=1024798.

16. Lloyd, W., Freedman, M., Kaminsky, M., Andersen, D. 2013. Stronger semantics for low-latency
geo-replicated storage. NSDI (Networked Systems Design and Implementation).

17. Mahajan, P., Alvisi, L., Dahlin, M. 2011. Consistency, availability, convergence. University of
Texas at Austin TR-11-22 (May).

18. Rahman, M., Golab, W., AuYoung, A., Keeton, K., Wylie, J. 2012. Toward a principled framework
for benchmarking consistency. HotDep (Workshop on Hot Topics in System Dependability).

19. Saito, Y., Shapiro, M. 2005. Optimistic replication. ACM Computing Surveys Volume 37 Number
1 (March). http://dl.acm.org/citation.cfm?id=1057980

20. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M. 2011. A comprehensive study of convergent
and commutative replicated data types. INRIA Technical Report RR-7506 (January).

21. Statebox; https://github.com/mochi/statebox.
22 Terry, D., Theimer, M., Petersen, K., Demers, A., Spreitzer, M. Hauser, C. 1995. Managing update

conflicts in Bayou, a weakly connected replicated storage system. SOSP (Symposium on Operating
Systems Principles).

23. Vogels, W. Eventually consistent. 2008. ACM Queue.
24. Wada, H., Fekete, A., Zhao, L., Lee, K., A. Liu, A. 2011. Data consistency and the tradeoffs in

commercial cloud storage: the consumers’ perspective. CIDR (Conference on Innovative Data
Systems Research).

DATABASES

13

25. Yu, H., Vahdat, A. 2002. Design and evaluation of a conit-based continuous consistency model
for replicated services. ACM TOCS (Transactions on Computer Systems).

RECOMMENDED READING

Compensation and Stronger Models
 Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M. 2011. A comprehensive study of convergent and
commutative replicated data types. INRIA Technical Report RR-7506 (January). http://hal.upmc.fr/
docs/00/55/55/88/PDF/techreport.pdf
 Terry, D. 2011. Replicated data consistency explained through baseball. Microsoft Research Technical
Report MSR-TR-2011-137 (October). http://research.microsoft.com/apps/pubs/default.aspx?id=157411
 Saito, Y., Shapiro, M. 2005. Optimistic Replication. ACM Computing Surveys Volume 37 Number 1
(March). http://dl.acm.org/citation.cfm?id=1057980
Helland, P., Campbell, D. 2009. Building on quicksand. CIDR (Conference on Innovative Data
Systems Research). http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_133.pdf

CAP and Latency-Consistency Background
Abadi, D.J. 2012. Consistency tradeoffs in modern distributed database system design: CAP is only
part of the story. IEEE Computer (February). http://cs-www.cs.yale.edu/homes/dna/papers/abadi-
pacelc.pdf
Brewer, E. 2012. CAP twelve years later: how the “rules” have changed. IEEE Computer (February).
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

Portions of this piece (in particular, the safety and liveness discussion) originally appeared at http://bailis.org/
blog.

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

PETER BAILIS is a graduate student of Computer Science in the AMPLab and BOOM projects at UC Berkeley,

where he works closely with Ali Ghodsi, Joe Hellerstein, and Ion Stoica. He currently studies distributed

systems and databases, with a particular focus on distributed consistency models. Peter received his A.B. from

Harvard College and is the recipient of the NSF Graduate Research Fellowship and the Berkeley Fellowship

for Graduate Study. Peter blogs regularly at http://bailis.org/blog and tweets as @pbailis.

ALI GHODSI is an Assistant Professor at KTH/Royal Institute of Technology in Sweden and a Visiting

Researcher at UC Berkeley since 2009. His general interests are in the broader areas of distributed systems and

networking. He received his PhD in 2006 from KTH/Royal Institute of Technology in the area of Distributed

Computing. He can be reached at alig@cs.berkeley.edu.

© 2013 ACM 1542-7730/13/0300 $10.00

