
DROP: Optimizing Stochastic Dimensionality
Reduction via Workload-Aware Progressive Sampling

ABSTRACT
Dimensionality reduction is a critical step in analyzing high-

volume, high-dimensional datasets. Principal Component

Analysis (PCA) is frequently the method of choice, yet is

often prohibitively expensive. Theoretical means of accel-

erating PCA via sampling have been proposed, but these

techniques typically treat PCA as a reusable statistical oper-

ator, independent of downstream analytics workflows. We

show how accounting for downstream analytics operations

during dimensionality reduction via PCA allows stochastic

methods to efficiently operate over very small (e.g., 1%) sub-

samples of input data, thus reducing computational overhead

and end-to-end runtime. This enables end-to-end optimiza-

tion over both dimensionality reduction and analytics tasks.

By combining techniques spanning progressive sampling,

approximate query processing, and cost-based optimization,

our optimizer enables speedups of up to 5× over Singular-

Value-Decomposition-based PCA techniques, and achieves

parity with or exceeds conventional approaches like FFT and

PAA by up to 16× in end-to-end workloads.

1 INTRODUCTION
There has been continued, rapid growth in high-dimensional

data volumes from automated data sources [12, 51, 56]. This

scale poses a challenge for advanced repeated-query process-

ing operations and analytics tasks where existing datapoints

are repeatedly retrieved to process incoming queries against

new data, such as in similarity search, clustering, regression,

and classification [11, 33]. In such scenarios, indexing us-

ing dimensionality reduction (DR) techniques can improve

performance by accelerating queries while preserving accu-

racy [17, 34, 57, 59].

The standard approach of performing Principal Compo-

nent Analysis (PCA) for DR is frequently the method of

choice for practitioners [55]. However, naïve implementa-

tions of PCA—for example, those that compute the Singular

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SIGMOD’19, June 2019, Amsterdam, The Netherlands
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Value Decomposition (SVD) of the full covariance matrix—

scale poorly with dimensionality. The database literature

thus advocates trading quality for speed, encouraging the

use of alternatives, such as Piecewise Aggregate Approxi-

mation (PAA) or Fast Fourier Transforms (FFT) [28, 58] for

similarity search, that may not provide the same DR quality

as PCA (e.g., may degrade metrics like Euclidean distance

further than PCA at the same target dimensionality), but are

more efficient to compute.

Recently developed stochastic PCA algorithms are a scal-

able alternative to those that compute PCA exactly [25, 89].

These algorithms repeatedly process data samples until con-

vergence, reducing PCA’s computational overhead. Despite

the theoretical promise of these new methods, we are un-

aware of any empirical study comparing them to alternatives

from the database community. Therefore, as a case study, we

first extend a highly-cited experimental study of DRmethods

for time series similarity search from VLDB 2008 [28] and

make two observations. First, compared to alternative DR

techniques at a target accuracy level, classic PCA via SVD

reduces dimensionality by up to 13× (avg: 3×) compared

to alternatives, but is up to 56× slower (avg: 26×). Second,

sample-based PCA can deliver the same quality of dimen-

sionality reduction as classic PCA via SVD while utilizing as

little as 1% of the data, providing up to 91× speedups over

PCA via SVD. This suggests that new stochastic methods

may close the quality-efficiency gap in practice between PCA

and today’s favored DR methods in end-to-end analytics.

However, the challenge in practically applying stochas-

tic PCA methods is that the amount of sampling required is

highly data-dependent, varying from under 1% to over 35% in

the time series datasets from the VLDB 2008 study. If we con-

servatively sample too many data points, then the runtime

overhead of PCA in an end-to-end analytics workload could

outweigh the statistical benefits. If we optimistically fail to

sample enough data points, then PCA could fail to deliver a

sufficiently high-quality reduction and compromise the run-

time and/or accuracy of downstream analytics. This raises

a critical question: how can we efficiently and accurately

determine the sampling rate that minimizes total workload

runtime while ensuring high accuracy?

In response, we develop DROP, a system that performs

whole-workload runtime optimization by dynamically iden-

tifying the amount of sampling required for stochastic PCA.

As input, DROP takes a high-dimensional dataset (e.g., EKG

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGMOD’19, June 2019, Amsterdam, The Netherlands

data),
1
property to preserve (e.g., pairwise Euclidean distance

to 5%), and a runtimemodel that expresses downstreamwork-

load performance as a function of dimensionality (e.g., for

k-Nearest Neighbor [k-NN], runtime is linear in dimension-

ality). As output, DROP returns a low-dimensional transfor-

mation of the input data that seeks to minimize the combined

runtime of DR and downstream tasks. Thus, DROP obtains

a low-dimensional transformation for the input using as

few samples as required to minimize the overall workload

runtime while satisfying quality constraints.

To achieve the above functionality, DROP addresses the

question of how much to sample the input dataset by adapt-

ing techniques from the approximate query processing lit-

erature: data-dependent progressive sampling and online

progress estimation at runtime. DROP performs PCA on

a small sample to obtain a candidate transformation, then

progressively increases the number of samples until termina-

tion. To determine the termination point that minimizes the

overall runtime, DROP must overcome three key challenges:

First, given the results of PCA on a data sample, DROP

must evaluate the quality of the current candidate transfor-

mation. While PCA is guaranteed to find the optimal lin-

ear transformation with respect to L2 reconstruction error,

popular analytics and data mining tasks (e.g., k-NN [33], k-

means [47], kernel density estimation [96]) instead require

approximate preservation of metrics such as average pair-

wise distances between data points. To overcome this chal-

lenge, the system adapts an approach pioneered for deter-

ministic queries in the context of online aggregation: treat

quality metrics as aggregation functions and use confidence

intervals (either via closed-form or, if unavailable, via boot-

strapping) for fast estimation.

Second, DROP must estimate the marginal benefit of con-
tinuing to sample for another iteration. When running PCA

on a series of progressively larger samples, later samples

will incur higher computational cost but may in turn return

lower-dimensional transformations. To navigate this trade-

off between end-to-end runtime and transformation quality,

the system performs online progress estimation, using the

results obtained from previous iterations to build a predictive

performance model for future iterations.

Finally, given the current quality and expected marginal

benefit of the next iteration, DROP must optimize end-to-
end runtime to determine whether to terminate. The system

must evaluate if the expected marginal benefit to dimen-

sionality arising from continuing to iterate would reduce

total runtime.While an application-agnostic approach would

1
Our primary focus for performance evaluation is a case study on time series

similarity search, given the amount of study in the database community [28]

and the resurgence of interest in time series analytics systems [11, 12, 82].

We explore non-time series data and generalizability in Sections 5 and 6.

iterate until successive iterations yield no benefit to qual-

ity, many analytics operators such as k-Nearest Neighbors

are tolerant of error [34], so it is frequently advantageous

to trade a slightly higher-dimensional basis for faster pre-

processing (DR). To address this challenge, the system per-

forms workload-specific optimization to minimize the ex-

pected runtime of the complete end-to-end analytics pipeline.

We view DROP as a pragmatic combination of recent the-

oretical advances in dimensionality reduction and classic

techniques from approximate query processing, as well as a

useful system for performing whole-workflow optimization

of end-to-end data analytics. To summarize, we make the

following contributions in this work:

• We show that the fraction of data required to perform

accuracy-achieving PCA on real-world data is often

small (as little as 1%), and data-dependent sampling

can enable 91× speedup compared to PCA via SVD.

• We propose DROP, an online optimizer for DR that

uses information about downstream analytics tasks to

perform efficient stochastic PCA.

• We present techniques based on progressive sampling,

approximate query processing, online progress estima-

tion, and cost based optimization to enable up to 5×

faster end-to-end execution over PCA via SVD.

2 DIMENSIONALITY REDUCTION FOR
END-TO-ENDWORKLOADS

We provide background on dimensionality reduction (DR) for

repeated-query workloads, and revisit a widely cited empiri-

cal comparison of DR techniques from VLDB 2008 [28] that

we use as a case study. Our study shows that Principal Com-

ponent Analysis (PCA) can outperform classic techniques,

but at a high computational cost.

2.1 Dimensionality Reduction
DR refers to finding a low-dimensional representation of a

dataset that preserves properties of interest, such as data

point similarity [24, 37]. Formally, consider d data vectors

(e.g., time series vectors) of length n, xi ∈ R
n
, with d > n.

We can represent this as a matrix X ∈ Rd×n , where each row

i corresponds to vector xi . DR computes a transformation

function (T : Rn → Rk) that maps each xi to a new basis

as x̃i ∈ Rk where k ≤ n, resulting in a new data matrix

T (X) = X̃ ∈ Rd×k that preserves some metric of interest.

DR techniques are optimized for various choices of met-

rics. For instance, DR via Locality Sensitive Hashing [41] can

preserve distance metrics such as Hamming distance and

Jaccard similarity, and PCA [14] computes a linear transfor-

mation that minimizes reconstruction error with respect to

the Frobenius norm. In similarity search, a popular metric to

preserve is the average Euclidean distances between pairs

DROP: Optimizing Stochastic Dimensionality
Reduction via Workload-Aware Progressive Sampling SIGMOD’19, June 2019, Amsterdam, The Netherlands

of points, which the literature refers to as tightness of lower
bounds (TLB) [28, 34, 58].

Principal Component Analysis (PCA). PCA is a classic, lin-

ear DR technique (§7) that identifies a new orthogonal basis

for a dataset that captures its directions of highest variance.

Of all linear transformation, this basis minimizes reconstruc-

tion error in a mean square sense.

Classically implemented PCA uses a Singular Value De-

composition (SVD) routine [92], which computes the matrix

decomposition X = U ΣV ⊺ . Given a data matrix X , PCA via

SVD forms the PCA transformation matrix T : Rn → Rk by

first subtracting each column in X by the column’s mean to

obtain CX (1⊺CX = 0). The first k right singular vectors of

CX (first k columns of V from the SVD of CX) comprise T .

2.2 DR for Repeated-Query Workloads
In repeated-query workloads such as similarity search, clus-

tering, or classification, models are periodically trained over

historical data, and are repeatedly queried as incoming data

arrives or new query needs arise. Indexes built over this data

can improve the efficiency of this repeated query workload

in exchange for a preprocessing overhead. DR with a multidi-

mensional index structure is a classic way of achieving this,

and is the basis for popular similarity search procedures and

extensions in the data mining and machine learning com-

munities [8, 17, 47, 57, 59, 68, 84, 107]; a metric-preserving

transformation reduces input dimensionality, and an index

is built in this new space for subsequent queries.

DR in Similarity Search. Similarity search is a common

repeated-query workload performed over a variety of data

types including images, documents and time series [28, 41],

which we use as a running case study. TheTLB is useful here

to identify the quality of a low dimensional transformation

without performing the downstream similarity search task,

as it measures how well a contractive DR transformation (i.e.

distances in the transformed space are less than or equal to

those in the original) preserves pairwise Euclidean distances:

TLB =
2

d(d − 1)

∑
i<j

∥x̃i − x̃ j ∥2

∥xi − x j ∥2
. (1)

We focus on Euclidean time series similarity search as our

primary means of evaluation given its popularity and the

large amount of research in the space, but note that there is

no requirement that Euclidean distance be used in Equation 1;

we further discuss alternatives in Sections 4.4 and 6.

2.3 Case Study: Speed vs. Quality
To demonstrate the speed-quality trade off inherent in per-

forming DR for repeated-query workloads, we revisit and

extend a widely-cited time series similarity search DR study

from VLDB 2008 [28]. This work serves as a case study and

motivation for this paper since the authors did not evaluate

PCA due to it being “untenable for large data sets" despite

providing “optimal linear dimensionality reduction."

We first compare PCA via SVD to baseline techniques

based on both runtime and DR performance with respect to

TLB over the largest datasets from [28]. We use two of their

fastest methods as our baselines since they show the remain-

der exhibited “very little difference”: Fast Fourier Transform

(FFT) and Piecewise Aggregate Approximation (PAA). We

verify that PCA offers more effective dimensionality reduc-

tion than alternative techniques for time series similarity

search, but with a large computational overhead.

TLB Performance Comparison We compute the mini-

mum dimensionality (k) achieved by each technique subject

to aTLB constraint. On average across the datasets, PCA pro-

vides bases that are 2.3× and 3.7× smaller than PAA and FFT

for TLB = 0.75, and 2.9× and 1.8× smaller for TLB = 0.99.
While the margin between PCA and alternatives is dataset-

dependent (see Table 1 in the appendix), PCA almost always

preserves TLB with a lower dimensional representation.

Runtime Performance Comparison PCA implemented

via out-of-the-box SVD routines is on average over 26× (up to

56×) slower than PAA and over 4.6× (up to 9.7×) times slower

than FFT when computing the smallestTLB-preserving basis
(per-dataset breakdown in Table 2). This substantiates the ob-

servation that as classically implemented, PCA is incredibly

slow to run compared to alternatives [28].

While improved quality provides faster repeated query

execution (as seen in Section 5), the cost of DR via PCA dom-

inates this speedup, encouraging the use of alternatives [28].

This trade off motivates our study of downstream-workload-

aware, stochastic, sampling-based PCA methods.

3 SAMPLE-BASED COMPUTATION
Advanced PCA algorithms (Section 7) provide theoretically
efficient stochastic methods that iterate over small data sam-

ples, such as momentum techniques that achieve accelerated

convergence rates [25]. However, they either i) execute for a
pre-specified number of iterations or ii) execute until conver-
gence. In the first case, the number of iterations required to

compute a basis over a given dataset is highly data-dependent

and therefore difficult to specify a priori. In the second case,

running to convergence may not be required for many ana-

lytics, and thus can incur substantial, unnecessary overhead.

To our knowledge, existing termination conditions are not

suitable when considering users’ willingness to trade quality

for downstream workload runtime.

Inspired by stochastic methods, we augment our time

series case study to show that running PCA on data samples

SIGMOD’19, June 2019, Amsterdam, The Netherlands

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Data Sampled

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

ali
ze

d
Di

m
en

sio
n

(k
/n

) SmallKitchenAppliances
RefrigerationDevices
IMDB
StarlightCurves

Figure 1: Improvement in representation size for
TLB = 0.80 across three datasets. Higher sampling
rates improve quality until reaching a state equivalent
to running PCA over the full dataset ("convergence")

does not sacrifice DR quality, but that the number of samples

required varies per dataset (i.e., (ii) above). We then show

how progressive sampling—gradually increasing the number

sampled data points—can help dynamically identify how

much to sample a given dataset (addressing (i) above).

3.1 Feasibility of Sampling
Many real-world datasets are intrinsically low-dimensional,

as evidenced by the rapid falloff in their eigenvalue spectrum

(Section 6). A subsample of the data thus capturesmuch of the

dataset’s “interesting” behavior, so fitting a model over such

a sample will generalize well. We verify this phenomenon by

varying the targetTLB and examining the minimum number

of samples required to obtain a TLB-preserving transform

with output dimension k equal to input dimension n.
On average, across the considered UCR time series datasets,

a sample of under 0.64% of the input is sufficient for a TLB
of 0.75, and a sample size under 4.15% is sufficient for a

TLB of 0.99 (see Table 3 for a detailed breakdown). Further,

when this proportion is known a priori, we obtain up to 91×

speedup when comparing against a naïve implementation of

PCA via SVD—without using any algorithmic improvement.

3.2 Incremental, Progressive Sampling
As sampling benefit is dataset-dependent, we must identify

how large a sample suffices to compute high-quality trans-

forms. Figure 1 illustrates how the dimensionality required

to attain a givenTLB changes when we vary dataset and pro-

portion of data sampled. Progressively increasing the number

of samples provides lower dimensional transformations of

the same quality until convergence to the true PCA solution.

This decreases the runtime of downstream applications in

exchange for DR time. Thus, we must determine when the

downstream value of decreased dimension is overpowered by

the cost of additional DR—that is, whether to sample to con-

vergence (evaluated in Section 5.3) or terminate early (e.g., at

0.3 proportion of data sampled for SmallKitchenAppliances).

4 DROP: WORKLOAD OPTIMIZATION
Section 3 demonstrated that sampling can reduce the amount

of data required to perform DR via PCA, but it is difficult

to know a priori how much to sample to attain quality con-

straints. In response, we introduce DROP, a system that per-

forms progressive sampling and online progress estimation

to control the amount of sampling to minimize overall run-

time. DROP answers a crucial question that many advanced

stochastic PCA techniques have traditionally ignored: how

long should these methods run, and how much computation

is actually required to obtain high quality bases? We now

discuss workload-aware DR and DROP’s architecture.

4.1 Workload-Aware DR
In end-to-end analytics tasks, we wish to minimize the com-

bined runtime of index construction via DR and downstream

applications. Similarity search performance depends heavily

on the number of workload queries. DR is a fixed cost in

index construction, while each query over the dataset in-

curs a marginal cost that is dependent on DR quality: lower-

dimensional data points result in faster queries. Thus, end-

to-end runtime is a function of i) the time required for DR

in index construction (a fixed cost) and ii) the benefit of DR
as applied to each query (a marginal cost).

In workload-aware dimensionality reduction, we are per-

forming DR to minimize overall workload runtime. As input,

we consider a set of data points, a desired level of metric

preservation (B; default TLB, e.g., TLB ≥ .99) and, option-
ally, downstream runtime as a function of dimensionality

(Cd (n) for an d × n data matrix). We seek to use this infor-

mation to efficiently return a DR function that satisfies the

metric constraint with a configurable degree of confidence.

More formally, denoting DR runtime as R, we define the

optimization problem as follows:

Problem 4.1. Given X ∈ Rd×n , TLB constraint B ∈ (0, 1],
confidence c , and workload runtime function Cd : Z+ → R+,
find k and transformation matrix Tk ∈ Rn×k that minimizes
R + Cd (k) such that TLB(XTk) ≥ B with confidence c .

We assume the downstream runtime model Cd (n) is mono-

tonically increasing in n as the premise of DR for efficient

analytics relies on downstream tasks running faster on lower

dimensional data. If Cd (n) is unknown, there exists a number

of estimation routines for relational workloads that users can

use to approximate their downstream runtimes [48, 49, 106].

For general functions that users may only possess black-box

knowledge of, such as those used in time series analytics, re-

gression analysis can be used: the user can input datasets of

varying dimension, and build a model for the function’s run-

time. For example, we use polynomial regression to model

the cost of our black-box k-NN task in our evaluation. We

DROP: Optimizing Stochastic Dimensionality
Reduction via Workload-Aware Progressive Sampling SIGMOD’19, June 2019, Amsterdam, The Netherlands

Downstream
Analytics Tasks

(e.g. K-NN)

INPUTS

Data
(e.g. EKG readings)

d

n

Downstream Runtime Model
(can be estimated via synthetic input)

Level of metric preservation
(default: preservesTLB to value in (0,1])

Ũ ṽ
U V — + — > 0.75 —()

1
2

U ŨV ṽ

OUTPUT

Low Dimensional
Representation

d

k

progressive
sampling

evaluate
transform quality

estimate
marginal benefit

optimize
combined runtime

 projected downstream benefit > sampling + DR cost?

End-to-End Runtime Optimization for Dimensionality Reduction + Analytics Tasks

DROP: Time Series Analytics Runtime Optimizer
sample (§4.3),
PCA (§4.7), and

optional work
reuse (§4.8)

efficiently evaluate the
transformation wrt

 desired TLB and output
dimension, k (§4.4)

estimate both the
runtime and output

dimension, k, of the next
 DROP iteration (§4.5)

^

check if the downstream
runtime benefit from
using k instead of k

outweighs DR time (§4.6)

^

(A) (B) (C) (D)

Figure 2: High-level DROP architecture depicting DROP’s inputs, outputs, and core components.

note that this cost function must also take into account the

downstream workload’s expected query load (the effect of

whichwe describe in Section 5), which the usermust estimate

using their expected system throughput. Absent this, we de-

fault to execution until convergence (i.e, until k plateaus) as

described in Section 3, and demonstrate the cost of doing so

in Section 5.

As seen in Section 3, the more time spent on DR (R), the
smaller the transformation (k), thus the lower the workload
runtime. To minimize R + Cd (k), we must determine how

much time to spend on DR to minimize end-to-end runtime.

4.2 DROP Architecture
DROP operates over a series of progressively larger data

samples, and determines when to terminate via a four-step

procedure that is repeated for each iteration: progressive sam-

pling, transformation evaluation, progress estimation, and

cost-based optimization. To power this pipeline, DROP com-

bines database and machine learning techniques spanning

online aggregation (§4.4), progress estimation (§4.5), progres-

sive sampling (§4.3), and PCA approximation (§§4.7,4.8).

We now provide a brief overview of DROP’s sample-based

iterative architecture before detailing each.

Step 1: Progressive Sampling (§4.3, Alg 1 L5, Fig 2A)
At each iteration, DROP draws a data sample and computes

PCA over this sample. Additionally, DROP makes use of a

novel means of reusing work across iterations (§4.8).

Step 2: Transform Evaluation (§4.4, Alg 1 L6, Fig 2B)
Given the result from PCA computed over a data sample,

DROP evaluates quality by identifying the size of the smallest

metric-preserving transformation that can be extracted.

Step 3: Progress Estimation (§4.5, Alg 1 L8, Fig 2C)
Given the size of the metric-preserving transform and the

computation time required to obtain this transform, DROP

estimates the size and computation time of running an addi-

tional DROP iteration.

Step 4: Cost-BasedOptimization (§4.6, Alg 1 L9, Fig 2D)

Given this and the estimated future iteration’s transforma-

tion sizes and computation times, DROP optimizes over the

end-to-end DR and downstream task runtime to determine

if it should terminate.

4.3 Progressive Sampling
DROP repeatedly chooses a subset of data and computes PCA

on the subsample (via one of several methods described in

Section 4.7) at each iteration. By default, we consider a simple

uniform sampling strategy where at each iteration, DROP

samples a fixed percentage of the data. While we considered

a range of alternative sampling strategies, uniform sampling

strikes a balance between computational and statistical effi-

ciency. Data-dependent and weighted sampling schemes that

are dependent on the current basis may decrease the total

number of iterations required by DROP, but may require

expensive reshuffling of data at each iteration [22].

DROP provides configurable strategies for both base num-

ber of samples and the per-iteration increment, in our exper-

imental evaluation in Section 5, we consider a sampling rate

of 1% per iteration. We discuss more sophisticated additions

to this base sampling schedule in Section 6.

4.4 Evaluating Transformations
Given a transformation obtained by running PCA over a

sample (Section 3), DROP must accurately and efficiently

evaluate the performance of this transformation with re-

spect to a metric of interest over the entire dataset, not just

the data sample. To do so, DROP adapts an approach for

deterministic queries in online aggregation: treating quality

metrics as aggregation functions and utilizing confidence

intervals for fast estimation. We first discuss this approach in

the context ofTLB, then discuss how to extend this approach

to alternative metrics at the end of this section.

We define the performance of a transformation computed

over a sample as the size of the lowest dimensional TLB-
preserving transform that can be extracted. There are two

SIGMOD’19, June 2019, Amsterdam, The Netherlands

Algorithm 1 DROP Algorithm

Input:
X : data matrix

B: target metric preservation level

Cd : cost of downstream operations; default tuned to k-NN

Output:
Tk : k-dimensional transformation matrix

1: function drop(X ,B,Cd):
2: Initialize: i = 0;k0 = ∞ ▷ iteration and current basis size

3: do
4: i++, clock.restart
5: Xi = sample(X , sample-schedule(i)) ▷ § 4.3

6: Tki = compute-transform(X ,Xi ,B) ▷ § 4.4

7: ri = clock.elapsed ▷ R =
∑
i ri

8:
ˆki+1, r̂i+1 = estimate(ki , ri) ▷ § 4.5

9: while optimize(Cd ,ki , ri , ˆki+1, r̂i+1) ▷ § 4.6

10: return Tki

challenges in evaluating this performance, which DROP over-

comes. First, the size of the lowest dimensional transforma-

tion that achieves TLB constraints is rarely known a priori.

Second, brute-force TLB computation would dominate the

runtime of computing PCA over a sample.

4.4.1 Computing the Lowest Dimensional Transformation.
DROP first computes a full, n-dimensional basis (i.e., of di-

mension equal to the input dimension) via PCA over the data

sample. To reduce dimensionality, DROP must determine if

a smaller dimensional TLB-preserving transformation can

be computed over this sample, and return the smallest such

transform. Ideally, the dimension of the best (smallest) trans-

formation would be known, but in practice, this information

is rarely known a priori. Therefore, DROP uses the TLB
constraint to automatically identify the size of the returned

transformation. A naïve strategy would evaluate the TLB
for every combination of the n basis vectors for every trans-

formation size, requiring O(2n) evaluations. Instead, DROP
exploits two key properties of PCA to avoid this.

First, PCA via SVD produces an orthogonal linear trans-

formation where the first principal component explains the

most variance in the dataset, the second explains the sec-

ond most—subject to being orthogonal to the first—and so

on. Therefore, once DROP has computed the transformation

matrix for dimension n, DROP obtains the transformations

for all dimensions k less than n truncating the matrix to

dimension n × k .
Second, with respect to TLB preservation, the more prin-

cipal components that are retained, the better the lower-

dimensional representation in terms of TLB. This is because

orthogonal transformations such as PCA preserve inner prod-

ucts. Therefore, a full PCA (where no dimensions are omit-

ted) perfectly preserves L2-distance between data points.

As the L2-distance is a sum of squared (positive) terms, the

more principal components that are retained, the better the

representation preserves L2-distance.

Using the first property (i.e., PCA’s ordering), DROP ob-

tains all low-dimensional transformations for the sample

from the n-dimensional basis. Using the second property (i.e.,

of monotonicity of principal components), DROP then runs

binary search over these transformations to find and return

the lowest-dimensional basis that attains B (i.e., compute-

transform, line 1 of Algorithm 2). If a target B cannot be

realized with this sample, DROP omits all further optimiza-

tion steps in this iteration and continues the next iteration

by drawing a larger sample.

Computing the full n-dimensional basis at every step may

be wasteful. To avoid this need, DROP’s exploits information

from previous iterations: if DROP has previously found a

candidate TLB-preserving basis of size n′ < n in prior itera-

tions, then DROP only computes n′ components at the start

of the next iteration. This is because similar to a hold-out or

validation set, TLB evaluation is representative of the entire

dataset, not just the current sample (see Alg. 2 L5). Thus,

sampling additional training datapoints enables DROP to

better learn global data structure and perform at least as well

as over a smaller sample. This reduces the space of lower

dimensions to consider, and allows for more efficient PCA

computation for future iterations, as advanced PCA routines

can exploit the n′-th eigengap to converge faster (§7).

4.4.2 TLB Computation. Given a transformation, DROP

must efficiently determine if the basis preserves the desired

TLB. Computing pairwise TLB for all data points requires

O(d2n) time, which dominates the runtime of computing

PCA on a sample. However, as the TLB is an average of

random variables bounded from 0 to 1, DROP can adapt

techniques from online aggregation and approximate query

processing [50, 80], using statistical sampling and confidence

intervals to compute the TLB to arbitrary confidences.

Given a transformation, DROP iteratively refines an es-

timate of its TLB (function evaluate-tlb in Algorithm 2,

line 11) by incrementally sampling an increasing number of

pairs from the input data (Algorithm 2, line 15), transforming

each pair into the new basis, then measuring the distortion

of L2 distance between the pairs, providing a TLB estimate

to confidence level c (Algorithm 2, line 19). If the confidence

interval’s lower bound is greater than the target TLB, the
basis is a sufficiently good fit; if its the upper bound is less

than the target TLB, the basis is not a sufficiently good fit.

If the confidence interval contains the target TLB, DROP is

unable to conclude whether or not the targetTLB is achieved.

DROP: Optimizing Stochastic Dimensionality
Reduction via Workload-Aware Progressive Sampling SIGMOD’19, June 2019, Amsterdam, The Netherlands

Thus, DROP automatically samples additional pairs to refine

its estimate; in practice, and especially for our initial target

time series datasets, DROP rarely uses more than 500 pairs

on average in its TLB estimates (often using far fewer).

To estimate the TLB to confidence c , DROP uses the Cen-

tral Limit Theorem (similar to online aggregation [50]): com-

puting the standard deviation of a set of sampled pairs’ TLB
measures and applying a confidence interval to the sample

according to the c . For data with low variance, DROP evalu-

ates a candidate basis with few samples from the dataset as

the confidence intervals shrink rapidly.

The techniques in this section are presented in the con-

text of TLB, but can be applied to any downstream task and

metric for which we can compute confidence intervals and

are monotonic in number of principal components retained.

For instance, DROP can operate while using all of its op-

timizations when using any Lp -norm. Euclidean similarity

search is simply one such domain that is a good fit for PCA:

when performing DR via PCA, as we increase the number

of principal components, a clear positive correlation exists

between the percent of variance explained and the TLB re-

gardless of data spectrum. We demonstrate this correlation

in the experiment below, where we generate three synthetic

datasets with predefined spectrum (right), representing vary-

ing levels of structure present in real-world datasets. The

positive correlation is evident (left) despite the fact that the

two do not directly correspond (x = y provided as reference).

This holds true for all of the evaluated real world datasets.

0.0 0.2 0.4 0.6 0.8 1.0
Percent Variance Retained

0.0

0.2

0.4

0.6

0.8

1.0

TL
B

Dataset A
Dataset B
Dataset C

0 200 400 600 800 1000
Eigenvalue Index

0.0

0.2

0.4

0.6

0.8

1.0

Ei
ge

nv
alu

e

Dataset A
Dataset B
Dataset C

For alternative preservation metrics, we can utilize closed-

form confidence intervals [50, 78, 102], or bootstrap-based

methods [31, 64], which incur higher overhead but can be

more generally applied.

4.5 Progress Estimation
Given a low dimensionalTLB-achieving transformation from

the evaluation step, DROP must identify the quality (di-

mensionality) and cost (runtime) of the transformation that

would be obtained from an additional DROP iteration.

Recall that DROP seeks to minimize objective function

R +Cd (k) such thatTLB(XTk) ≥ B, with R denoting DROP’s

total runtime,Tk the k-dimensionalTLB-preserving transfor-
mation of dataX returned by DROP, and Cd (k) the workload
cost function. Therefore, given a ki -dimensional transfor-

mation Tki returned by the evaluation step of DROP’s ith

Algorithm 2 Basis Evaluation and Search

Input:
X : sampled data matrix

B: target metric preservation level; default TLB = 0.98

1: function compute-transform(X ,XiB):
2: pca.fit(Xi) ▷ fit PCA on the sample

3: Initialize: high = ki−1; low = 0; ki =
1

2
(low + high); Bi = 0

4: while (low ! = high) do
5: Tki ,Bi = evaluate-tlb(X ,B,ki)
6: if Bi ≤ B then low = ki + 1
7: else high = ki
8: ki =

1

2
(low + high)

9: Tki = cached ki -dimensional PCA transform

10: return Tki

11: function evaluate-tlb(X ,B,k):
12: numPairs = 1

2
d(d − 1)

13: p = 100 ▷ number of pairs to check metric preservation

14: while (p < numPairs) do
15: Bi ,Blo ,Bhi = tlb(X ,p,k)
16: if (Blo > B or Bhi < B) then break
17: else pairs ×= 2

18: return Bi

19: function tlb(X ,p,k):
20: return mean and 95%-CI of the TLB after transforming

p d-dimensional pairs of points from X to dimension k . The
highest transformation computed thus far is cached to avoid

recomputation of the transformation matrix.

iteration, DROP can compute the value of this objective func-

tion by substituting its elapsed runtime for R and Tki for Tk .
We denote the value of the objective at the end of iteration

i as obji . To decide whether to continue iterating to find an

improved transformation, DROP must be able to estimate

the objective function value of future iterations.

In Section 4.6 we show that DROP requires obji+1 to mini-

mize this objective function. To estimate obji+1, DROP must

estimate the runtime required for iteration i + 1 (which we

denote as ri+1, where R =
∑

i ri after i iterations) and the

dimensionality of the TLB-preserving transformation pro-

duced by iteration i + 1, ki+1. Because DROP cannot directly

measure ri+1 orki+1 without performing iteration i+1, DROP
performs online progress estimation to estimate these quan-

tities. Specifically, DROP performs online parametric fitting

to compute future values based on prior values for ri and
ki in line 8 of Algorithm 1. By default, given a sample of

sizemi in iteration i , DROP performs linear extrapolation to

estimate ki+1 and ri+1. The estimate of ri+1, for instance, is:

r̂i+1 = ri +
ri − ri−1
mi −mi−1

(mi+1 −mi)

SIGMOD’19, June 2019, Amsterdam, The Netherlands

DROP’s use of a basic first-order approximation is moti-

vated by the fact that when adding a small number of data

samples each iteration, both runtime and resulting lower

dimension do not change drastically (i.e., see Fig. 1 after a

feasible point is achieved). While linear extrapolation acts as

a proof-of-concept for progress estimation, the architecture

can incorporate more sophisticated functions as needed (§7).

4.6 Cost-Based Optimization
Given the results of the progress estimation step, DROPmust

determine if continued PCA on additional samples will be

beneficial to overall runtime, or if it is better to terminate.

Given predictions of the next iteration’s runtime (r̂i+1)

and dimensionality (
ˆki+1), DROP uses a greedy heuristic in

estimating the optimal objective-minimizing stopping point.

Concretely, if the objective function estimate for the next

iteration is greater than its current objective function value

(obji < ôbji+1), then DROPwill terminate. If DROP’s runtime

is convex in the number of iterations, it is straightforward to

prove that this condition is in fact the optimal stopping crite-

rion (i.e., via convexity of composition of convex functions).

This stopping criterion leads to a simple check at each DROP

iteration that is used by optimize in Algorithm 1 line 9:

obji < ôbji+1

Cd (ki) +
i∑
j=0

r j < Cd (ˆki+1) +
i∑
j=0

r j + r̂i+1

Cd (ki) − Cd (ˆki+1) < r̂i+1 (2)

DROP terminates when the projected time of the next

iteration exceeds the estimated downstream runtime benefit.

While we empirically observed the runtime to be convex,

this does not hold true in the general case as the rate of de-

crease in dimension (ki) is data dependent. Should ki plateau
before continued decrease, DROPwill terminate prematurely.

We encounter this scenario during DROP’s first iterations

if sufficient data to meet the TLB threshold at a dimension

lower than n had not been sampled (SmallKitchenAppliances

in Fig. 1). To combat this challenge, optimization is only en-

abled once a feasible point is attained as we prioritize accu-

racy over runtime (i.e., 0.3 for SmallKitchenAppliances in

Fig. 1). We show the implications of this decision in DROP

in Section 5.3, and in the streaming setting in Section 6.3.

4.7 Choice of PCA Subroutine
At each iteration, DROP uses PCA as its means of DR. The

most straightforward means of implementing this PCA step

is to compute a full SVD over the data (§2.1). There are many

suitable libraries for this task—many of which are highly

optimized—and therefore this strategy is pragmatic and easy

to implement. However, this approach is computationally

inefficient compared to other DR techniques (§2).

In our DROP implementation, we compute PCA via a ran-

domized SVD algorithm by Halko, Martinsson, and Tropp

(SVD-Halko) that calculates an approximate rank-k factoriza-

tion (truncated SVD) of a data matrix [45]. While additional

advanced methods for efficient PCA exist (§7), we found that

not only is SVD-Halko asymptotically of the same running

time as techniques used in practice (such as probabilistic PCA

used in a recent SIGMOD 2015 paper on scalable PCA [32]),

it is straightforward to implement, can take advantage of

optimized linear algebra libraries, and does not require tun-

ing for hyperparameters such as batch size, learning rate,

or convergence criteria. SVD-Halko is not as efficient as

other techniques with respect to communication complex-

ity, as probabilistic PCA used in [32], or convergence rate,

as recent work in accelerated, momentum-based PCA [25].

However, these techniques can be easily substituted for SVD-

Halko in DROP’s architecture. We demonstrate this by im-

plementing multiple alternatives in Section 5.6. Further, we

also demonstrate that this implementation is competitive

with the widely used SciPy Python library [6].

4.8 Work Reuse
A natural question arises due to DROP’s iterative architec-

ture: can we combine the information from each sample’s

transformation without computing PCA over the union of

the sampled data points? While stochastic methods for PCA

enable such work reuse across samples as they iteratively

refine a single transformation matrix, other methods do not.

We propose an algorithm that allows reuse of previous work

when utilizing arbitrary PCA routines with DROP.

DROP uses two key insights in order to enable this work

reuse. First, given two transformation matrices produced

via PCA, T1 and T2, the horizontal concatenation of these

matrices H = [T1 |T2] is a transformation into the union

of their range spaces. Second, for datasets that have rapid

drop off in spectrum, the principal components returned

from running PCA on repeated data samples will generally

concentrate to the true top principal components. Thus, work

reuse proceeds via two step concatenate-distill approach:

DROP first maintains a transformation history consisting of

the horizontal concatenation of all PCA transformations to

this point, and then computes the SVD of this history matrix

and returns the first k columns as the transformation matrix.

Although this routine requires an SVD computation, com-

putational overhead is not dependent on the raw dataset

size, but on the size of the history matrix, H . This size is pro-

portional to the original dimensionality n and size of lower

dimensional transformations, which are in turn proportional

to the data’s intrinsic dimensionality and theTLB constraint.

DROP: Optimizing Stochastic Dimensionality
Reduction via Workload-Aware Progressive Sampling SIGMOD’19, June 2019, Amsterdam, The Netherlands

As preserving all history can be expensive in practice, DROP

periodically shrinks the history matrix using DR via PCA.

We validate the benefit of using work reuse—up to 15% on

real-world data—in Section 5.

5 EXPERIMENTAL EVALUATION
We now evaluate DROP’s DR efficiency along three dimen-

sions: runtime, accuracy, and extensibility. We demonstrate:

(1) DROP outperforms PAA and FFT in end-to-end, repetitive-

query workloads (§5.2).

(2) DROP’s optimizations for sampling, downstream task

and work reuse contribute to performance (§5.3).

(3) DROP’s DR runtime scales with intrinsic dimensional-

ity, independently of data size (§5.4).

(4) DROP extends beyond our time series case study (§5.5).

5.1 Experimental Setup

Implementation We implement DROP as an in-memory,

batch-oriented feature transformation dataflow operator
2
in

Java using the multi-threaded Matrix-Toolkits-Java (MTJ) li-

brary [46] and netlib-java [4] linked against Intel MKL [5] for

compute-intensive linear algebra operations. We use multi-

threaded JTransforms [2] for FFT, and implement multi-

threaded PAA from scratch. We use the Statistical Machine

Intelligence and Learning Engine (SMILE) library [1] for

k-NN with different index structures, and k-means.

Environment We run experiments on a server with two

Intel Xeon E5-2690v4 @ 2.60Ghz CPUs, each with 14 physi-

cal and 28 virtual cores (with hyper-threading). The server

contains 512GB of RAM. We report indexing/DR and down-

stream workload runtimes in isolation, excluding data load-

ing and parsing time.

Datasets To showcase DROP’s performance in an end-to-

end setting and contributions from each optimization, we

use several real world datasets. We first consider data from

the UCR Time Series Classification Archive [21], the gold

standard from the time series data mining community, for

our indexing experiments and lesion studies. We exclude

datasets that have fewer than 1 million entries, and fewer

datapoints than dimensionality, leaving 14 UCR datasets.

Further, due to the relatively small size of these time series

datasets, we consider three additional datasets to showcase

tangible wall-clock runtime improvements with DROP. We

use the standard MNIST hand-written digits dataset [69],

the FMA featurized music dataset [27], and a labeled sen-

timent analysis IMBD dataset [9], which also demonstrate

extensibility beyond time series data.

2
https://github.com/anonimized

DROP Configuration We use a runtime cost function for

k-NN obtained via linear interpolation on data of varying di-

mension (implemented via cover trees [13], K-D trees [88],or

brute force search in SMILE). To evaluate the sensitivity to

cost model, we also report on the effect of operating without

a cost model (i.e., sample until convergence) in Section 5.3.

We setTLB constraints such that the accuracy of K-NN tasks

remain unchanged before and after indexing via DR, corre-

sponding to B = 0.99 for the UCR datasets. Unless otherwise

specified, we use a default sampling schedule that begins

with and increases by 1% of the input. It is possible to opti-

mize (and possibly overfit) this schedule for our target time

series, but we provide a conservative, more general schedule.

We further discuss sampling schedules and properties that

make a dataset amenable to DROP in Section 6.

Baselines We report runtime, accuracy, and reduced dimen-

sion compared to FFT, PAA, PCA via SVD-Halko, and PCA

via SVD. Each computes a transformation over the entire

data, then performs binary search to identify the smallest

dimensional basis that satisfies the target TLB. We further

discuss choice of PCA subroutine in Section 5.6.

Similarity Search/k-NN Setup While many methods for

similarity search exist, as in [28], we consider k-NN in our

evaluation as it is classically used and interoperates with

new use cases including one-shot learning and deep metric

learning [76, 87, 99]. Further, adopting k-NN (and, k-means

in Section 5.5), which is not a classically supported rela-

tional operator, as our target task demonstrates that simple

runtime estimation routines can be extended to time-series-

specific operators. To evaluate DR performance when used

with downstream indexes, we vary k-NN’s multidimensional

index structure: cover trees, K-D trees, or no index.

As previously noted, end-to-end performance of similarity

search depends on the number of queries in the workload.

DROP is optimized for the repeated-query use case. Due to

the small size of the UCR datasets, we choose a 1:50 ratio of

data indexed to number of query points, and vary this index-

query ratio in later microbenchmarks and experiments. We

also provide a simple cost model for assessing the break-even

point that balances the cost of a given DR technique against

it’s indexing benefits to each query point.

5.2 DROP Performance
We evaluate DROP’s performance compared to PAA and FFT

using the time series case study.

k-NN Performance We summarize DROP’s results on an

end-to-end 1-Nearest Neighbor classification in Figure 3. We

display the end-to-end runtime of DROP, PAA, and FFT for

each of the considered index structures: no index, K-D trees,

cover trees. We display the size of the returned dimension

https://github.com/anonimized

SIGMOD’19, June 2019, Amsterdam, The Netherlands

100

102

104

Ru
nt

im
e

(m
s)

 N

o
In

de
x

PAA FFT DROP

100

102

104

Ru
nt

im
e

(m
s)

 K

-D
 T

re
e

PAA FFT DROP

100

102

104

Ru
nt

im
e

(m
s)

 C

ov
er

 T
re

e

PAA FFT DROP

wafer
 7164x152

yoga
 3300x426

uWGL_Y
 4478x315

uWGL_X
 4478x315

uWGL_Z
 4478x315

ElecDev
 16637x96

Phoneme
 2110x1024

FordB
 4446x500

MALLAT
 2400x1024

FordA
 4921x500

NIFE_T1
 3765x750

NIFE_T2
 3765x750

UWGLAll
 4478x945

SLC
 9236x1024

102

103

K
 N

o
In

de
x

Figure 3: End-to-End DR and k-NN runtime (top three) and returned lower dimension (bottom) over the largest
UCR datasets for three different indexing routines. DROP consistently returns lower dimensional bases than
conventional alternatives (FFT, PAA), and is on average faster than PAA and FFT.

for the no indexing scenario, as the other two scenarios

return near identical values. This occurs as many of the

datasets used in this experiment are small and possess low

intrinsic dimensionality; DROP’s cost model thus determines

to quickly identify this dimensionality prior to termination.

We do not display k-NN accuracy as all techniques meet the

TLB constraint, and achieve the same accuracy within 1%.

On average, DROP returns transformations that are 2.3×
and 1.4× smaller than PAA and FFT, respectively, translating

to significantly smaller k-NN query time. As a result, end-to-

end runtime with DROP is on average 2.2× and 1.4× (up to

10× and 3.9×) faster than PAA and FFT, respectively, when

using brute force linear search, 2.3× and 1.2× (up to 16×

and 3.6×) faster when using K-D trees, and 1.9× and 1.2×
(up to 5.8× and 2.6×) faster when using cover trees. We

demonstrate in our lesion study in Section 5.3 that DROP

also outperforms our baseline PCA via SVD implementation,

as well as our SVD-Halko implementation.

When evaluating Figure 3, it becomes clear that DROP’s

runtime improvement is data dependent for both smaller

datasets, and for datasets that do not possess a low intrinsic

dimension (such as Phoneme, elaborated on in Section 5.3).

Thus, in the end of the evaluation section, we provide guide-

lines on how to determine if DROP is a good fit for a dataset.

Varying Index-Query Ratio
DROP is optimized for scenarios with highly structured

data and a low index-query ratio, as in many streaming

and/or high-volume data use cases. That is, if there are many

more data points queried than used for training/constructing

an index, DROP will outperform alternatives. A natural ques-

tion that arises is in which concrete scenarios is it beneficial

to use DROP, and in which would a lower quality but faster

reduction suffice. Domain experts are typically aware of the

scale of their query workloads. However, lacking this knowl-

edge, we provide a heuristic to answer this question given

rough runtime and cardinality estimates of the downstream

task at hand and the choice of alternative DR technique.

Let xd and xa be the per-query runtime of running a down-

stream task with the output of DROP and a given alternative

method, respectively. Let rd and ra denote the amortized

per-datapoint runtime of DROP and the alternative method,

respectively. Letni andnq the number of indexed and queried

points. DROP is faster when nqxd + nird < nqxa + nira .
To verify, we obtained estimates of the above and com-

pared DROP against FFT and PAA in lower-query-volume

scenarios when running k-NN using cover trees, and display

the results in Figure 4. We first found that in the 1:1 index-

query ratio setting, DROP should be slower than PAA and

FFT, as observed. However, as we decrease the ratio, DROP

becomes faster, with a break-even point of slightly lower

than 1:3. We show that DROP does indeed outperform PAA

and FFT in the 1:5 index-query ratio case, where it is is on

average 1.51× faster than PAA and 1.03× faster than FFT. As

the ratio decreases to 1:50, DROP is 1.24× faster than FFT

and 1.9× faster than PAA.

Time Series Similarity Search Extensions Given the

breadth of research in time series indexing, a natural ques-

tion to ask is how DROP, a general operator for PCA, com-

pares to state-of-the-art time series indexes. As a preliminary

DROP: Optimizing Stochastic Dimensionality
Reduction via Workload-Aware Progressive Sampling SIGMOD’19, June 2019, Amsterdam, The Netherlands

Figure 4: Effect of decreasing the index-query ratio. As
an index is queried more frequently, DROP’s relative
runtime benefit increases.

evaluation, we consider iSAX2+ [16], a state-of-the-art in-

dexing tool in a 1:1 index-query ratio setting, using a publicly

available Java implementation [3].While these indexing tech-

niques also optimize for the low index-query ratio setting,

we find index construction to be a large bottleneck in these

workloads. For iSax2+, index construction is on average 143×

(up to 389×) slower than DR via DROP, but is on average

only 11.3× faster than k-NN on the reduced space. How-

ever, given high enough query workload, these specialized

techniques will surpass DROP.

We also verify that DROP is able to perform well when us-

ing downstream similarity search tasks relying on alternative

distance metrics, namely, Dynamic Time Warping (DTW)—a

commonly used distance measure in the literature [90]. As

proof-of-concept, we implement a 1-NN task using DTW

with a 1:1 index-query ratio, and find that even with this

high ratio, DROP provides on average 1.2× and 1.3× run-

time improvement over PAA and FFT, respectively. As DTW

is known to be incredibly slow [62], it is unsurprising that

DROP provides large runtime benefits for tasks using DTW

without additional pruning—in terms of absolute runtime,

DROP saves 2.8 minutes on the FordA dataset compared to

PAA, and 2.2 minutes on the wafer dataset compared to FFT.

Finally, as the considered time series are fairly short, we

perform the same experiment over a standard gaussian ran-

dom walk synthetic dataset [65, 72] consisting of 50,000 time

series of dimension 10,000. Each time series is generated by,

for each time step, generating a random value distributed via

standard normal distribution, and adding it to the running

sum of all previous time steps. We find that DROP takes

4150ms to complete, whereas PAA and FFT take 5523ms

(1.3× faster) and 15329ms (3.7× faster), respectively.

5.3 Lesion Study
We perform a factor analysis of the incremental runtime and

dimensionality contributions of each of DROP’s components

compared to baseline SVD methods. We only display the

results of k-NNwith cover trees; the results hold for the other

indexes. We use a 1:1 index-query ratio with data inflated

by 5× to better highlight the effects of each contribution to

Baseline SVD SVD-Halko Sampling Cost Function Work Reuse0.0

0.5

1.0

No
rm

l.
Rt

im
e 1.00

0.73
0.53 0.46 0.47

KNN

Figure 5: Average result of lesion study over the UCR
datasets.

Baseline SVD SVD-Halko Sampling Cost Function Work Reuse0

1

2

No
rm

l.
Rt

im
e

1.00 1.00

2.11

1.52 1.47
KNN

Figure 6: Lesion study of the UCR phoneme, a dataset
with high intrinsic dimensionality,meaning sampling
to convergence is orders of magnitude slower than a
batch SVD. DROP’s cost function enables it to termi-
nate in advance, returning a higher dimensional basis
to minimize reduce overall compute.

the DR routine, and display average results over the UCR

datasets in Figure 5, excluding Phoneme.

Figure 5 first demonstrates the boost from using SVD-

Halko over a naïve implementation of PCA via SVD, which

comes from not computing the full transformation a priori,

incrementally binary searching as needed. It then shows

the runtime boost obtained from running on samples un-

til convergence, where DROP samples and terminates after

the returned lower dimension from each iteration plateaus.

This represents the naïve sampling-until-convergence ap-

proach described in Section 3 that DROP defaults to sans

user-specified cost model. We finally introduce cost based

optimization and work reuse. Each of these optimizations

improves runtime, with the exception of work reuse, which

has a negligible impact on average but disproportionately

impacts certain datasets.

On average, DROP is 2.1× faster (up to 41×) than PCA via

SVD, and 1.6× faster than SVD-Halko (up to 3.3×). DROP
with cost-based optimization is faster than sampling to con-

vergence by 1.2× on average, but this default strategy is still

1.4× faster than SVD-Halko on average.

Work reuse typically only slightly affects end-to-end run-

time as it is useful primarily when a large number of DROP

iterations are required (i.e., when dataset spectrum is not

well-behaved).We also observe this behavior on certain small

datasets with moderate intrinsic dimensionality, such as the

yoga dataset in Figure 7. Work reuse provides a 15% improve-

ment in addition to cost based optimization.

DROP’s sampling operates on the premise that the dataset

has data-point-level redundancy. However, datasets without

this structure are more difficult to reduce the dimensionality

SIGMOD’19, June 2019, Amsterdam, The Netherlands

Baseline SVD SVD-Halko Sampling Cost Function Work Reuse0.0

0.5

1.0

No
rm

l.
Rt

im
e 1.00

0.64

0.29 0.23 0.20

KNN

Figure 7: Lesion study over the UCR yoga dataset.
Work reuse provides a 15% runtime improvement.

0 25 50 75 100 125
Number of Datapoints (thousands)

7.6

7.8

8.0

8.2

8.4

Re
tu

rn
ed

 D
im

en
sio

n
(k

) SVD-Halko + Binary Search
DROP

0 25 50 75 100 125
Number of Datapoints (thousands)

0

500

1000

1500

2000

2500

Ru
nt

im
e

(m
s)

SVD-Halko + Binary Search
DROP

Figure 8: Effect of dataset size on time and output di-
mension (k), with constant intrinsic data dimensional-
ity of 8. DROP runtime with a fixed schedule remains
near constant.

of. Phoneme is an example of one such dataset (Figure 6).

In this setting, DROP incrementally examines a large pro-

portion of data before enabling cost-based optimization, re-

sulting in a performance penalty. We discuss extensions to

DROP to mitigate this in Section 6.

5.4 Scalability
Data generated by automated processes such as time series

often grows much faster in size than intrinsic dimensionality.

DROP can exploit this intrinsic dimensionality to compute

PCA faster than traditional methods as it only processes an

entire dataset if a low intrinsic dimensionality does not exist.

To demonstrate this, we fix intrinsic dimensionality of a

synthetic dataset generated via random projections to 8 as we

grow the number of datapoints from 5K to 135K. Hence, the

sample size an algorithm requires to uncover this dataset’s

intrinsic dimensionality is constant regardless of the full

dataset size. In this experiment, we enable DROP’s fixed-

size sampling schedule set to increase by 500 datapoints at

each iteration. As Figure 8 shows, DROP is able to find a

8-dimensional basis that preservesTLB to 0.99 within 145ms

for dataset sizes up to 135K data points, and is 12× faster than

binary search with SVD-Halko. Runtime is near constant as

dataset size increases, with small overhead due to sampling

from larger datasets. This near-constant runtime contrasts

with PCA via SVD and SVD-Halko as they do not exploit

the intrinsic dimensionality of the dataset and process all

provided points, further illustrating the scalability and utility

of sample-based DR.

100

102

104

106

Ru
nt

im
e

(m
s)

488797

44343 77095

722275
98951

21757
56000

651134

16431
2610

1076

245014

PAA FFT DROP KNN

MNIST Fashion MNIST music_features IMDB100

101

102

103

K

261
98

259

2500

116
54

182

2379

12
5

2

732

Figure 9: End-to-End k-NN runtime (top) and returned
dimension k (bottom) over the entire MNIST dataset
and the FMA featurized music dataset.

5.5 Beyond the Time Series Case Study
We consider generalizability beyond our initial case study

along two axes: data domain and downstream workload.

These preliminary results show promise in extension to ad-

ditional domains and target tasks.

Data Domain. We examine classification/similarity search

workloads across image classification, music analysis, and

natural language processing. To better show the trade-off

in DR and downstream workload, we repeat the k-NN re-

trieval experiments with a 1:1 index-query ratio. We use the

MNIST hand-written digit image dataset containing 70,000

images of dimension 784 (obtained by flattening each 28×28-

dimensional image into a single vector [69], combining both

the provided training and testing datasets); FMA’s featurized

music dataset, providing 518 features across 106,574 music

tracks; a bag-of-words representation of an IMDB sentiment

analysis dataset across 25,000 movies with 5000 features [9];

Fashion MNIST’s 70,000 images of dimension 784 [101]. We

present our results in Figure 9. As the given datasets are

larger than the ones presented in [21], DROP’s ability to find

a TLB-preserving low dimensional basis is more valuable

as this more directly translates to significant reduction in

end-to-end runtime—up to a 7.6 minute wall-clock improve-

ment in MNIST, 42 second improvement in Fashion MNIST,

1.2 minute improvement in music features, and 8 minute

improvement in IMDB compared to PAA. These wall-clock

runtime effects will only be amplified as the index-query

ratio decreases, to be more typical of the repeated-query set-

ting. For instance, when we decrease the ratio to 1:5 on the

music features dataset, DROP provides a 6.1 and 4.5 minute

improvement compared to PAA and FFT, respectively.

Downstream Workload. To demonstrate the generalizabil-

ity of both DROP’s pipeline as well as black-box runtime

cost-model estimation routines, we extend our pipeline to

DROP: Optimizing Stochastic Dimensionality
Reduction via Workload-Aware Progressive Sampling SIGMOD’19, June 2019, Amsterdam, The Netherlands

200 400 600 800 1000
Data Dimension

0

500

1000

1500

2000

Ru
nt

im
e

(m
s)

Java
Python

0 10000 20000 30000 40000
Number of Datapoints

0

500

1000

1500

2000

Ru
nt

im
e

(m
s)

Java
Python

Figure 10: Comparison ofDROP’s java PCA implemen-
tation with Python (SciPy) over the UCR datasets.

perform a k-means task over the MNIST digits dataset. We

fit a new downstream workload runtime model as we did

with k-NN, and operate under a 1:1 index-query ratio. In this

workload, DROP terminates in 1488ms, which is 16.5× faster

than PAA and 6.5× faster than FFT.

5.6 PCA Subroutine Evaluation
PCA algorithms are optimized for different purposes, with

varying convergence, runtime, and communication complex-

ity guarantees. DROP is agnostic to choice of PCA subroutine,

and improvements to said routine provide complementary

runtime benefits. To implement DROP’s default algorithm,

we use MTJ and netlib-java linked against Intel MKL. Our

SVD subroutine is competitive with the commonly used

SciPy library [6] in Python linked against Intel MKL. We pro-

vide a plot of the runtimes over the UCR datasets (original,

and number of datapoints inflated by 5×).

We also provide implementations of PCA via SMILE, Prob-

abilistic PCA via SMILE’s implementation, and PCA via (sto-

chastic) Oja’s method (not linked against Intel MKL) as a

proof-of-concept of DROP’s modularity, but they perform

orders of magnitude slower than the optimized default.

6 EXTENSIONS
In this section, we describe several extensions to DROP.

6.1 Generalization
The techniques introduced via DROP can benefit any repeated-

query setting where PCA is the method of choice, so long

as users are willing to sacrifice small amounts of accuracy

for improved running time and a metric of interest can be

defined for the application (i.e., TLB for similarity search, or

loss function estimates for more general tasks). For instance,

examining a recent natural language processing application

of PCA as a word vector post-processing step prior to down-

stream workloads [81] is exciting future work. While having

an exact runtime model is not common a priori, for many

common analytics workloads for clustering, classification, or

regression, black-box techniques (as we used for k-NN and

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
 Number, normalized by dimension

0.00

0.05

0.10

0.15

0.20

No
rm

ali
ze

d

MALLAT
Phoneme

Figure 11: Spectrum of UCR data highlighting MAL-
LAT (performs well) and Phoneme (performs poorly).

k-means) can be applied as downstream tasks can be per-

formed as a series of matrix decompositions and multiplies

(i.e., techniques that make use of gradient descent).

6.2 Data-Aware Sampling
DROP’s efficiency is determined by the dataset’s spectrum.

To demonstrate this, we plot the (truncated, normalized)

spectrum of each of the UCR time series [21]. We highlight

MALLAT, with the sharpest drop-off, which performs ex-

tremely well, and Phoneme, with a near uniform distribution,

which does not. Datasets such as Phoneme perform poorly

under the default configuration as we enable cost-based opti-

mization after reaching a feasible point; thus, DROP spends

a disproportionate time sampling (Fig. 6). To combat this,

we provide an alternate sampling schedule that aggressively

increases the sampling rate to quickly reach aTLB-achieving
state if DROP repeatedly fails to meet the target TLB.

Extending DROP to more efficiently determine if a dataset

is amenable to aggressive sampling is an exciting area of

future work. For instance, recent theoretical results that use

sampling to estimate spectrum, even when the number of

samples are small in comparison to the input dimensional-

ity [66], can be run alongside DROP with minimal alteration.

6.3 Streaming Execution
DROP can be extended to repeated-query scenarios that

occur in a streaming context, where users wish to query

incoming data against historical data. For instance, time

series for similarity search are often generated as via systems

that continuously monitor and obtain data from processes

over a large span of time. Users wish to process this data as

it arrives to identify anomalous or interesting behavior (e.g.,

to identify repetitive seismic activity/earthquakes [85]).

Given a stationary input distribution, users can extract

fixed-length sliding windows from the source and apply

DROP’s transformation over these segments. Should the

data distribution not be stationary over time, DROP can be

be periodically retrained in one of two ways. First, DROP can

use of the wide body of work in changepoint or feature drift

detection [44, 63] to determine when to retrain. Alternatively,

SIGMOD’19, June 2019, Amsterdam, The Netherlands

DROP can maintain a reservoir sample of incoming data [94],

tuned to the specific application, and retrain if the metric of

interest no longer satisfies user-specified constraints. Due

to DROP’s default termination condition, cost-based opti-

mization must be disabled until the metric constraint is once

again achieved to prevent early termination.

7 RELATEDWORK

Dimensionality Reduction DR is a classic operation in

analytics [24, 37, 70, 92] and is well studied in the data-

base [8, 17, 59, 84], data mining [58, 60, 61, 71], statistics and

machine learning [26, 89], and theoretical CS [43, 53] commu-

nities, with techniques for use in pre-processing [39, 47, 103],

indexing [34, 57, 68, 107], and visualizing [73, 86, 95] datasets.

In this paper, inspired by [28], we study the problem of

reducing the dimensionality of increasingly prevalent high-

volume time series data [33]. We extend [28] by considering

PCA, which was previously eschewed due to its cost at scale.

Recent breakthroughs in the theoretical statistics commu-

nity provided new algorithms for PCA that promise substan-

tial scalability improvements without compromising result

quality [25, 26, 29, 45, 53, 74, 93]. Foremost among these

techniques are advanced stochastic methods [25, 89], and

techniques for randomized SVD [45]. While we default to

the latter for use by DROP’s PCA operator, DROP’s modular

architecturemakes it simple to use anymethod in its place, in-

cluding recent systems advances in scalable PCA [32]. To the

best of our knowledge, advanced methods for PCA have not

been empirically compared head-to-head with conventional

dimensionality reduction approaches such as Piecewise Ap-

proximate Averaging [58], especially on real datasets. In

addition, DROP combines these methods with row-level sam-

pling to provide benefits similar to using stochastic methods

for PCA, regardless of the chosen PCA subroutine.

This setting differs from that ofMovingWindow (or Rolling)

PCA in that the these methods assume overlap among the

data samples, whereas here our samples are independently

drawn from the same underlying data distribution [97].

Time Series Indexing While DROP is intended as a gen-

eral purpose DR operator for downstream workloads, there

exists a vast body of literature specific to time series index-

ing for similarity search. While these techniques, such as

iSAX2+ (and related methods) [16, 60, 71, 90], SSH [72], and

Coconut [65] are highly optimized for the bulk-load and

repeated query use case, DROP provides a more flexible,

downstream-operator aware method.

Approximate Query Processing A core problem in DROP

is determining the appropriate sample size for both basis

computation and basis evaluation. To address this challenge,

we turned to the approximate query processing literature.

Inspired by approximate query processing engines [80] as

in online aggregation [50], DROP performs progressive sam-

pling, drawing only as many samples as required to attain a

TLB threshold. Similar to work including [38], this threshold-

based pruning strategy [52] provides data-dependent runtime

as opposed to data-agnostic. In contrast with more general

data dimensionality estimation methods [15], DROP opti-

mizes for TLB. As we illustrated in Section 5, this strategy

confers substantial runtime improvements.

While DROP performs simple uniform sampling, the liter-

ature contains a wealth of techniques for various biased sam-

pling techniques [10, 18], including sampling strategies that

are aware of query histories [40] and storage hierarchies [83].

More sophisticated sampling routines are extremely promis-

ing areas of future work, but their runtime cost must be

weighed against their potential benefit.

Finally, DROP performs online progress estimation to min-

imize the end-to-end analytics cost function. This is analo-

gous to query progress estimation [19, 20, 77] and perfor-

mance prediction [30, 79] in database and data warehouse

settings and has been exploited in approximate query pro-

cessing engines such as BlinkDB [7, 104]. DROP adopts a

relatively simple derivative-based estimator but may benefit

from more sophisticated techniques from the literature.

Scalable Workload-Aware, Complex Analytics DROP

is designed as an operator for analytics dataflow pipelines.

Thus, DROP is as an extension of recent results on inte-

grating complex analytics function including signal process-

ing [23, 42, 56, 82], model training [35, 54, 67], and data

exploration [75, 91, 98, 100, 105] operators into scalable an-

alytics engines. In particular, DROP is especially related to

recent work in integrating workload-aware cost models to

complex subscription forecasting models [36] so as to reduce

subscriber notification overhead.

8 CONCLUSION
Advanced data analytics techniques must scale to rising data

volumes. DR techniques offer a powerful toolkit when pro-

cessing these datasets, with PCA frequently outperforming

popular techniques in exchange for high computational cost.

In response, we propose DROP, a new dimensionality re-

duction optimizer. DROP combines progressive sampling,

progress estimation, and online aggregation to identify high

quality low dimensional bases via PCA without processing

the entire dataset by balancing the runtime of downstream

tasks and achieved dimensionality. Thus, DROP is able to

bridge the gap between quality and efficiency in end-to-end

dimensionality reduction for downstream analytics.

REFERENCES
[1] 2008. SMILE. (2008). http://haifengl.github.io/smile/.

http://haifengl.github.io/smile/

DROP: Optimizing Stochastic Dimensionality
Reduction via Workload-Aware Progressive Sampling SIGMOD’19, June 2019, Amsterdam, The Netherlands

[2] 2015. JTransforms. (2015). https://sites.google.com/site/

piotrwendykier/software/jtransforms.

[3] 2017. DPiSAX. (2017). http://djameledine-yagoubi.info/projects/

DPiSAX/.

[4] 2017. netlib-java. (2017). https://github.com/fommil/netlib-java.

[5] 2018. Intel MKL. (2018). https://software.intel.com/en-us/mkl.

[6] 2018. SciPy. (2018). https://www.scipy.org/.

[7] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner,

Samuel Madden, and Ion Stoica. 2013. BlinkDB: queries with bounded

errors and bounded response times on very large data. In Proceedings of
the 8th ACM European Conference on Computer Systems. ACM, 29–42.

[8] Charu C Aggarwal. 2001. On the effects of dimensionality reduction

on high dimensional similarity search. In PODS.
[9] Peter T. Pham Dan Huang Andrew Y. Ng Andrew L. Maas, Raymond

E. Daly and Christopher Potts. 2011. Learning Word Vectors for Senti-

ment Analysis. In ACL 2011.
[10] Brian Babcock, Surajit Chaudhuri, and Gautam Das. 2003. Dynamic

sample selection for approximate query processing. In Proceedings of
the 2003 ACM SIGMOD international conference on Management of data.
ACM, 539–550.

[11] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin

Rong, and Sahaana Suri. 2017. MacroBase: Prioritizing Attention in

Fast Data. In SIGMOD. ACM.

[12] Peter Bailis, Edward Gan, Kexin Rong, and Sahaana Suri. 2017. Priori-

tizing Attention in Fast Data: Principles and Promise.

[13] Alina Beygelzimer, Sham Kakade, and John Langford. 2006. Cover trees

for nearest neighbor. In Proceedings of the 23rd international conference
on Machine learning. ACM, 97–104.

[14] ChristopherM. Bishop. 2006. Pattern Recognition andMachine Learning
(Information Science and Statistics). Springer-Verlag New York, Inc.,

Secaucus, NJ, USA.

[15] Francesco Camastra. 2003. Data dimensionality estimation methods: a

survey. Pattern recognition 36, 12 (2003), 2945–2954.

[16] Alessandro Camerra, Jin Shieh, Themis Palpanas, Thanawin Rakthan-

manon, and Eamonn Keogh. 2014. Beyond one billion time series:

indexing and mining very large time series collections with iSAX2+.

Knowledge and information systems 39, 1 (2014), 123–151.
[17] Kaushik Chakrabarti and Sharad Mehrotra. 2000. Local dimensionality

reduction: A new approach to indexing high dimensional spaces. In

VLDB.
[18] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. 2007. Opti-

mized stratified sampling for approximate query processing. ACM
Transactions on Database Systems (TODS) 32, 2 (2007), 9.

[19] Surajit Chaudhuri and Vivek Narasayya. 2007. Self-tuning database

systems: a decade of progress. In VLDB. VLDB Endowment.

[20] Surajit Chaudhuri, Vivek Narasayya, and Ravishankar Ramamurthy.

2004. Estimating progress of execution for SQL queries. In SIGMOD.
[21] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony

Bagnall, Abdullah Mueen, and Gustavo Batista. 2015. The UCR Time

Series Classification Archive. (July 2015). www.cs.ucr.edu/~eamonn/

time_series_data/.

[22] Kenneth L Clarkson. 2010. Coresets, sparse greedy approximation, and

the Frank-Wolfe algorithm. ACM Transactions on Algorithms (TALG)
6, 4 (2010), 63.

[23] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav

Shkapenyuk. 2003. Gigascope: a stream database for network applica-

tions. In SIGMOD.
[24] John P Cunningham and Zoubin Ghahramani. 2015. Linear dimen-

sionality reduction: survey, insights, and generalizations. Journal of
Machine Learning Research 16, 1 (2015), 2859–2900.

[25] Christopher De Sa, Bryan He, Ioannis Mitliagkas, Chris Re, and Peng

Xu. 2018. Accelerated Stochastic Power Iteration. In Artificial Intelli-
gence and Statistics.

[26] Christopher De Sa, Kunle Olukotun, and Christopher Ré. 2015. Global

Convergence of Stochastic Gradient Descent for Some Non-convex

Matrix Problems. In ICML.
[27] Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier

Bresson. 2017. FMA: A Dataset For Music Analysis. In 18th Interna-
tional Society for Music Information Retrieval Conference.

[28] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and

Eamonn Keogh. 2008. Querying and mining of time series data: ex-

perimental comparison of representations and distance measures. In

VLDB.
[29] Petros Drineas and Michael W Mahoney. 2016. RandNLA: randomized

numerical linear algebra. Commun. ACM 59, 6 (2016), 80–90.

[30] Jennie Duggan, Ugur Cetintemel, Olga Papaemmanouil, and Eli Upfal.

2011. Performance prediction for concurrent database workloads. In

SIGMOD.
[31] Bradley Efron and Robert Tibshirani. 1997. Improvements on cross-

validation: the 632+ bootstrap method. J. Amer. Statist. Assoc. 92, 438
(1997), 548–560.

[32] Tarek Elgamal, Maysam Yabandeh, Ashraf Aboulnaga,WaleedMustafa,

and Mohamed Hefeeda. 2015. sPCA: Scalable Principal Component

Analysis for Big Data on Distributed Platforms. In SIGMOD.
[33] Philippe Esling and Carlos Agon. 2012. Time-series data mining. ACM

Computing Surveys (CSUR) 45, 1 (2012), 12.
[34] Christos Faloutsos, Mudumbai Ranganathan, and Yannis Manolopou-

los. 1994. Fast subsequence matching in time-series databases.
[35] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. 2012.

Towards a unified architecture for in-RDBMS analytics. In SIGMOD.
[36] Ulrike Fischer, Matthias Böhm, Wolfgang Lehner, and Torben Bach

Pedersen. 2012. Optimizing notifications of subscription-based forecast

queries. In International Conference on Scientific and Statistical Database
Management. Springer, 449–466.

[37] Imola K Fodor. 2002. A survey of dimension reduction techniques. Tech-
nical Report. Lawrence Livermore National Lab., CA (US).

[38] Edward Gan and Peter Bailis. 2017. Scalable Kernel Density Classifica-

tion via Threshold-Based Pruning. In SIGMOD.
[39] Allen Gersho and Robert M Gray. 2012. Vector quantization and signal

compression. Vol. 159. Springer Science & Business Media.

[40] Phillip B Gibbons and Yossi Matias. 1998. New sampling-based sum-

mary statistics for improving approximate query answers. In SIGMOD.
[41] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity

search in high dimensions via hashing. In VLDB, Vol. 99. 518–529.
[42] Lewis Girod et al. 2006. Wavescope: a signal-oriented data stream

management system. In ICDE.
[43] Navin Goyal, Santosh Vempala, and Ying Xiao. 2014. Fourier PCA and

Robust Tensor Decomposition. In STOC.
[44] Valery Guralnik and Jaideep Srivastava. 1999. Event detection from

time series data. In Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 33–42.

[45] NathanHalko, Per-GunnarMartinsson, and Joel A Tropp. 2011. Finding

structure with randomness: Probabilistic algorithms for constructing

approximate matrix decompositions. SIAM review 53, 2 (2011), 217–

288.

[46] Sam Halliday and BjÃÿrn-Ove Heimsund. 2008. matrix-toolkits-java.

(2008). https://github.com/fommil/matrix-toolkits-java.

[47] Jiawei Han, Jian Pei, andMicheline Kamber. 2011. Datamining: concepts
and techniques. Elsevier.

[48] Zhen He, Byung Suk Lee, and Robert Snapp. 2005. Self-tuning cost

modeling of user-defined functions in an object-relational DBMS. ACM
Transactions on Database Systems (TODS) (2005).

https://sites.google.com/site/piotrwendykier/software/jtransforms
https://sites.google.com/site/piotrwendykier/software/jtransforms
http://djameledine-yagoubi.info/projects/DPiSAX/
http://djameledine-yagoubi.info/projects/DPiSAX/
https://github.com/fommil/netlib-java
https://software.intel.com/en-us/mkl
https://www.scipy.org/
www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/
https://github.com/fommil/matrix-toolkits-java

SIGMOD’19, June 2019, Amsterdam, The Netherlands

[49] Zhen He, Byung S Lee, and Robert R Snapp. 2004. Self-tuning UDF

cost modeling using the memory-limited quadtree. In International
Conference on Extending Database Technology. Springer, 513–531.

[50] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. 1997. Online

aggregation. In SIGMOD.
[51] IDC. 2014. The Digital Universe of Opportunities: Rich Data and the

Increasing Value of the Internet of Things. (2014). http://www.emc.

com/leadership/digital-universe/.

[52] Ihab F Ilyas, George Beskales, andMohamed A Soliman. 2008. A survey

of top-k query processing techniques in relational database systems.

ACM Computing Surveys (CSUR) 40, 4 (2008), 11.
[53] Prateek Jain, Chi Jin, Sham M Kakade, Praneeth Netrapalli, and Aaron

Sidford. 2016. Streaming PCA: Matching Matrix Bernstein and Near-

Optimal Finite Sample Guarantees for Oja’s Algorithm. In COLT.
[54] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher

Jermaine, and Peter J Haas. 2008. MCDB: a Monte Carlo approach to

managing uncertain data. In SIGMOD.
[55] Ian T Jolliffe. 1986. Principal component analysis and factor analysis.

In Principal component analysis. Springer, 115–128.
[56] Yannis Katsis, Yoav Freund, and Yannis Papakonstantinou. 2015. Com-

bining Databases and Signal Processing in Plato.. In CIDR.
[57] Eamonn Keogh. 2006. A decade of progress in indexing and mining

large time series databases. In VLDB.
[58] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad

Mehrotra. 2001. Dimensionality reduction for fast similarity search in

large time series databases. Knowledge and information Systems 3, 3
(2001), 263–286.

[59] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad

Mehrotra. 2001. Locally adaptive dimensionality reduction for indexing

large time series databases. ACM Sigmod Record 30, 2 (2001), 151–162.

[60] Eamonn Keogh, Jessica Lin, and Ada Fu. 2005. Hot sax: Efficiently

finding the most unusual time series subsequence. In ICDM.

[61] Eamonn Keogh and Michael Pazzani. 2000. A simple dimensionality

reduction technique for fast similarity search in large time series

databases. Knowledge Discovery and Data Mining. Current Issues and
New Applications (2000), 122–133.

[62] Eamonn J Keogh and Michael J Pazzani. 1999. Scaling up dynamic

time warping to massive datasets. In European Conference on Principles
of Data Mining and Knowledge Discovery. Springer, 1–11.

[63] Rebecca Killick, Paul Fearnhead, and Idris A Eckley. 2012. Optimal

detection of changepoints with a linear computational cost. J. Amer.
Statist. Assoc. 107, 500 (2012), 1590–1598.

[64] Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, andMichael Jordan.

2012. The big data bootstrap. arXiv preprint arXiv:1206.6415 (2012).
[65] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis

Palpanas. 2018. Coconut: A scalable bottom-up approach for building

data series indexes. Proceedings of the VLDB Endowment 11, 6 (2018),
677–690.

[66] W. Kong and G. Valiant. 2017. Spectrum Estimation from Samples.

Annals of Statistics 45, 5 (2017), 2218–2247.
[67] Tim Kraska, Ameet Talwalkar, John C Duchi, Rean Griffith, Michael J

Franklin, and Michael I Jordan. 2013. MLbase: A Distributed Machine-

learning System.. In CIDR.
[68] Hans-Peter Kriegel, Peer Kröger, and Matthias Renz. 2010. Techniques

for efficiently searching in spatial, temporal, spatio-temporal, and

multimedia databases. In ICDE. IEEE.
[69] Yann LeCun. 1998. The MNIST database of handwritten digits.

http://yann. lecun.com/exdb/mnist/ (1998).
[70] John A Lee and Michel Verleysen. 2007. Nonlinear dimensionality

reduction. Springer Science & Business Media.

[71] Jessica Lin, Eamonn Keogh, Wei Li, and Stefano Lonardi. 2007. Expe-

riencing SAX: a novel symbolic representation of time series. Data

Mining and knowledge discovery 15, 2 (2007), 107.

[72] Chen Luo and Anshumali Shrivastava. 2017. SSH (Sketch, Shingle,

& Hash) for Indexing Massive-Scale Time Series. In NIPS 2016 Time
Series Workshop. 38–58.

[73] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data

using t-SNE. Journal of Machine Learning Research 9, Nov (2008),

2579–2605.

[74] Michael W Mahoney et al. 2011. Randomized algorithms for matrices

and data. Foundations and Trends® in Machine Learning 3, 2 (2011),

123–224.

[75] Alexandra Meliou, Sudeepa Roy, and Dan Suciu. 2014. Causality and

explanations in databases. In VLDB.
[76] Renqiang Min, David A Stanley, Zineng Yuan, Anthony Bonner, and

Zhaolei Zhang. 2009. A deep non-linear feature mapping for large-

margin knn classification. In Data Mining, 2009. ICDM’09. Ninth IEEE
International Conference on. IEEE, 357–366.

[77] Chaitanya Mishra and Nick Koudas. 2007. A lightweight online frame-

work for query progress indicators. In ICDE.
[78] Michael Mitzenmacher and Eli Upfal. 2017. Probability and Computing:

Randomization and Probabilistic Techniques in Algorithms and Data
Analysis. Cambridge university press.

[79] Kristi Morton, Abram Friesen, Magdalena Balazinska, and Dan Gross-

man. 2010. Estimating the progress of MapReduce pipelines. In ICDE.
[80] Barzan Mozafari. 2017. Approximate query engines: Commercial

challenges and research opportunities. In SIGMOD.
[81] Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-Top: Simple and

Effective Postprocessing for Word Representations. In International
Conference on Learning Representations.

[82] Milos Nikolic, Badrish Chandramouli, and Jonathan Goldstein. 2017.

Enabling Signal Processing over Data Streams. In SIGMOD. ACM.

[83] Frank Olken and Doron Rotem. 1995. Random sampling from

databases: a survey. Statistics and Computing 5, 1 (1995), 25–42.

[84] KV Ravi Kanth, Divyakant Agrawal, and Ambuj Singh. 1998. Dimen-

sionality reduction for similarity searching in dynamic databases. In

SIGMOD.
[85] Kexin Rong, Clara E Yoon, Karianne J Bergen, Hashem Elezabi, Peter

Bailis, Philip Levis, and Gregory C Beroza. 2018. Locality-Sensitive

Hashing for Earthquake Detection: A Case Study Scaling Data-Driven

Science. Proceedings of the VLDB Endowment (2018).
[86] Sam T Roweis and Lawrence K Saul. 2000. Nonlinear dimensionality

reduction by locally linear embedding. Science 290, 5500 (2000), 2323–
2326.

[87] Ruslan Salakhutdinov and Geoff Hinton. 2007. Learning a nonlinear

embedding by preserving class neighbourhood structure. In Artificial
Intelligence and Statistics. 412–419.

[88] Hanan Samet. 2005. Foundations of Multidimensional and Metric Data
Structures (The Morgan Kaufmann Series in Computer Graphics and
Geometric Modeling). Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA.

[89] Ohad Shamir. 2015. A stochastic PCA and SVD algorithm with an

exponential convergence rate. In ICML. 144–152.
[90] Jin Shieh and Eamonn Keogh. 2008. i SAX: indexing and mining

terabyte sized time series. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM,

623–631.

[91] Tarique Siddiqui, Albert Kim, John Lee, Karrie Karahalios, and Aditya

Parameswaran. 2016. Effortless data exploration with zenvisage: an

expressive and interactive visual analytics system. In VLDB.
[92] Lloyd N Trefethen and David Bau III. 1997. Numerical linear algebra.

Vol. 50. Siam.

[93] Madeleine Udell, Corinne Horn, Reza Zadeh, Stephen Boyd, et al. 2016.

Generalized low rank models. Foundations and Trends® in Machine

http://www.emc.com/leadership/digital-universe/
http://www.emc.com/leadership/digital-universe/

DROP: Optimizing Stochastic Dimensionality
Reduction via Workload-Aware Progressive Sampling SIGMOD’19, June 2019, Amsterdam, The Netherlands

Learning 9, 1 (2016), 1–118.

[94] Jeffrey S Vitter. 1985. Random sampling with a reservoir. ACM Trans-
actions on Mathematical Software (TOMS) 11, 1 (1985), 37–57.

[95] Michail Vlachos, Carlotta Domeniconi, Dimitrios Gunopulos, George

Kollios, and Nick Koudas. 2002. Non-linear dimensionality reduction

techniques for classification and visualization. In KDD.
[96] M.P. Wand and M.C. Jones. 1994. Kernel Smoothing. Taylor & Francis.

https://books.google.com/books?id=GTOOi5yE008C

[97] Xun Wang, Uwe Kruger, and George W Irwin. 2005. Process monitor-

ing approach using fast moving window PCA. Industrial & Engineering
Chemistry Research (2005).

[98] Abdul Wasay, Xinding Wei, Niv Dayan, and Stratos Idreos. 2017. Data

Canopy: Accelerating Exploratory Statistical Analysis. In SIGMOD.
[99] Kilian QWeinberger, John Blitzer, and Lawrence K Saul. 2006. Distance

metric learning for large margin nearest neighbor classification. In

Advances in neural information processing systems. 1473–1480.
[100] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining away

outliers in aggregate queries. In VLDB.
[101] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a

novel image dataset for benchmarking machine learning algorithms.

arXiv preprint arXiv:1708.07747 (2017).

[102] Taro Yamane. 1973. Statistics: An introductory analysis. (1973).

[103] Jieping Ye. 2004. Generalized low rank approximations of matrices.

In ICML.
[104] Kai Zeng, Shi Gao, Barzan Mozafari, and Carlo Zaniolo. 2014. The

analytical bootstrap: a new method for fast error estimation in approx-

imate query processing. In SIGMOD.
[105] E. Zgraggen, A. Galakatos, A. Crotty, J. D. Fekete, and T. Kraska. 2016.

How Progressive Visualizations Affect Exploratory Analysis. IEEE
Transactions on Visualization and Computer Graphics (2016).

[106] Ning Zhang, Peter J Haas, Vanja Josifovski, Guy M Lohman, and

Chun Zhang. 2005. Statistical learning techniques for costing XML

queries. In Proceedings of the 31st international conference on Very large
data bases.

[107] Yunyue Zhu andDennis Shasha. 2003. Warping indexeswith envelope

transforms for query by humming. In SIGMOD.

APPENDIX
A AUGMENTED RESULTS
In this section, we provide additional information to augment

results provided in our time series case study. Table 3 displays

the proportion of data required to attain a given TLB when

using a PCA transformation where output dimension is equal

to input dimension. Table 1 illustrates the output dimension

required for each algorithm (PAA, FFT, and PCA) to attain

a target TLB. Table 2 illustrates the different running times

of each algorithm (PAA, FFT, and PCA), and how sampling

using the proportion from Table 3 for TLB = 0.99 can help

bridge the time gap between SVD and other techniques.

Table 1: Normalized lower dimension for target TLB
across DR techniques. PCA admits lower dimension
for most UCR time series datasets.

TLB:0.75 TLB:0.99
Dataset (dimension) PAA FFT PCA PAA FFT PCA
ElectricDevices (96) 0.126 0.094 0.032 0.594 0.212 0.164

FordA (500) 0.138 0.098 0.038 0.636 0.214 0.17

FordB (500) 0.018 0.029 0.009 0.290 0.177 0.035

MALLAT (1024) 0.084 0.068 0.057 0.898 0.837 0.522

Phoneme (1024) 0.004 0.026 0.001 0.049 0.035 0.034

StarLightCurves (1024) 0.015 0.028 0.019 0.037 0.086 0.062

UWGLAll (945) 0.078 0.065 0.026 0.822 0.736 0.322

wafer (152) 0.014 0.030 0.007 0.103 0.049 0.037

yoga (426) 0.375 0.375 0.281 0.812 0.822 0.770

Table 2: Runtime (in ms) of 3 DR techniques. PCA is
slowest, and can be over 56× slower than PAA. Run-
ning SVD over a sample can bridge this gap.

Dataset PAA (×SVD) FFT SVD Sampling
ElectricDevices 3 (9.8×) 18 33 6

FordA 7 (19×) 38 137 8

FordB 7 (18×) 32 121 7

MALLAT 7 (37.6×) 35 278 5

Phoneme 5 (56.2×) 29 281 164

StarLightCurves 19 (24.1×) 120 457 5

UWGLAll 7 (43.5×) 56 287 8

Wafer 4 (6.1×) 13 22 5

Yoga 4 (21.2×) 29 81 8

Table 3: A small proportion of data is needed to obtain
a TLB-preserving transform with full PCA (output =
input dimension).

TLB
Dataset (number of datapoints) 0.75 0.90 0.99
ElectricDevices (16637) 0.0026 0.0043 0.0088

FordA (4921) 0.0054 0.0114 0.0198

FordB (4446) 0.008 0.0146 0.0248

MALLAT (2400) 0.0031 0.009 0.0197

Phoneme (2110) 0.0547 0.1346 0.3875

StarLightCurves (9236) 0.001 0.0011 0.0039

UWGLAll (4478) 0.0025 0.0056 0.024

wafer (7164) 0.001 0.0032 0.0097

yoga (3300) 0.0017 0.0028 0.0096

https://books.google.com/books?id=GTOOi5yE008C

	1 Introduction
	2 Dimensionality Reduction for End-to-End Workloads
	2.1 Dimensionality Reduction
	2.2 DR redfor Repeated-Query Workloads
	2.3 Case Study: Speed vs. Quality

	3 Sample-Based Computation
	3.1 Feasibility of Sampling
	3.2 Incremental, Progressive Sampling

	4 DROP: Workload Optimization
	4.1 Workload-Aware DR
	4.2 DROP Architecture
	4.3 Progressive Sampling
	4.4 Evaluating Transformations
	4.5 Progress Estimation
	4.6 Cost-Based Optimization
	4.7 Choice of PCA Subroutine
	4.8 Work Reuse

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 DROP Performance
	5.3 Lesion Study
	5.4 Scalability
	5.5 Beyond the Time Series Case Study
	5.6 PCA Subroutine Evaluation

	6 Extensions
	6.1 Generalization
	6.2 Data-Aware Sampling
	6.3 Streaming Execution

	7 Related Work
	8 Conclusion
	References
	A Augmented Results

