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Abstract

Researchers have proposed hardware, software, and statistical optimizations to
improve the computational performance of deep learning. While some of these
optimizations keep model semantics exactly the same (e.g., using a NVIDIA K80
GPU vs. a P100 GPU), many also modify the semantics of the training procedure
(e.g., reduced precision) and impact the final model’s validation accuracy. Due to
a lack of standard evaluation criteria that considers these trade-offs, it is difficult
to compare optimizations. DAWNBENCH and MLPERF are benchmarks that use
time-to-accuracy to compare the behavior of different techniques that improve deep
learning computational performance. In this work, we investigate time-to-accuracy
and analyze DAWNBENCH entries, including recent rolling submissions. We
show that time-to-accuracy is stable and provide evidence that models optimized
for time-to-accuracy generalize about as well as pre-trained models. Additionally,
we find that the best entries, which can train a model on ImageNet to 93% top-5
accuracy in under 19 minutes, severely underutilize modern hardware.

1 Introduction

Optimizations in deep learning, including advances in software systems [1, 2, 3, 4, 5], hardware [6, 7,
8, 9], communication methods [10, 11, 12, 13], and training algorithms [14, 15, 16, 17, 18, 19, 20],
are difficult to compare because of a lack of a standard evaluation criteria. Some optimizations
preserve the statistical efficiency (number of iterations) of the underlying algorithm and model (e.g.,
replacing an NVIDIA K80 GPU with a P100 GPU can give a 4× speedup [21]) and are thus easy
to evaluate. However, many optimizations sacrifice statistical efficiency for hardware efficiency
(time needed for each iteration). On the hardware side, large minibatch training [15, 8], and reduced
precision [3, 10, 22] can help better use hardware units and speed up “proxy” metrics such as time to
process an epoch, but can prevent models from converging to the same accuracy. On the statistical
side, techniques such as the Adam optimizer [17] were shown to accelerate the minimization of
training loss (“time-to-training-loss”) but can lead to models with lower final accuracy [23]. Proxy
metrics like time-per-epoch or time-to-training-loss do not reason about both runtime and accuracy,
making it hard to evaluate different optimizations.

To rectify this lack of standard evaluation criteria, DAWNBENCH2 and MLPERF3, two recent bench-
marks targeting computational performance, use end-to-end training time to a specified validation
accuracy level (called time-to-accuracy, or TTA) as their main metric. While several papers have used
TTA for evaluation [24, 25, 15, 26, 27, 28], DAWNBENCH was the first multi-entrant benchmark to
standardize TTA as “an objective means of normalizing across differences in computation frameworks,
hardware, optimization algorithms, hyperparameter settings, and other factors that affect real-world
performance” [29]. During the competition, Google, Intel, fast.ai, and others submitted optimized
implementations that achieved a two orders of magnitude improvement in training time for ImageNet
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and an order of magnitude improvement in cost over the initial seed entries, which were created from
multi-GPU examples in MXNet [30] and TensorFlow [1]. Building on DAWNBENCH’s success,
MLPERF [31] has also adopted TTA as its primary metric, while expanding the set of tasks evaluated.

Despite the improvements seen in DAWNBENCH and the now widespread use of TTA, many
questions remain about TTA as a metric. For example: is TTA stable? Do models optimized for TTA
still generalize well? And how efficient are these models, i.e., how close are we to fully using modern
hardware, given all the work that has gone into preparing entries for these competitions?

We analyze TTA using the latest DAWNBENCH submissions, and find that:

• For image classification tasks, TTA is stable with a low coefficient of variation, i.e., multiple
runs of entries reach the target accuracy in nearly the same time across runs. However, certain
optimizations, such as cyclic learning rates [32] and progressive resizing [33, 34] increase the
coefficient of variance, and sometimes prevent convergence to the same accuracy.

• Models tuned for TTA generalize as well as comparable pre-trained models to unseen data.

• Hardware is underutilized by the top submissions. Our experiments show that both hardware and
statistical efficiency for deep learning workloads do not scale well, with up to a 2× gap from perfect
linear scaling, and that entries underutilize modern hardware by up to 10× (§ 4). Specifically,
hardware utilization for entries that run a ResNet-50 model on NVIDIA’s V100 GPUs is low due
to memory-bound layers, high communication overhead, and poor utilization of Tensor Cores.

2 Benchmark Summary

Overview. DAWNBENCH evaluates the time and cost (in USD) of image classification on ImageNet
and CIFAR10, and question answering on SQuAD. DAWNBENCH had four metrics: training time to
a specified validation accuracy, cost of training to that accuracy for submissions that use hardware in
the public cloud, average latency of performing inference on a single item (image or question), and
average cost of inference for 10,000 items.

Entries were required to submit a description of their submission and validation accuracy after every
epoch. While source code was optional, every submission for image classification included a link
to all code needed to reproduce runs, assuming access to the appropriate hardware. For question
answering on SQuAD, some submissions did not include code until well after the DAWNBENCH
deadline; because of this and the general lack of submissions, we focus exclusively on ImageNet and
CIFAR10 training submissions in this paper.

Summary of Entries. The entries spanned a range of hardware platforms, software platforms, and
models. We summarize the entries in Table 1. Notably, the entries spanned GPUs, TPUs, and CPUs
on the hardware side, TensorFlow [1], PyTorch [35], and Caffe [5] on the software side, and used
both standard and learned model architectures.

ImageNet. DAWNBENCH set a top-5 accuracy target of 93% for ImageNet. The fastest entry overall
trained ResNet-50 on 16 multi-GPU servers (with 8 V100 GPUs) in 18 minutes and 6 seconds, which
is faster than many published large-scale results [15, 24, 36, 37]. While faster results exist, they
either do not achieve the same high level of accuracy [25] or use a private on-premise cluster [27]
with faster network interface cards compared to the public cloud. The fastest TPU submission trained
ResNet-50 on half of a TPUv2 pod in 30 minutes, and the fastest CPU submission trained ResNet-50
on 128 machines with 36 cores each in 3 hours and 26 minutes. The cheapest entry trained ResNet-50
on 4 multi-GPU (with 8 V100 GPUs) servers on Amazon Web Services for $48.48, followed by an
AmoebaNet [38] model that trained for $49.30 on a Google Cloud TPU.

CIFAR10. DAWNBENCH set a top-1 accuracy target of 94% for CIFAR10. The fastest entry trained
a custom Wide ResNet [39] architecture in less than 3 minutes on 8 NVIDIA V100 GPUs. The
cheapest entry trained the same custom Wide ResNet for $0.26 on 1 NVIDIA V100 GPU.

Achieving these fast TTAs for both ImageNet and CIFAR10 come from a range of optimizations,
including mixed-precision training [40], large minibatch training [15], progressive resizing of im-
ages [33, 34], novel model architectures [38], and faster hardware [21, 8].
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Hardware # of entries
(ImageNet)

# of entries
(CIFAR10)

GPU 6 6
TPU 6 0
CPU 3 0

Framework # of entries
(ImageNet)

# of entries
(CIFAR10)

TensorFlow 8 2
PyTorch 4 4

Caffe 3 0
Table 1: Overview of hardware platform and software framework for each DAWNBench submission.

Entry name Coeff. of variation Frac. of runs
Wide ResNet-34, 8xV100 3.8% 50%
Wide ResNet-34, 1xV100 2.9% 70%
ResNet-18, 1xV100 1.4% 90%

Table 2: Coefficient of variation and fraction of runs that reached the desired target accuracy of the top single
server blade entries for image classification on CIFAR10 (10 runs).

3 Analysis of Time-to-Accuracy

We evaluate the TTA metric using publicly available code from DAWNBENCH’s top submissions.
We show that: a) TTA is generally stable with a low coefficient of variation over several runs with
fixed hyperparameters, b) models optimized for TTA generalize as well as standard models.

3.1 Variability of time-to-accuracy

We measured the stability of TTA by running several of the top training time entries for CIFAR10
and ImageNet several times, with the same hyperparameters. We use the coefficient of variation,
defined as the ratio of the standard deviation to the mean, as a measure of stability. We do not
use the same random seed, so the data may be traversed in different orders, possibly leading to
convergence to different local minima. We note that model training does not contain any data-
dependent optimizations, which means time-per-epoch is stable. As shown in Table 3, the coefficient
of variation of TTA is at most 4.5% for entries that do not use novel statistical optimizations, but
12.2% for all entries. This indicates that TTA is largely stable to the randomness inherent to training
deep networks, but that some statistical optimizations can change the number of iterations needed to
reach the target accuracy, thus increasing variance.

In addition, several entries failed to consistently achieve the given accuracy threshold. In particular,
the cyclic learning rates used by the top two CIFAR10 entries appear to make validation convergence
less robust [32]. Cyclic learning rates prevent validation convergence on ImageNet and were not
included in any top submissions [41].

3.2 Generalization of Optimized Models

We scraped and labeled a set of 2,864 images from Flickr. The images were scraped based on the
WordNet keywords associated with each class in the ImageNet dataset. The top five images based on
relevance were shown to a human labeler and labeled correct or incorrect. To ensure no overlap with
ImageNet, only images posted after January 1st, 2014 were used. While the images only spanned
886 (out of 1000) classes, we believe they reflect a reasonable distribution.

For both the pre-trained ResNet-50 (PyTorch provided) and DAWNBENCH entries optimized for
TTA, we computed the top-5 accuracy on the Flickr images. The results are summarized in Table 4. As
shown, the models optimized for TTA achieve nearly the same accuracy or higher than the pre-trained
ResNet-50, indicating that optimizing for TTA does not sacrifice generalization performance.

4 Hardware Utilization and Scaling

In this section, we analyze how well submissions scale to multiple servers. We also perform a
roofline analysis [42] that shows that despite near state-of-the-art performance, many submissions
still severely underutilize the available hardware, and subsequently analyze why some of these entries
underutilize the NVIDIA V100 GPU.
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Entry name Coeff. of
variation

Frac.
of runs

ResNet-50, 8xV100 5.3% 80%
ResNet-50, 32xV100 11.2% 60%
ResNet-50, 64xV100 9.2% 100%
ResNet-50, 128xV100 12.2% 100%

Entry name Coeff. of
variation

Frac.
of runs

ResNet-50, 1xTPU 4.5% 100%
AmoebaNet-D, 1xTPU 2.3% 100%
ResNet-50, 1/2 TPU Pod 2.5% 100%

Table 3: Coefficient of variation and fraction of runs that reached the target accuracy of the top entries for image
classification on ImageNet (5 runs). We also include the coefficient for 4 runs of 1/2 a TPU Pod for ResNet-50.

Model Accuracy (unseen data)
ResNet-18 (p) 89.5%
ResNet-50 (p) 92.2%
ResNet-152 (p) 93.2%
ResNet-50, 1xTPU 92.6%

Model Accuracy (unseen data)
ResNet-50, 8xV100 91.9%
ResNet-50, 32xV100 91.3%
ResNet-50, 64xV100 91.5%
ResNet-50, 128xV100 91.3%
AmoebaNet-D, 1xTPU 91.3%

Table 4: Performance of pre-trained models and models optimized for TTA on unseen data. The models
optimized for TTA perform nearly as well as or better than the pre-trained model. (p) refers to pretrained. We
expect the pretrained ResNet-18 and ResNet-152 to be lower and upper bounds on generalization performance.
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(a) AmoebaNet on TPUs, TPU pod.
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(b) ResNet-50, 8-V100 server.
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(c) ResNet-50, 8-V100 servers.
Figure 1: Speedup with respect to a single worker vs. number of workers for ImageNet entries, one on a TPU
pod, another among V100 GPUs on a single server with 8 V100 GPUs, and a third on multiple 8-V100 servers.
As the number of workers increases, the scaling performance drops off (over 2× gap from ideal scaling).
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(a) AmoebaNet on TPUs, TPU pod.
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(b) ResNet-50, 8-V100 server.
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(c) ResNet-50, 8-V100 servers.

Figure 2: Percentage of time spent communicating vs. worker count for three ImageNet models, one on a TPU
pod, another among V100 GPUs on a 8-V100 server, and a third on multiple 8-V100 servers. Within a 8-V100
server, communication overhead is low (17.82%), but cross-server communication is expensive (53%).

4.1 Distributed Training

Distributed training has become common because of advances in large minibatch training [15], where
learning rates are slowly increased over the course of training, and learning rates are scaled linearly
with the global minibatch size. Large minibatch training enables much faster time-per-epoch when
parallelized while achieving similar accuracies to small minibatches.

DAWNBENCH entries used minibatch sizes an order of magnitude larger than the minibatch size
used in the original ResNet paper [43] for distributed training. Figure 1b shows the speedups when
scaling the training of a ResNet-50 model on up to 8 GPUs in a 8-V100 server. Both time-per-epoch
and TTA for the ResNet-50 model scale much better on the 8-V100 server, partially because of
less communication overhead at high worker counts (Figure 2b). Figure 1c shows the speedups
when scaling ResNet-50 training up to 16 servers which have 8 V100 GPUs each. Time-per-epoch
and TTA scale worse than within a 8-V100 server. Figure 2 shows the communication overhead as
the number of workers increase; we see that within a 8-V100 server, communication overhead is
much lower (17.82%) compared to across servers (53%), since NVIDIA’s nvlink interconnect has far
higher bandwidth than the 25Gbps provided by Amazon EC2 across p3.16xlarge instances. For
cross-machine communication, we observed that the peak network bandwidth used (5.95 Gbps) is
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Figure 3: Roofline models for the various entries submitted to DAWNBENCH. All entries under-utilize the
hardware resources, by up to 10×. The right figure is a zoomed-in version of the box in the left figure.

actually significantly lower than the advertised bandwidth, indicating an inefficiency in the framework
and/or cloud infrastructure as well.

While several DAWNBENCH entries corroborated the original findings that used ResNet-50 [15],
AmoebaNet, a learned architecture from Google, also used large minibatches to utilize multiple TPUs.
However, we found that the time-per-epoch does not scale linearly with the number of workers for the
AmoebaNet model in the TPU pod, which consists of 64 TPUs. We show the speedup relative to one
worker for two different accuracy thresholds, as well as the average time to compute a single epoch,
for different numbers of workers for an AmoebaNet model trained in a TPU Pod on the ImageNet
dataset in Figure 1a. We see that TTA scales even worse, since a greater number of epochs are needed
to converge to the same accuracy target.

Discussion. These results suggest that despite the work in scaling image classification to multiple
nodes [15, 28], communication remains a bottleneck, for large machine counts and for certain models
in public cloud deployments. The work by Goyal et al. [15] shows far better scaling than we have
observed in the DAWNBENCH entries; we believe this is due to the fact that the results presented in
this paper use faster V100 GPUs (compared to P100 GPUs), and slower network interfaces (up to 25
Gigabits/second on AWS compared to 50 Gigabits/second in a private Facebook cluster).

To address this, highly optimized communication libraries like Horovod [44] have been developed.
Other work [45] has explored techniques to reduce the amount of data sent over the network. However,
these techniques need to be evaluated on more models and in more hardware settings for widespread
adoption. Integration into widely-used deep learning frameworks like PyTorch and TensorFlow would
also help with usability. Additionally, exploring parallelization schemes other than data parallelism
that do not require all-to-all communication patterns among workers could be helpful.

4.2 Single-worker analysis

Roofline Analysis. To further study the hardware performance of various entries, we use the
roofline model [42], which can highlight causes of performance bottlenecks. The roofline model
plots computational throughput (in floating point operations per second) against the operational
intensity of the application (number of floating-point operations performed per DRAM byte accessed).
Applications with high operational intensity are “compute-bound” (the flat line in Figure 3) and
bottlenecked on the device’s computation units, while applications with low operational intensity are
“memory-bound” (the slanting line in Figure 3). Each point in Figure 3 represents a DAWNBENCH
entry. For entries which use progressive image resizing [33, 34], where different image sizes are
used through training, we show each image size used. Operational intensities and throughputs are
approximated by instrumenting model code, and using command-line utilities like nvprof.

We observe that all entries severely underutilize the available compute resources — each plotted point
achieves a throughput significantly lower than the peak device throughput. All analyzed CIFAR10
models operate in low operational intensity regimes, partially because of the small input size (32×32)
and small associated operations like matrix multiplications and convolutions. The ImageNet models
do a better job of utilizing the underlying hardware, but still are as much as a factor of 10× away
from peak device throughput for the GPUs. The TPUs are much better utilized, with a utilization of
45% for the ResNet-50 model, and 31% for the AmoebaNet model (not pictured in Figure 3).
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Figure 4: Left: CDF of tensor core utilization for ResNet50 model trained with fp16 precision. About 85% of
time is spent on kernels that don’t use the NVIDIA Tensor Cores at all, and no kernel achieves full utilization.
Right: CDF of per-kernel throughput for ResNet50 models trained with fp32 precision. The CDF is computed
using percentage of time spent executing each GPU kernel. A standard ResNet-50 model spends ~40% time in
low-throughput kernels (< 6 TFlops). Removing BatchNorm from the ResNet50 model decreases the percentage
of time in low-throughput kernels to ~30%; removing the ReLU layers decreases this further.

Single-V100 PyTorch entries. To investigate the underutilization on the V100 GPUs, we measure
the Tensor Core utilization of each GPU kernel and fp32 throughput in PyTorch’s implementation of
ResNet-50. The V100s are advertised to deliver 15.7 Teraflops of fp32 arithmetic, while the Tensor
Cores are advertised to deliver 125 Teraflops of half-precision arithmetic [46]. Figure 4a shows that
the GPU kernels that take the majority of the fp16 precision time use the Tensor Cores poorly, with a
time-averaged Tensor Core utilization of 0.71 (on a scale of 1-10 as reported by nvprof).

Training the same model even with standard fp32 precision only achieves a throughput of 7.6 Tflops
(compared to advertised device throughput of 15.7 Tflops). We observe that this is largely due to
memory-bound kernels like batch norm and ReLU, that take a significant percentage of total runtime.
This is illustrated in Figure 4b, which show that a non-trivial number of kernels underutilize the GPU,
and that removing batch norm and ReLU layers improves fp32 throughput by about 20%.

Discussion. Compilers for deep learning like TVM [47] and XLA [48] try to automatically generate
code given a higher-level description of the deep learning computation being performed. Optimiza-
tions like loop and kernel fusion can help reduce the impact of memory-bound kernels by reducing
the number of DRAM reads and writes made. For example, consider a program that performs the
forward pass of a batch norm followed by the forward pass of a ReLU. Naively, this code could be
written as two for loops – one to compute the batch norm, and another to compute the ReLU. If y is
the output of the batch norm, and z is the output of the ReLU, then a DRAM write is performed for
every y[i] and z[i], and a DRAM read of y[i] is performed to compute every z[i].

However, for training, we could optimize this to save on DRAM reads of y[i] by writing the
intermediate result to a local variable instead. For inference, we could optimize away the writes to
y[i] entirely (since the intermediate y[i] are not needed for a subsequent backward pass). Saving on
DRAM reads and writes is highly useful on GPUs since compute throughput is roughly two orders of
magnitude faster than DRAM read and write throughput.

In addition, we believe that co-design of model architectures with modern hardware could be useful
as well. For example, as we have shown, the batch norm and ReLU operations are memory-bound.
It may be possible to develop alternatives to these operations that are less memory-bound, but still
provide similar statistical effects, resulting in faster end-to-end training.

5 Conclusion

By analyzing the top DAWNBENCH entries, we evaluated both TTA as a metric for measuring
deep learning system performance on image classification, and the many optimizations that led to
considerable speedups for ImageNet and CIFAR10 training time. Reproducing and repeating runs
of the top entries revealed TTA as a stable metric with a low coefficient of variation despite the
randomness in training. Even though TTA is sensitive to the threshold, the high accuracy target
prevented optimizations that hurt final validation convergence and generalization, but provided room
for hardware, software, and statistical optimizations. All the entries, however, still underutilized the
available compute resources, leaving opportunities for further research.
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