
Bolt-on Causal Consistency

Peter Bailis†, Ali Ghodsi†,‡, Joseph M. Hellerstein†, Ion Stoica†

† UC Berkeley ‡ KTH/Royal Institute of Technology

Shallow men believe in luck. . . Strong men believe in cause and
effect.—Ralph Waldo Emerson

ABSTRACT
We consider the problem of separating consistency-related safety
properties from availability and durability in distributed data stores
via the application of a “bolt-on” shim layer that upgrades the safety
of an underlying general-purpose data store. This shim provides the
same consistency guarantees atop a wide range of widely deployed
but often inflexible stores. As causal consistency is one of the
strongest consistency models that remain available during system
partitions, we develop a shim layer that upgrades eventually consis-
tent stores to provide convergent causal consistency. Accordingly,
we leverage widely deployed eventually consistent infrastructure as
a common substrate for providing causal guarantees. We describe
algorithms and shim implementations that are suitable for a large
class of application-level causality relationships and evaluate our
techniques using an existing, production-ready data store and with
real-world explicit causality relationships.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed databases

Keywords
causal consistency, eventual consistency, separation of concerns

1 Introduction
Choosing an appropriate consistency model is difficult. Strong
data consistency models are easy to reason about and simplify dis-
tributed systems programming. However, in the presence of parti-
tions between replicas, designers face a choice between strong data
consistency and availability [27]; the many services that require
“always on” operation must sacrifice “strong” consistency [17, 22,
34, 47]. Without partitions, there is a fundamental trade-off be-
tween latency and consistency: intuitively, weaker consistency mod-
els require “less coordination,” lowering operation latency [2, 8],
which is lower-bounded by the laws of physics [21]. As systems
continue to scale and are geo-replicated, designers must face these
consistency trade-offs head-on.

Modern data stores typically provide some form of eventual con-
sistency, which guarantees that eventually—in the absence of new
writes, at some future time unknown in advance—all replicas of
each data item will converge to the same value [49]. Eventual con-
sistency is a liveness property, which ensures that something good

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

Bolt-on Shim Layer: Safety

Replication, Durability, Availability, Convergence
Eventually Consistent Data Store:

Client: Front-end requests, Application logic

Figure 1: Separation of concerns in the bolt-on architecture. In
this work, a narrow shim layer upgrades an underlying eventually
consistent data store to provide causal consistency.

will eventually happen (replicas agree) [5]. It does not provide
safety guarantees: it is impossible for a system to violate even-
tual consistency at any discrete moment because the system may
converge in the future [7]. By itself, eventual consistency is a weak
consistency model. If users want stronger guarantees, stores may
provide stronger models that, in addition to convergence, provide
safety. However, exact guarantees differ across stores and some-
times between releases of the same stores.

In this paper we adopt a general approach that separates archi-
tectural concerns of liveness, replication, and durability from the
semantics of safety-related data consistency. We treat consistency-
related safety as a bolt-on property provided by a shim layer on
top of a general-purpose data store. This allows a clean, layered
separation of safety and liveness concerns: the underlying store is
responsible for liveness, replication, durability, and convergence,
which require substantial engineering effort to make practically us-
able. Safety properties, which are algorithmic in nature and often
hard to implement correctly, are kept separate and located in a sep-
arate layer atop the general-purpose store. This enables a shim to
provide the exact same consistency model regardless of the imple-
mentation or semantics of the underlying store, even if provided
as an online service (e.g., DynamoDB). This architecture can also
lead to standardized implementations that bring clarity and porta-
bility to distributed consistency, a design space occupied by an ar-
ray of custom implementations that often differ only slightly in the
consistency guarantees they provide.

In this work, we take a first step in the direction of the gen-
eral approach outlined above and develop a bolt-on architecture to
provide causal consistency on top of eventually consistent stores
(Figure 1). Causal consistency guarantees that reads will obey
causality relationships between writes: if one event “influences” a
subsequent operation, a client cannot observe the second without
the first [4, 31]. Our choice of causal consistency is motivated by
several recent developments. Multiple “NoSQL” stores have added
stronger consistency, implying that there is a demand for consis-
tency guarantees that are stronger than eventual [50]. However ser-
vice availability is crucial for many applications, as many compa-
nies observe negative business impact in the face of unavailability
or increased latency [33]. Towards these goals, recent work has
shown that no model stronger than causal consistency is achievable
with high availability in the presence of partitions [36]. Thus, we
upgrade one of the weakest highly available models—eventual—to
one of the strongest. Moreover, causal consistency allows purely

local reads, enabling better performance than stronger models that
often require inter-replica communication on every operation. As
a final, more pragmatic motivation, while there has recently been
considerable academic interest in causal consistency [6, 34, 36], no
production-ready data stores provide it, so bolt-on causal consis-
tency fills a gap in current technology.

There are two main challenges in providing causal consistency
in a bolt-on architecture: handling overwritten histories and main-
taining availability. First, when there are multiple writes to a given
data item, the eventually consistent store often chooses a single,
winning write. Attempting to directly use existing algorithms for
causal consistency [4, 9, 29, 34, 45] by using the underlying store
as a communication medium will fail because the bolt-on layer is
not guaranteed to see all writes. We refer to this as the problem of
overwritten histories, or lost metadata due to data store overwrites.
Second, we need to ensure that the shim maintains availability (one
of the key benefits of causal consistency) in the presence of parti-
tions. The shim should never block waiting for a causal dependency
that is either delayed or may never arrive (due to overwritten his-
tories). If we employ an existing algorithm that assumes reliable
write delivery, then the shim will either become unavailable or lose
convergence properties in the presence of overwrites.

The main innovation in our bolt-on shim is an algorithm that
buffers writes and ensures that each write satisfies the criteria for
a causal cut across the writes it has observed. By developing a
declarative specification for causal cuts, we determine what writes
to either synchronously or asynchronously fetch from the underly-
ing data store as well as what metadata to store with each write.
Only when a causal cut is satisfied are writes made visible to shim
clients. This guarantees that the shim is always causally consistent,
convergent, and highly available.

In this paper, we make the following contributions:

• We describe a system architecture for achieving convergent causal
consistency by applying a narrow bolt-on shim layer to an even-
tually consistent data store.

• We present a solution to the problem of overwritten histories,
which arises from most eventually consistent stores’ register se-
mantics. Solving this problem key to achieving convergent bolt-
on causal consistency and requires a generalized, declarative spec-
ification for causal consistency.

• We evaluate our shim implementation on top of Cassandra [30],
a production-ready eventually consistent data store, using real-
world explicit causal consistency traces. For many traces, we
achieve peak throughput within a factor of two and often within
25% of eventually consistent operation, and, for one variant of
bolt-on causal consistency, outperform default eventually consis-
tent operation.

2 Background
Service operators today are faced with a wide range of consistency
models. In this section, we provide background on two major mod-
els: eventual consistency and causal consistency. Readers familiar
with these consistency models may wish to proceed to Section 3.

Weak Consistency Many distributed systems designs choose to
employ weak consistency, placing few restrictions on the evolution
of data values. In the presence of partitions between participants
in the system, services that must remain available, or “always-
on,” have no choice: systems cannot maintain both availability of
read and write operations and strong consistency (e.g., serializabil-
ity [20], linearizability [27]) in the presence of network partitions.
Even without partitions (or with duration-bounded partitions), sys-
tems face a trade-off between latency and consistency: achieving

stronger models like atomicity or serializability requires more co-
ordination overhead than achieving “weaker” ones [2, 8]. In this
work, we consider the relationship between two important weak
consistency models: eventual consistency and causal consistency.

Eventual Consistency Among weak consistency models, eventual
consistency is one of the most widely deployed [22, 34, 49]. Under
eventual consistency, if writes stop, then, processes will—at some
point in time and forever afterwards—all agree on the same value
for each object in the system. This convergence guarantee provided
by eventual consistency is a liveness property [36]: the property
that all participants agree will eventually hold. However, this is not
a safety guarantee: a system cannot “violate” eventual consistency
at any fixed point in time—there is always the possibility that it
becomes consistent later [7]. Thus, at any given time, clients may
witness a wide range of consistency anomalies.

Despite these weak guarantees, a wide range of distributed stor-
age systems offer a binary choice between (bare-minimum) even-
tual and some form of strong consistency. Real-world systems
adopting the Dynamo [22] replication model (e.g., Cassandra, Riak,
Voldemort), many hosted systems (e.g., DynamoDB, Amazon S3
and SimpleDB, Google App Engine Store), and master-slave repli-
cated stores supporting reading from slaves (e.g., HBase, Mon-
goDB, many relational stores) all offer this choice. Accordingly,
some form of strong, potentially unavailable consistency is often
the only option if one opts for anything stronger than eventual con-
sistency. Unless one is willing to change the implementations of
these data stores, in the presence of partitions, read availability may
require accepting eventual consistency.

Causal Consistency In contrast with eventual consistency’s weak
guarantees, causal consistency is the strongest consistency model
that is available in the presence of partitions [34, 36]. Informally, a
system is causally consistent if participants can never observe data
items before they can observe items that influenced their creation.

Consider the following hypothetical scenario on a social net-
working site like Facebook [6]:
1 . Sally cannot find her son Billy. She posts update S to her

friends: “I think Billy is missing!”

2 . Momentarily after Sally posts S, Billy calls his mother to let
her know that he is at a friend’s house. Sally edits S, resulting
in S∗: “False alarm! Billy went out to play.”

3 . Sally’s friend James observes S∗ and posts status J in response:
“What a relief!”

If causality is not respected, a third user, Henry, could perceive ef-
fects before their causes; if Henry observes S and J but not S∗, he
might think James is pleased to hear of Billy’s would-be disappear-
ance! If the site had respected causality, then Henry could not have
observed J without S∗.

Maintaining these causal relationships is important for online
services. Human perception of causality between events is well
studied in the fields of in psychology and philosophy [38]; just
as space and time impose causality on real-world events, main-
taining causal relationships between virtual events is an important
consideration when building human-facing services. Sometimes,
maintaining causality is insufficient, and stronger models are re-
quired [16]. However, especially given its availability and latency
benefits, causal consistency is often a reasonable choice [6, 11, 34].

Defining Causal Consistency Under causal consistency, each pro-
cess’s reads must obey a partial order called the happens-before
relation (denoted→). Application operations create ordering con-
straints between operations in the happens-before relation, and
the system enforces the order. happens-before is transitive, and

all writes that precede a given write in the happens-before rela-
tion comprise its causal history. Operations that are causally unre-
lated are called concurrent (denoted ||). To provide a total order-
ing across versions, we can use commutative merge functions [34,
41]: given v and v′, two concurrent writes to a single object,
merge(v,v′) =merge(v′,v). As we will see, wall-clock “last-writer-
wins” is a common commutative merging policy that satisfies this
requirement. If desired, we can place the merged version so that v
and v′ both happen-before it. Schwarz and Mattern [46] provide
an in-depth overview of causal consistency.

Capturing Causality Causal relationships (happens-before) are
typically defined in two ways: via potential and explicit causality.

Under potential causality [4, 31] all writes that could have in-
fluenced a write must be visible before the write is made visible.
Potential causality represents all possible influences via (transi-
tive) data dependencies (á la the “Butterfly Effect”). The potential
causality relation respects program ordering along with the causal-
ity of any data items an agent reads. Future writes reflect any reads:
if process Pi reads write wi, then all other processes must also be
able to read wi before Pi’s future writes.

We can also capture explicit causality between operations: a pro-
gram can define its own causal relationships [6, 29]. Causality
tracking mechanisms are often exposed through user interfaces: in
our prior example, James likely clicked a “reply” button in order
to input J as a response to S∗. The application can capture these
explicit relationships between replies and define a separate causal
relation for each conversation. Of course, if James did not explicitly
signal that J was a response to S (say, he posted to Sally’s feed with-
out pressing “reply”), we would have to rely on potential causality.
However, given its scalability benefits [6], in this work, we consider
the problem of maintaining explicit causality relationships.

Convergence We can trivially satisfy causal consistency by stor-
ing a local copy of each key and never communicating updates [6,
36]. This strategy does not require coordination and is easy to im-
plement but is not particularly useful. In the presence of partitions
between all processes, every causally consistent system will be-
have like our trivial implementation, so we must admit it as valid.
However, in the absence of partitions, we would prefer different
behavior. Coupling convergence properties with causality yields
a useful model: convergent causal consistency [34, 36]. All pro-
cesses eventually agree on the same value for each item (liveness),
and the processes observe causality throughout (safety). Conver-
gent causal consistency is eventually consistent, but the converse
does not hold: eventual consistency is not causally consistent.

3 Architecture
In this section, we propose a “bolt-on” architecture that separates
implementation and design of consistency safety properties from
liveness, replication, and durability concerns. We subsequently in-
troduce a specific instance of the bolt-on architecture—the primary
subject of this paper—that upgrades an eventually consistent store
to provide causal consistency.

3.1 Separation of Concerns
In this paper, we consider a bolt-on architecture in which an under-
lying data store handles most aspects of data management, includ-
ing replication, availability, and convergence. External to the data
store, a shim layer composed of multiple shim processes upgrades
the consistency guarantees that the system provides. The underly-
ing data store allows a large space of read and write histories; it is
the shim’s job to restrict the space of system executions to those
that match the desired consistency model.

Eventually
Consistent
Data Store

Client Machine
client client client
put(k,v,a) get(k)

Shim local
store

put(k,v') get(k)

metadata

Figure 2: Bolt-on architecture: a causally consistent shim layer
mediates access to an underlying eventually consistent data store.

There are several advantages to a layered, bolt-on approach to
consistency. A bolt-on architecture decouples the implementation
of safety properties from the implementation of liveness proper-
ties [5]. This enables a clean separation of concerns. The under-
lying store is responsible for liveness, handling replication, dura-
bility, and convergence. Achieving these goals typically requires
substantial engineering effort: many commercial and open source
projects have spent considerable effort in implementing and re-
fining this functionality. The bolt-on shim layer provides safety,
which restricts the type of consistency violations that can be ex-
posed to the user. This safety functionality is algorithmic in na-
ture and often difficult to implement correctly. By separating these
concerns, systems can deploy thin, bolt-on layers that have been
carefully proven and tested. Separately, practical issues dealing
with technology, hardware, and distribution can be addressed in
the lower layers. Today, systems do not separate safety and live-
ness properties. This makes reasoning about data consistency dif-
ficult, as systems often provide slightly different consistency guar-
antees. A bolt-on architecture can provide the same consistency
model across a wide range of storage systems.

A correct shim implementation should not violate the properties
guaranteed by the underlying data store. For example, if, as we pro-
pose, the underlying store is tasked with providing liveness guaran-
tees, then a correct shim should always be live as well; an incorrect
shim implementation can violate liveness by blocking indefinitely,
but, if it does, it will not be due to the underlying store. Simi-
larly, if the shim is not responsible for durability or fault-tolerance,
which are concerns delegated to the underlying store, then infor-
mation contained in the shim should be treated as “soft state” that
is reconstructible from the underlying store. If the shim needs to
be available in the presence of partitions, it should not depend on
other shim processes: intra-shim communication can be used as an
optimization but cannot be required for availability.

3.2 Bolt-on Causal Consistency
In the bolt-on causal consistency architecture (Figure 2), a shim
upgrades an eventually consistent data store (hereafter, ECDS) to
provide convergent causal consistency. The shim is tasked only
with causal safety guarantees, and replication, availability, durabil-
ity, and convergence are guaranteed by the ECDS. Clients make
requests to the shim layer, which handles all communication with
an underlying ECDS and other clients. Clients are agnostic to the
ECDS choice. For simplicity, we consider simple key-value stores,
but our results generalize to richer data models. The shim exposes
two operations: get(key) and put(key, value, after), where
after is any set of previously returned writes (or write identifiers)—
or none—that specifies the happens-before relation for the write.

The ECDS in turn exposes two operations to the shim layer: get(key)
and put(key,value). The shim may exercise these methods as of-
ten as it prefers, and the keys and values it stores need not exactly
mirror the keys and values that clients store. As an initial design
and implementation, we treat the shim as a client-side library, but
we discuss other approaches in Section 5.3.

4 Bolt-on Challenges
Prior algorithms for achieving causal consistency do not provide
highly available, convergent bolt-on causal consistency because they
do not address the problem of overwritten histories. In this section,
we outline existing algorithms, introduce overwritten histories, and
state our assumptions for ECDS behavior.

4.1 Implementing Causal Consistency
Implementations of causal consistency usually have two compo-
nents: dependency tracking and local stores. Dependency track-
ing metadata attached to each write is used to record information
about its causal history, determining the write’s happens-before
relation. Processes keep a local copy of keys and values—called a
local store—that is guaranteed (by design) to be causally consistent
at all times. Processes serve reads from their local stores and, using
dependency tracking, determine when to update their local stores
with newer writes (apply them).

The causal memory implementation by Ahamad et al. [4] is typ-
ical of many others, like causal delivery [45]. When performing
a write, a process first updates its local store, then sends the new
write via reliable broadcast to all other processes, who buffer it.
A process applies a buffered write (originating from another pro-
cess) to its local data store once it has applied all of the write’s
causal predecessors. If each process receives all writes, each pro-
cess will apply all writes. Each process can safely update its local
store with its own writes without checking dependencies because,
by construction, it has already applied each of their dependencies.

As an example, consider the following causal graph. We denote
a write to key k with unique version i as ki, so our graph contains
two writes: a write x1 to key x and a second write y1 to key y such
that x1 happens-before y1:

x1 y1

According to the definition of causal consistency, if a process
reads y1, then its subsequent reads from x must return x1 or another
write xi such that xi 9 x1 (i.e., x1 || xi or x1→ xi). It is not causally
consistent if a process reads y1 then reads the initial value (null)
for x because happens-before is not respected.

To better understand the role of the local store in a causally con-
sistent system, consider a scenario in which x1 and y1 are gener-
ated by two different processes that each send their writes to a third
process—say, process P—that wishes to read y. Depending on the
delivery order of the messages containing x1 and y1, P will read
different values under causal consistency:

1 . P has not received any writes. P will return y = null.

2 . P has received write x1 but not write y1. P can apply x1 to its
local store but P will still return y = null.

3 . P has received write y1 but not write x1. P will buffer write
y1 because it has not yet applied all of the y1’s dependencies
({x1}). P will again return y = null.

4 . P has received both of the x1 and y1 writes. It can apply x1
then y1 to its local store and it will return y = y1.

The third case is most interesting; what would happen if we al-
lowed P to observe y= y1? If we did, then if P were to subsequently

read from x, to preserve causal safety, it would have to block until
it received x1 (or a suitable substitute for x1, as above). During net-
work partitions, this could take an indefinite amount of time and P
would lose the availability benefits of causal consistency. Without
network partitions, P might have to block due to network latency.

With reliable channels, existing algorithms provide both safe and
live implementations of causal consistency [4, 29, 34].

4.2 Overwritten Histories
If process do not see all writes (i.e., delivery is unreliable), then ex-
isting techniques—which assume reliable delivery—will not pro-
vide convergent causal consistency with high availability. This phe-
nomenon occurs when we use the ECDS as a write delivery mech-
anism. Consider the following example, where one process writes
x1, y1, and z1, and a second process writes y2, which is concurrent
with the first process’s updates:

x1 y1 z1

y2

In this example, if a third process receives z1 and y2 but not y1,
it may have problems: under prior approaches, if processes do not
see all writes, they can detect missing dependencies (here, y1) but
cannot tell if the missing dependencies are needed or not (y1 is not
but x1 is). If, as is common [29, 34], each shim stores the immediate
dependencies between writes (e.g., z1 contains a reference to y1,
then y1 to x1, and finally x1 and y2 to null) and a shim reads y2
but not y1, it will never learn of the dependency to x1. The shim
cannot be sure that there is not another dependency for z1 that it is
not aware of and will never be able to safely read z1. This makes
causality difficult to enforce. Accordingly, different shims may end
up with different values for z and the system will not converge. In
fact, if shims miss writes, any fixed-length chain of pointers a shim
might attach (say, attach the last k dependencies) can be broken.
Vector clocks [39] fall prey to a similar problem: was the missing
write overwritten, or has the shim simply not seen it?

A bolt-on system may experience these missing writes due to
ECDS behavior, or overwritten histories. The ECDS is responsible
for write distribution: to read new versions generated by other pro-
cesses, each shim reads from the ECDS. However, the ECDS may
overwrite values before all shims have read them and therefore may
not expose all writes: typical ECDS implementations provide reg-
ister semantics, meaning that newer versions overwrite older ver-
sions of the same key. If we are lucky, shims may be able to read
all versions, but we cannot guarantee that this will occur—the shim
layer does not control ECDS convergence. If there are multiple
writes to a key (i.e., overwrites), then, due to ECDS replication,
we can only be guaranteed that the final, converged version will be
visible to all processes. In the example above, if a shim process
does not read y1 by the time it is overwritten by y2, it will—with
existing algorithms—“lose history” due to overwrites, a problem
we call overwritten histories. Prior algorithms do not address this
problem [4, 9, 29, 34, 45]. They can detect missing updates in the
history but, due to overwrites—as we demonstrated in the example
above—cannot safely apply all writes, resulting in solutions that
lack convergence or, alternatively, availability.

One way to think of ECDS write propagation is as an unreli-
able network that is guaranteed only to deliver a single message
per key. We can build a reliable network between N shim pro-
cesses by using N2 keys, but this is inefficient. Alternatively, we
can avoid overwrites entirely by storing a new data item for ev-
ery write, but this requires storage linear in the number of writes
ever performed. These solutions are both expensive. In this paper,
we derive a different solution (Section 5) and leverage application
context via explicit causality for efficiency.

4.3 Assumptions
Before addressing the problem of overwritten histories, we first
state our assumptions regarding ECDS behavior. We opt for a pes-
simistic but general model that will work with a wide range of ex-
isting ECDSs. We discuss possible relaxations and their effect on
our algorithms in Section 7.

We assume that the ECDS is eventually consistent (convergent)
and that shim layer knows the ECDS merge function for overwrites
along with any write-specific information that the ECDS uses (e.g.,
if the ECDS uses a last-writer-wins merge function, the shim pro-
cesses can determine the timestamps for writes). This is useful for
convergence, so that all shims eventually return the same version in
the event of concurrent writes. We also assume that the ECDS pro-
vides single-value register semantics (in contrast with a store that
might keep multiple versions—Section 7). Moreover, we assume
there are no callbacks from the ECDS: as in existing systems, the
ECDS does not directly notify its clients of new writes.

We assume that the converged ECDS will obey the partial happens-
before order for each key. That is, if x1 → x2, then the ECDS
cannot converge to x1. This is possibly problematic for arbitrary
merge functions, but last-writer-wins, the default merge function
employed by most eventually consistent stores by default (e.g., Cas-
sandra [30], Riak, DynamoDB, and in master-slave systems sup-
porting slave reads) satisfies this requirement. Our API, which re-
quires writers to pass in existing dependencies in order to put them
after, ensures that causality relations respect wall-clock order.

We co-locate the shim layer with (possibly many) clients. In the
presence of failures, this means that clients and their shims will
fail together (fate-sharing), and that clients will always contact the
same shim (affinity). Furthermore, we assume that end users of
the service will always contact the same set of shim processes for
each session, or desired scope of causality. These “stickiness” as-
sumptions are standard in existing implementations of causal con-
sistency [4, 29, 34, 49].

5 Bolt-on Causal Consistency
In this section, we present a declarative specification for causal con-
sistency and algorithms for achieving bolt-on causal consistency.

5.1 Causal Cuts
To begin, we declaratively describe the behavior of our causally
consistent store. Prior definitions of causal consistency are ex-
pressed operationally, in terms of reads and writes, with implemen-
tations described in terms of carefully controlled buffering and ad-
mission to the local store. As we discussed in Section 4.2, bolt-on
causality differs from prior approaches in both its write propaga-
tion mechanism (through the ECDS) and the resulting challenges
(namely, overwritten histories). A bolt-on shim cannot wait for
the ECDS to provide it to deliver new writes, especially as some
writes may be “dropped” due to overwrites. To understand when
it is safe to apply writes, we reformulate the correctness criteria
for causal consistency as a more general, declarative specification
that is inspired by the clarity provided by declarative translations of
(operational) isolation level definitions [3].

The local store holds a “consistent” set of writes that can be read
from and added to at any time without violating safety constraints.
We formalize this notion of “consistency via causal cuts. Given a
write w to key k, we denote k=w.key and the set of its transitive
dependencies as w.deps:

Definition. A causal cut is a set of writes C such that ∀ writes
w∈

⋃
c∈C

c.deps, ∃w′ ∈C such that w′.key=w.key and w′9w (equiv-

alently, either w = w′, w→ w′, or w ‖ w′).

This dense definition is simple to explain: the dependencies for
each write in the causal cut should either i.) be in the cut, ii.)
happen-before a write to the same key that is already in the cut, or
iii.) be concurrent with a write to the same key that is already in the
cut. This means that a cut contains the “latest” version of each key
along at least one concurrent branch of the history ending along the
cut’s frontier. A causally consistent system maintains the invariant
that each local store is a causal cut.

As an example, consider the history below:
w1 x1

y1 z1
w2

The set of writes {w1,x1,y1} is a causal cut: the union of the de-
pendencies for each write (equivalently, the inverse transitive clo-
sure of the graph beginning at the writes) is {w1,w2,x1,y1}, and,
for each key (w, x, and y), we have the latest write for a concur-
rent branch in the history. Similarly, {x1,w2,y1} is a causal cut,
as are {w1,x1,y1,z1}, {w2,x1,y1,z1}, {w1}, {w2}, {w1,x1}, and
{w2,x1}. However, for example, {w1,z1}, {x1,z1}, and {y1,z1}
are not due to missing dependencies (in the examples: {x1,y1},
{y1,w1 or w2}, and {x1,w1 or w2}).

Our definition of causal cuts is inspired by consistent cuts, often
used to capture a snapshot of global state in a distributed environ-
ment [37]. The primary difference between causal cuts and consis-
tent cuts is that causal cuts specify relationships between writes to
keys, whereas consistent cuts specify relationships between agents.
One might be tempted to find a homomorphism from causal cuts
to consistent cuts (e.g., keys as agents), but the challenge is that a
single key can appear on multiple concurrent branches, whereas a
causal agent, by (traditional) definition, cannot.

5.2 Achieving Bolt-on Causal Consistency
Given our definition of causal cuts, we can formulate an algorithm
for achieving bolt-on causal consistency in the presence of ECDS
overwrites. Our assumptions about the underlying data store (Sec-
tion 4.3) prove challenging but match those we encounter in real-
world ECDSs in Sections 6 and 7.

The basic premise of bolt-on causal consistency is straightfor-
ward: before revealing a write w to a client, a shim needs to ensure
that w, along with the set of writes in its local store L (i.e., {w}∪L)
is a causal cut (w is covered by L). If so, it can apply w to L. The
write propagation of the ECDS means shims need to take care in
performing this check.

Write path When a client performs a write, the shim updates its
local store and sends the write (along with any relevant metadata—
described below) to the ECDS for distribution and durability. The
write, along with the local store, forms a causal cut because the
agent has only read updates from its local store and its dependen-
cies must therefore also be present in the local store. Algorithm 1
shows the write path in the PUTshim method.

Read path: Causal When a client performs a read, the shim can
safely return the value present in its local store. Existing algorithms
for causal consistency, pioneered by Ahamad et al. [4], use this
model, in which background processes are responsible for updating
the local store. Accordingly, porting traditional causal consistency
algorithms to a bolt-on model, all reads can complete locally, and
shims fetch new writes asynchronously from the ECDS.

Algorithm 1 also shows an implementation of both the local read
operation (GETshim) and the asynchronous ECDS write resolution
(RESOLVEasync). GETshim reads the local store and notifies a back-
ground resolver process that the process should check the ECDS
for a newer version of the key (by adding the key to a to_check,

set of writes shared between readers and the resolver). Because the
ECDS does not notify the shim about new writes, clients inform the
resolver about which keys it should poll on.

The resolver (RESOLVEasync) is an asynchronous process tasked
with updating the local store. Suppose the resolver reads w from
the ECDS. If we wish to maintain the invariant that our local store
L is always a causal cut of writes, then the resolver needs to check
w’s dependencies. The resolver process iterates through each of
w’s dependencies and ensures that the local store contains either
the dependency itself, a later (happens-after) write to the depen-
dency’s key, or a concurrent write to the dependency’s key. If a
dependency is missing, the resolver can either attempt to read the
dependency from the ECDS (as in the implementation) or defer
further checking and move on to the next key. To prevent infinite
recursion when “chasing” dependency chains in the ECDS, we pass
the set of writes that will (tentatively) be applied to the local store
as T (e.g., attempt Algorithm 1 without using T given writes x0,
x1, y0, and y1 such that y0 → x0 and x1 → y1 with an ECDS con-
taining only x0 and y1; for brevity, we omit a full walkthrough,
but the algorithm—without T — will infinitely recurse). If the re-
solver finds a set of writes that form a cover along with the existing
local store then the set is applied in causal order (or, if possible,
atomically) to the local store, taking care to only writes that will
overwrite existing versions (merge(old,new) = new).

The above implementation is a faithful adaptation of prior causally
consistent implementations. Shims perform dependency checking
asynchronously, resulting in fast read operations that do not violate
safety. However, readers may experience poor visibility, or time
until writes are applied. For example, the first read from a key
will always return null unless the resolver knows which keys to
check in advance. For workloads with good temporal locality or a
restricted key set, this is potentially acceptable. If we are willing
to synchronously wait for dependency checking—a departure from
prior architectures—we can instead make sure we read the most
up-to-date copy possible given the underlying ECDS state.

Read path: Pessimistic Algorithm 2 is an implementation of pes-
simistic causal dependency checking. Writes proceed as before,
but, for reads, shims attempt to read the latest value from the ECDS
and cover it. This requires synchronously testing the value’s de-
pendencies against the local store and, if the dependency checks
fail, attempting to also read the dependencies themselves from the
ECDS. Whereas in the traditional Algorithm 1, reads proceeded
without any checks, here we move the checking to the critical path:
in a traditional architecture, this is equivalent to having readers
check for unapplied but resolvable writes. The trade-off here—
which we have not observed in prior literature—is between stale-
ness of values (liveness) and read operation speed. There are a vari-
ety of policies one can use to tune this trade-off (e.g., limit the num-
ber of synchronous ECDS reads to some constant number), but, for
the purposes of this paper, we focus on the two extremes: bolt-
on causal consistency, with all local reads, and pessimistic bolt-on
causal consistency, in which, when reading from the ECDS, shims
synchronously chase the entire dependency chain.

Metadata To compute causal covers, we need to know the depen-
dencies for each write and to be able to compare them. In the
event of overwritten histories, we must store the dependency set
with every write. We do not need to store the entire history but
the expected size of the dependency set is the number unique of
keys in the causal history (not the number of unique versions or
writes). Each write in the dependency set requires metadata about
the writing processes, which can be represented by a vector clock
(requiring space proportional to the number of writers to the write’s

Algorithm 1 Bolt-on causal consistency.

a local store L is a set of writes, where each write is a triple
[key,value,deps = {dependent writes}]

procedure PUTshim(key k, val v, a f ter, local store L, ECDS E)
vserialized := serialize(value, deps=a f ter)
E.put(k, vserialized); L.put(k, vserialized)
return

procedure GETshim(key k, local store L, set to_check)
to_check.add(k)
return L.get(k)

procedure RESOLVEasync(set to_check, local store L, ECDS E)
loop forever

for key k ∈ to_check do
// T holds writes that will complete the cut

eval := E.get(k); T := {eval}
if is_covered(eval , T , L, E) then

// L should only apply newer writes

L.put_all(T)
to_check.remove({w.key | w ∈ T})

procedure IS_COVERED(write w, set T , local store L, ECDS E)
for dep ∈ w.deps do

// already applied a suitable write to L
// or already covered a suitable write to dep.key?
if (L.get(dep.key) != null and L.get(dep.key)9 dep) or

(∃ Tdep ∈ T s.t. dep.key = Tdep.key, Tdep 9 dep) then
continue

// read from the ECDS and try to cover response

Edep := E.get(dep.key)
if Edep != null and Edep 9 dep then

T .add(Edep)
if IS_COVERED(Edep, T , L, E) then

continue
return False

return True

Algorithm 2 Pessimistic bolt-on causal consistency.
procedure PUTshim(key k, val v, a f ter, local store L, ECDS E)

[same as Algorithm 1]
procedure GETshim(key k, local store L, ECDS E)

eval := E.get(k); T := {eval}
if IS_COVERED(eval , T , L, E) then

L.put_all(T)
return L.get(k)

procedure IS_COVERED(write w, set T , local store L, ECDS E)
[same as Algorithm 1]

key in the history). For example, if shim P1 writes x1 and shim P2
writes y2 with x1 → y2, x1 will be have an empty dependency set
and a vector of 〈P1 : 1〉, while y1 will have a dependency set of
{x : 〈P1 : 1〉} and a vector of 〈P2 : 2〉 (where 1 and 2 are a logical
clocks representing the first action of P1 and second action of P2).
A third process P3 writing y3 such that y2→ y3 would write y3 with
a dependency set of {x : 〈P1 : 1〉} and a vector of 〈P2 : 2,P3 : 3〉. On
a put, the shim writes each value along with the metadata to the
ECDS in a serialized blob.

The metadata required for bolt-on causal consistency is a signif-
icant cost of our bolt-on solution. Our assumptions about underly-

ing ECDS behavior require shims to write a possibly large amount
of metadata with every write—proportional to the number of keys
in the causal history, along with vector clocks (typically of size 1)
for each. A shim could compress this metadata by, say, storing a
single vector—at the expense of knowing which keys to “poll” on
for new writes, which is likely unrealistic. Devising a more efficient
metadata representation that does not suffer these penalties is an
open problem. While these metadata requirements are prohibitive
for full potential causality, they are modest for explicit causality,
which has typical histories on the order of single-digit to tens and,
maximally, several hundreds of updates [6]. As we demonstrate
in Section 6, the overheads for explicit causality metadata may be
acceptable for many modern services.

5.3 Additional Concerns
In this section, we briefly describe the properties of our solution,
how to perform transactions, maintain the local store, configure
large-scale deployments, and support mixed consistency models.

Availability, Durability, and Replication Bolt-on and pessimistic
bolt-on causal consistency are always available. Each shim client
can always safely read from its respective local store, which always
contains a causal cut, preserving safety. As long as the ECDS is
available (and it should be, by contract), all writes will be made
durable by passing them to the underlying storage system. If a shim
crashes, its client will crash as well (Section 3.2), and so losing
shim state is safe. The ECDS handles all propagation, and shims
need not (and do not) communicate to ensure safety or liveness.

In the event that a shim is partitioned from the ECDS, it can serve
reads and writes (albeit without durability) and can connect to any
non-failing ECDS replica while remaining available. This is a con-
sequence of the fact that a causal cut (and, by construction, the local
store) contains all writes that are necessary to maintain availability.
However, as in standard causally consistent systems, writes that did
not propagate between ECDS replicas before a partition occurred
will not become visible until the partition heals.

Transactions Recent work introduces the notion of causal read-
only and write-only transactions [34, 35]. A bolt-on shim can pro-
vide these transactions with high availability with minor modifi-
cations. To perform a read-only “get transaction,” and return a
causally consistent set of write, the shim needs to read a causal
cut across the specified keys from the local store (note that the
causal cut definition again simplifies the semantics of the opera-
tion). This is easily accomplished by employing a local store sup-
porting “snapshot” reads at an equivalent of snapshot isolation, re-
peatable read isolation, or stronger [3]. Similarly, causal write-
only transactions can be accomplished via transactionally applying
groups of related updates to the local store [53]. While we do not
further consider it, we believe a bolt-on architecture is well-suited
to general-purpose causally consistent, transactionally atomic read-
write transactions as in Adya’s PL-2L [3] and, more recently, in the
Swift system [53] (Section 8).

Store Pruning In both algorithms, a write can be removed from
the local store if desired once the readers accessing it no longer
require the write and its removal does not impact the cut invariant
(i.e., many writes may need to be removed at once). This can be
done using sessionization [34] or via language-centric dependency
checking. However, keeping writes in the local store for as long as
possible can reduce latency in pessimistic bolt-on causality while
improving the freshness of results returned by bolt-on causality.

Clustered Architecture We have considered a model where shims
and shim clients are co-located. However, the local store can act as

a cache, and there is significant benefit to consolidation. As an al-
ternative architecture, we can consider using a fault-tolerant shared
local store (e.g., Memcached) as the local store with a secondary set
of resolver processes, ferrying writes from the ECDS. In a multi-
datacenter deployment, this allows writes to occur locally, without
cross-site synchronization, while guaranteeing causal consistency.

Mixed Models Our algorithms allow mixed consistency guaran-
tees. Consider the case where one ECDS user, C, wants causal
consistency and another, E, wants eventual consistency. If C wants
to observe causality generated by E’s actions, E must use the shim
put after parameter for writes, attaching her dependencies. E can
read directly from the ECDS and, aside from placing the relevant
dependencies into the after call, will not use any of the metadata
she reads. The main cost to E is increased ECDS write sizes. If
C does not need to observe E’s causal relationships, E can use the
ECDS directly, without attaching metadata.

6 Evaluation
In this section, we evaluate the performance of bolt-on causal con-
sistency using a shim implementation and a production-ready even-
tually consistent data store. We find that providing explicit causal-
ity for several online service traces easily scales to tens of thou-
sands of operations per second. The local read property of causal
consistency allows bolt-on causal consistency to outperform even-
tual consistency, while pessimistic bolt-on causal consistency is
often within 25% to 50% of eventual consistency’s peak through-
put. Using public cloud infrastructure and production-ready ECDS
(Section 6.1), we perform single and multi-node benchmarking (Sec-
tions 6.3, 6.4) as well a full wide-area system evaluation (Sec-
tion 6.5), all using real-world causal traces (Section 6.2).

6.1 Implementation and Setup
We implemented a causal and pessimistic causal consistency shims
that expose get and put operations as described in Section 3. Our
implementation is in Java and we use Google’s Protocol Buffers
(v.2.4.1) and snappy-java (v.1.0.5) for serialization and compres-
sion. From a software engineering perspective, the bolt-on archi-
tecture proved lightweight: our shim library is comprised of fewer
than 2,000 lines of Java, and the core algorithms and version reso-
lution require only 322 lines of code.

We evaluate the system with the Yahoo! Cloud Serving Bench-
mark [18]. Our shim interposes between YCSB and an ECDS, and
we modified YCSB to use the shim’s after API parameter but oth-
erwise did not make modifications to the core YCSB code. By de-
fault, we use workloada, a mix of 50% read and 50% write opera-
tions and increase the number of records from the default 1,000 to
100,000. YCSB uses 20-byte keys, which adversely affects meta-
data overheads. All threads on a server share a shim and each thread
writes explicit causality chains of varying lengths (Section 6.2).

For an ECDS, we use Cassandra 1.1.6, a widely deployed NoSQL
“column family” store with replication patterned on Amazon’s Dy-
namo [22]. From a bolt-on perspective, Cassandra represents the
most general ECDS we have come across (Section 7): it does not
support concurrent update detection, have conditional operations,
or provide any stability guarantees. For concurrent writes, Cassan-
dra uses a last-writer-wins update policy based on client-generated
timestamps. We run Cassandra on Amazon EC2 m1.xlarge in-
stances and use ephemeral RAID0 storage as recommended by
commercial support documentation [30]. We do not modify Cas-
sandra and only change standard parameters like the cluster topol-
ogy, location of the data directories, and JVM heap settings. In each
experiment, we vary the number of YCSB client threads and report

the average throughput and latency for five sixty second trials. For
each trial, we destroy the Cassandra database and repopulate it with
new data and causal chains via an independent shim process.

6.2 Causality Datasets
To drive our evaluation, we use publicly available datasets profiling
explicit causality relationships on four different online services:
Twitter Twitter is a microblogging service with over 500 million
users. We use a corpus of 936,236 conversations on Twitter com-
prising 4,937,001 Tweets collected between Feb. and July 2011 [43].
Tweets that are not part of a conversation—72% in one study [51]—
are omitted. This results in a substantially higher proportion of
causal chains than we would experience in practice.
Flickr Flickr is an image and video sharing website of over 51 mil-
lion members. We use a corpus of 11,207,456 posts and 51,786,515
comments collected from February to May 2007 [15].
Metafilter Metafilter is an active community weblog with a range
of topics and over 59,000 users. We use a corpus of Metafilter
posts from July 1999 to October 2012 containing 362,584 posts
and 8,749,130 comments [1].
TUAW The Unofficial Apple Weblog (TUAW) is a blog devoted to
Apple products. We use a corpus of 10,485 blog posts and 100,192
comments collected between January 2004 and February 2007 [52].

We primarily focus on the comment lengths for these datasets
(for Twitter, conversation lengths) and use the commenting reply
relationship as the basis of our explicit causality chains. This is
for two reasons, both of which are pessimistic for bolt-on causal-
ity. First, linear chains perform worse under bolt-on causality—a
bushy causality graph can be checked in parallel, while sequentially
traversing a linear graph limits concurrency. To obtain an approxi-
mate upper bound on bushy graph behavior, one can condense the
graph into a linear chain. Second, we do not reproduce the com-
ment sizes and intentionally limit value sizes in our experiments to
1 byte to fully expose the effects of our metadata overheads.

We show the distribution of comment lengths in Table 1. The
median length across chains is short (single digit for three of our
four distributions), but the tail is long; the 99th percentile is be-
tween 6 and 10 times the mean length and 10 and 13 times the
median. This means that for many conversations, metadata sizes
will be limited, but long conversations may be problematic.

Write Throughput In our evaluation, we generate chains as quickly
as possible. In practice, write throughput requirements are limited.
For example, as of June 2012, Twitter reports receiving an average
of 4,630 Tweets per second [24] and reached a one-second peak
of 15,107 Tweets per second during the 2012 US presidential elec-
tion [42]. Facebook reported an average of 31,250 Likes and Com-
ments per second during October to December 2011 [23]—almost
an order of magnitude difference. In contrast, in our Metafilter
dataset, we observe a peak of 27 comments per second, averaging
0.021 comments per second over a period of more than 13 years.
These data points do not account for read traffic, which overwhelms
write traffic for many modern services. However, we aim for higher
throughput in our evaluation.

6.3 Single-node Microbenchmarks
We begin by micro-benchmarking shim performance on a single
Cassandra instance and single shim server. Figure 3 shows pareto
frontier [28] latency-throughput curves for bolt-on and pessimistic
bolt-on shim configurations.

Under standard bolt-on causal consistency (hereafter, bolt-on),
peak throughput is between 16,329 and 29,214 operations per sec-
ond. Read latency is negligible (several microseconds), and the

Dataset Mean Median 75th 95th 99th Max
Twitter [43] 5.3 3 5 15 40 968
Flickr [15] 4.6 2 5 19 44 3948

Metafilter [1] 24.1 13 27 78 170 5817
TUAW [52] 9.6 6 12 31 62 866

Table 1: Comment length distribution for datasets. Most chains
are short, but each distribution is long-tailed.

Flickr

Metafilter

TUAW

Twitter

Eventual

0 5 10 15 20 25 30
Throughput (Kops/s)

0
1
2
3
4
5
6
7
8

A
ve

ra
ge

La
te

nc
y

(m
s)

Bolt-on CausalBolt-on CausalBolt-on CausalBolt-on CausalBolt-on Causal

0 5 10 15 20
Throughput (Kops/s)

0
1
2
3
4
5
6
7
8

A
ve

ra
ge

La
te

nc
y

(m
s)

PessimisticPessimisticPessimisticPessimisticPessimistic

Figure 3: Latency-throughput for single node microbenchmarks.

system ultimately bottlenecks on Cassandra. The Flickr, Twitter,
and TUAW datasets all behave similarly, but Metafilter is an out-
lier, due in large part to its increased metadata requirements. With
stock YCSB on Cassandra, increasing write sizes from 1B to 1KB
decreases throughput by 12.2% (2035 ops/s), but increasing write
sizes from 1KB to 4KB incurs a 50% (8148 ops/s) peak throughput
penalty. Accordingly, Metafilter’s long-tailed metadata sizes (Ta-
ble 2) are more expensive than those of the other traces, which are
often smaller than 1KB. Additionally, serialization and write res-
olution overheads grow with chain length, incurring higher shim
CPU load. As expected, we find small median write latencies but
exaggerated latencies at high percentiles. Nonetheless, bolt-on
outperforms stock Cassandra (“eventual”) for all data sets except
Metafilter (albeit at an increased penalty to visibility, as below).
This is because causal consistency does not require ECDS reads,
reaffirming the original motivation of picking causal consistency
for its increased availability and throughput.

With pessimistic bolt-on causality (hereafter, pessimistic), we
observe peak throughput between 8827 and 14970 operations per
second. For our three shorter datasets, peak throughput is within
22% of eventual consistency while Metafilter falls short by 51%.
The difference between standard bolt-on and pessimistic shim
performance is due to the pessimistic shim following the tran-
sitive dependency chains on the read fast path. For example, for
Metafilter’s peak throughput, pessimistic performs an average of
1.32 ECDS reads for every one front-end read—as opposed to zero
in bolt-on causal consistency. However, the pessimistic strategy
results in better visibility: 18% fewer null responses. By volume,
the mean write depth is much higher than the mean chain depth
(Table 2); this is because most writes are part of long chains. By
cutting this tail, we could improve performance; we can consider
a model in which causality is only guaranteed for the majority of

0 20 40 60 80 100
Proportion Reads (%)

103

104

105

106
Th

ro
ug

hp
ut

(o
ps

/s
)

Bolt-on Causal
Pessimistic

Figure 4: Peak throughput versus read proportion for Twitter.

Dataset Mean Median 95th 99th
Flickr 386.5 (13.0) 201 (5) 1153 (44) 2447 (100)

Metafilter 1481.6 (60.0) 525 (18) 4272 (180) 19735 (870)
Tuaw 423.8 (14.4) 275 (8) 1259 (49) 2438 (100)

Twitter 429.2 (15.0) 169 (4) 1468 (58) 5407 (230)
Table 2: Serialized data size in bytes and chain length in messages
(in parentheses) for bolt-on shim and workloads.

posts—which are short—subsequently freeing resources consumed
by resolving long chains.

The proportion of reads and writes affects peak throughput (Fig-
ure 4). Performing all reads under the Twitter dataset, bolt-on
achieves over 640,000 gets/s because it is effectively reading val-
ues from local memory, yet the pessimistic strategy achieves
fewer than 8,500 ops/s. With entirely writes, bolt-on and pessimistic
are equivalent, achieving approximately 12,500 writes per second.
With a 95% mix of reads, bolt-on achieves 175,000 operations
per second (roughly 8.8K writes/s). This result is unsurprising—
bolt-on allows purely local reads at the expense of visibility; by
treating the local store as a fast-path cache, reads can proceed with-
out being affected by ECDS latencies.

We observe that, in general, the efficiency of the bolt-on strat-
egy depends on metadata overheads. For many datasets, overhead
is less than 500B but, for datasets like Metafilter, can exceed 19KB.
Thus, typical metadata overheads are inexpensive, but, for long his-
tories, the cost of causality must be weighed against end-user ben-
efits (e.g., is it worth storing 200 comments’ worth of metadata,
or just the last 10?) Equally importantly, YCSB has good spatial
and temporal locality, meaning that each shim’s local store is likely
to contain many recent writes and that dependency resolution is
inexpensive. While we have pessimistically adjusted the YCSB de-
faults, in practice, and for different workloads, we expect that hy-
brid strategies (e.g., bounding checking times) will be necessary to
mitigate the effect of worsened locality (at the expense of increased
data staleness).

6.4 Scale-out
We next consider the scalability of bolt-on causality. Both pri-
mary architectural components of our implementation—our shim
and Cassandra—are designed as shared-nothing systems. As ex-
pected, the shim implementation scales linearly with the number of
replicas (Figure 5). For bolt-on causality, throughput scales from
35K ops/s to 50K ops/s moving from 3 to 5 replicas and doubles
moving from 5 to 10 replicas. For pessimistic bolt-on causal-
ity, throughput also scales linearly. With 10 replicas, we achieve
140K operations per second. Although we do not present a full
evaluation, bolt-on achieves slightly over 1M operations per sec-
ond under bolt-on causal consistency with 100 Cassandra instances
and 100 shim processes.

Flickr

Metafilter

TUAW

Twitter

Eventual

Strong

0 10 20 30 40 50 60
Throughput (Kops/s)

101

102

103

A
ve

ra
ge

La
te

nc
y

(m
s)

Bolt-on CausalBolt-on CausalBolt-on CausalBolt-on CausalBolt-on CausalBolt-on Causal

0 10 20 30 40 50 60
Throughput (Kops/s)

101

102

103

A
ve

ra
ge

La
te

nc
y

(m
s)

PessimisticPessimisticPessimisticPessimisticPessimisticPessimistic

Figure 6: Latency-throughput for WAN deployment.

6.5 WAN Deployment
As an end-to-end demonstration of bolt-on causality, we deployed
our shim across two datacenters. We place five shim and five Cas-
sandra servers in each datacenter (us-east and us-west-1) for a
total of ten shims and ten Cassandra instances with a replication
factor of 2 per datacenter, ensuring 4 replicas per key (3-server-
fault tolerance with 1-server-fault tolerance per datacenter). Even-
tually consistent and shim ECDS requests complete after contact-
ing a single replica, while Cassandra’s strong “read your writes”
quorum configuration (which is weaker than causal consistency,
providing regular register semantics) requires contacting a mini-
mum of 3 replicas per request. As we show in Figure 6, bolt-on
causal consistency achieves around 45,000 ops/s for all datasets
but Metafilter, which achieves 35,000 ops/s, all without incurring
WAN latencies. Eventual consistency achieves over 50,000 ops/s at
an average latency of 139 ms/op, while “strong” (regular register)
consistency achieves a 24,703 operations at an average latency of
490 ms/op. Employing strong consistency results in both increased
latency and decreased throughput, while bolt-on causal consistency
do not incur substantial overhead in either category.

7 Design Space
Our approach to bolt-on causal consistency has been pragmatically
motivated: we considered a restrictive ECDS model that approx-
imates the “bare minimum” of guarantees provided by eventually
consistent stores. This allows us to use a variety of ECDS im-
plementations. However, eventually consistent stores vary in their
guarantees, and understanding the implications of API design on
layered approaches to consistency is instructive for future systems
architectures. In this section, we discuss ECDS API modifications
that affect the efficiency of bolt-on causality. We found that most
ECDSs except for Cassandra and Amazon’s S3 supported at least
one of these optimizations (Table 3).

7.1 No Overwrites
Our initial ECDS model chooses a single value for each key, so
a shim may encounter overwritten histories and lose metadata. If
however, we disallow overwrites, then implementing bolt-on causal

A
ve

ra
ge

La
te

nc
y

(m
s)

Flickr Metafilter TUAW Twitter Eventual

Bolt-on causal consistency

0 5 10 15 20 25 30 35 40
0

10
20
30
40
50
60
70

N=3N=3N=3N=3N=3

0 10 20 30 40 50 60
0

10
20
30
40
50
60
70

N=5N=5N=5N=5N=5

20 40 60 80 100 120 140 160
0
5

10
15
20
25
30
35
40

N=10N=10N=10N=10N=10

Pessimistic bolt-on causal consistency

0 5 10 15 20 25
0

20
40
60
80

100
N=3N=3N=3N=3N=3

0 5 10 15 20 25 30 35 40 45
0

20
40
60
80

100
N=5N=5N=5N=5N=5

0 20 40 60 80 100 120
0
5

10
15
20
25
30
35
40

N=10N=10N=10N=10N=10

Throughput (Kops/s)

Figure 5: Bolt-on and pessimistic bolt-on latency-throughput for varying cluster sizes. The shared-nothing architectures scales linearly.

Data Store Concurrent Cond. Stable
Versions Update Callback

Hosted
Amazon DynamoDB N Y N
Amazon S3 N N N
Amazon SimpleDB N Y N
Amazon Dynamo [22] Y N N
Cloudant Data Layer Y N N
Google App Engine N Y N

Self-Hosted
Apache Cassandra [30] N N N
Apache CouchDB Y N N
Basho Riak Y N N
LinkedIn Voldemort Y N N
MongoDB N Y N
Yahoo! PNUTS [17] N Y N

Effect of ECDS API Change
Decreases metadata Y Y Y
Decreases ECDS reads N N Y

Table 3: Additional primitives provided by real-world ECDS sys-
tems (both purely eventually consistent and allowing eventually
consistent reads) as of November 2012.

consistency becomes considerably easier. If there is only one ver-
sion of each key, overwrites are not a problem: a shim would only
need to store the nearest dependencies in each write, reducing the
storage overhead [34, 35]. In addition, without overwrites, there
cannot be concurrent or later updates to a given key, so the defi-
nition of a causal cut becomes much simpler: we simply have to
check that each key in the transitive closure is in the local store. If
the ECDS provides monotonic reads session guarantees (i.e., time
never goes backwards with respect to a single key) [48], then we
need not store the value of the key in the local store. However, for
the many modern applications that require mutation, this solution
may have limited practical applicability.

7.2 Controlling Concurrent Overwrites
Given that we cannot disallow overwrites for all applications, we
can attempt to reduce their severity. There are at least two mech-
anisms that allow us to control overwrites in an eventually consis-
tent system. First, eventually consistent systems can track concur-

rent operations across replicas and present all concurrent updates
to the client, who then decides which to keep [22, 25]; a bolt-on
system could avoid overwritten histories by appropriately merging
concurrent updates. Alternatively, if the ECDS provides a test-
and-set operation, shims can trivially control overwrites without
the need for merging as above. Linearizable test-and-set requires a
strongly consistent operation, but we can consider an ECDS allow-
ing both linearizable writes and eventually consistent reads (e.g.,
PNUTS [17], DynamoDB). The cost of these mechanisms is that
shims may have to read more data if the ECDS returns concurrent
writes or retry writes in the event of failed test-and-set operations.

7.3 Callback on Convergence
Once a version is visible to all processes, it is stable and can be
omitted from the metadata history [16]; this helps enable the best-
known causally consistent architectures to perform well in the ab-
sence of partitions [34, 35]. A bolt-on solution can leverage a hy-
pothetical callback on convergence from the ECDS: shims can in-
stead buffer new writes until their dependencies have reached all
ECDS replicas. This way, the ECDS will always contain a causal
cut and the shim can treat the ECDS as its local store, eliminating
all metadata and dependency checks. However, shims may need to
buffer their own writes indefinitely; to ensure durability, each shim
can queue its pending-but-unstable updates in a private ECDS data
item. Moreover, to ensure availability in the event of ECDS dis-
connections, the shim may need to cache some of its reads. While
we are not aware of these callbacks in any production ready stores,
we believe bolt-on layers would greatly benefit from their inclusion
at only a small cost to ECDS complexity. Alternatively, shims can
leverage consistency prediction or monitoring systems to provide
estimates for write stability (e.g., Cassandra 1.2 recently integrated
support for PBS, which provides expected bounds on write visi-
bility to readers [8]). This allows probabilistic causal consistency
guarantees, which may be sufficient for some applications.

8 Related Work
Our work is motivated by and related to a wide range of work on
weak consistency and architectural separation in database systems.

Weak Consistency The large number of distributed data stores and
consistency models reflects the complex trade-offs between both
consistency and availability [20, 27] and consistency and perfor-
mance [2, 8]. In the presence of partitions, causal consistency is

one of the strongest available models [36], but there are many oth-
ers such as session guarantees [48]. In this paper, we focus specifi-
cally on causally and eventually consistent stores.

Causal Consistency Lamport [31] introduced the concept of causal
ordering between events in distributed systems, which Ahamad et
al. [4] generalized to causal memory—a consistency model for reads
and writes that respects causality. There are many causally consis-
tent systems in the literature, including Bayou [41], COPS [34],
PRACTI [9], Swift [53], and lazy replication [29]. Many of these
systems provide convergent causal consistency [36], also termed
causal+ consistency [34]. These systems often adopt variants of the
causal memory algorithm [4] outlined in Section 4, using log ship-
ping [9, 41], explicit messaging [45], or dependency tracking [29]
but assume reliable delivery and therefore do not handle the prob-
lem of overwritten histories.

Recent work has renewed interest in causally consistent systems.
Mahajan et al. have provided a proof that no model stronger than
real-time causal consistency is achievable in a one-way conver-
gent, always available system [36], highlighting it as a particu-
larly noteworthy model. Concurrently, Lloyd et al. showed that
causal consistency with read-only and write-only transactions can
be achieved are achievable with minimal latency across a wide-
area network and with high availability across datacenters [34, 35]
Their COPS and Eiger systems adopt a variant of the log-shipping
approach from Section 4.1 where the local store is sharded across
a set of fault-tolerant, linearizable servers in each datacenter. Fi-
nally, Swift [53] is the first system we are aware of that provides
highly available causal read/write transactions similar to those we
discussed in Section 5.3. Swift employs client-side caching and
“scout” processes to update client caches and maintain per-datacenter
vector clock metadata. In this work, we attempt to bridge the gap
between the literature and current practice by identifying how to
achieve these semantics in existing systems.

Layered Database Architectures Our bolt-on architecture is influ-
enced by the end-to-end principle for systems design [44], which
dictates that application functionality should be located at system
endpoints—in our case, we separate the consistency safety prop-
erties from the mechanics of replication. Several systems such as
Deuteronomy [32], G-Store [19], and Microsoft SQL Azure [14]
and related research in database middleware [40] and “component
databases” [26] similarly separate transaction management from
distributed storage. In providing strongly consistent semantics, these
solutions often rely on distributed atomic operations [14, 32, 40]
and/or stronger storage-level guarantees (e.g., fine-grained parti-
tioning [19]). This body of work is a useful, strongly consistent
parallel to our approach here.

Two recent projects build weak semantics above eventually con-
sistent infrastructure. Brantner et al. provide a range of data con-
sistency properties (like atomic transactions and read-your-writes
guarantees) with varying availability properties by leveraging in-
frastructure like Amazon S3 and atomic queues [12]. Bermbach et
al. have concurrently studied middleware for cache-based mono-
tonic reads and read-your-writes guarantees above eventually con-
sistent stores [10]. Their focus on single-key session guarantees
forms an interesting contrast with our multi-key causal consistency:
overwritten histories are not problematic for these single-key guar-
antees, which are achieved with standard dependency tracking meta-
data. Our focus in this paper is on providing convergent causal
consistency with high availability.

Our shim design leverages many of the guarantees provided by
the ECDS such as convergence and write propagation. The idea
of assembling a stronger consistency model out of weaker compo-

nents is partially due to Brzezinski et al. [13], who prove that the
composition of many session guarantees yields causal consistency.
Assembling causal consistency guarantees from eventually consis-
tent infrastructure yields a new set of challenges—here, primarily
the problem of overwritten histories.

9 Conclusions
In this paper, we upgraded production-ready eventually consistent
data stores to provide convergent causal consistency, one of the
strongest consistency models achievable in the presence of parti-
tions. We separated concerns of replication, fault-tolerance, and
availability from the safety properties of consistency by applying
a thin shim layer on top of unmodified, existing stores. The prob-
lem of overwritten histories made providing convergent causality
through a shim difficult: the underlying store’s register semantics
allowed the loss of causal dependency information, resulting in
unavailability for existing algorithms. To solve this problem, we
introduced causal cuts, an extension of consistent cuts to causal
memories. While maintaining causal cuts for complete potential
causality is prohibitively expensive, a large class of application-
level causal dependencies—explicit causality—is well suited for
this model. Our bolt-on shim implementation outperforms eventual
consistency in the case where local reads are acceptable and other-
wise achieves throughput and latency often within 20% and typi-
cally within 50% for representative explicit causality workloads.

In light of our experiences, we believe that bolt-on and layered
approaches to data storage can provide a useful and modular alter-
native to often monolithic existing data storage infrastructure. In
this work, we have taken a fairly restrictive approach, with an eye
towards interoperability and broad applicability; the key challenge
of overwritten histories and the metadata overheads required by our
solution are artifacts of this decision. However, a less restrictive set
of assumptions (as is reasonable in future data storage systems) of-
fers the possibility of more harmonious cross-layer coordination. In
particular, we believe that the opportunity to revisit the data storage
interface and its interaction with higher layers of data management
functionality is especially ripe.

Acknowledgments The authors would like to thank Ganesh Anan-
thanarayanan, Neil Conway, Joseph Gonzalez, Adam Oliner, Auro-
jit Panda, Josh Rosen, Colin Scott, Evan Sparks, Shivaram Venkatara-
man, Patrick Wendell, Matei Zaharia, and especially Alan Fekete
for their constructive feedback on earlier revisions of this work.

This research is supported in part by National Science Foundation
grants CCF-1139158, CNS-0722077, IIS-0713661, IIS-0803690,
and IIS-0917349, DARPA awards FA8650-11-C-7136 and FA8750-
12-2-0331, Air Force OSR Grant FA9550-08-1-0352, the NSF GRFP
under Grant DGE-1106400. and gifts from Amazon Web Services,
Google, SAP, Blue Goji, Cisco, Clearstory Data, Cloudera, EMC,
Ericsson, Facebook, General Electric, Hortonworks, Huawei, Intel,
Microsoft, NetApp, NTT Multimedia Communications Laborato-
ries, Oracle, Quanta, Samsung, Splunk, VMware and Yahoo!.

10 References
[1] Metafilter Infodump. http://stuff.metafilter.com/infodump/.

Combination of all available comment datasets: mefi,
askme, meta, music. User count from usernames.

[2] D. J. Abadi. Consistency tradeoffs in modern distributed
database system design: CAP is only part of the story. IEEE
Computer, 45(2):37–42, 2012.

[3] A. Adya. Weak consistency: a generalized theory and
optimistic implementations for distributed transactions. PhD
thesis, Massachusetts Institute of Technology, 1999.

[4] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. Hutto.

Causal memory: Definitions, implementation and
programming. Distributed Computing, 9(1), 1995.

[5] B. Alpern and F. B. Schneider. Defining liveness. Inf.
Process. Lett., 21(4):181–185, 1985.

[6] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica. The potential dangers of causal consistency and an
explicit solution. In ACM SOCC 2012.

[7] P. Bailis and A. Ghodsi. Eventual Consistency today:
Limitations, extensions, and beyond. ACM Queue, 11(3),
2013.

[8] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein,
and I. Stoica. Probabilistically Bounded Staleness for
practical partial quorums. In VLDB 2012.

[9] N. Belaramani, M. Dahlin, L. Gao, A. Nayate,
A. Venkataramani, P. Yalagandula, and J. Zheng. PRACTI
replication. In NSDI 2006.

[10] D. Bermbach, J. Kuhlenkamp, B. Derre, M. Klems, and
S. Tai. A middleware guaranteeing client-centric consistency
on top of eventually consistent datastores. In IEEE IC2E
2013.

[11] K. Birman. A response to Cheriton and Skeen’s criticism of
causal and totally ordered communication. SIGOPS Oper.
Syst. Rev., 28(1):11–21, Jan. 1994.

[12] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and
T. Kraska. Building a database on S3. In SIGMOD 2008.

[13] J. Brzezinski, C. Sobaniec, and D. Wawrzyniak. From
session causality to causal consistency. In PDP 2004.

[14] D. G. Campbell, G. Kakivaya, and N. Ellis. Extreme scale
with full SQL language support in Microsoft SQL Azure. In
SIGMOD 2010.

[15] M. Cha, A. Mislove, and K. P. Gummadi. A
Measurement-driven Analysis of Information Propagation in
the Flickr Social Network. In WWW 2009.

[16] D. R. Cheriton and D. Skeen. Understanding the limitations
of causally and totally ordered communication. In SOSP
1993.

[17] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and
R. Yerneni. PNUTS: Yahoo!’s hosted data serving platform.
In VLDB 2008.

[18] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB.
In ACM SOCC 2010.

[19] S. Das, D. Agrawal, and A. El Abbadi. G-store: a scalable
data store for transactional multi key access in the cloud. In
ACM SOCC 2010.

[20] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency
in partitioned networks. ACM Computing Surveys,
17(3):341–370, 1985.

[21] J. Dean. Designs, lessons, and advice from building large
distributed systems. Keynote from LADIS 2009.

[22] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available
key-value store. In SOSP 2007.

[23] Facebook, Inc. SEC Form S-1, February 2012.
[24] D. Farber. Twitter hits 400 million tweets per day, mostly

mobile. CNET, 2012. http://cnet.co/KHlg8q.
[25] A. Feinberg. Project Voldemort: Reliable distributed storage.

In ICDE 2011.
[26] A. Geppert and K. Dittrich. Component database systems:

Introduction, foundations, and overview, in Component
Database Systems, 2001.

[27] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services. SIGACT News, 33(2):51–59, June 2002.

[28] M. Klems. cassandra-user mailing list: Benchmarking
Cassandra with YCSB, February 2011. http://bit.ly/15iQfBD.

[29] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing
high availability using lazy replication. ACM Trans. Comput.
Syst., 10(4):360–391, Nov. 1992.

[30] A. Lakshman and P. Malik. Cassandra - a decentralized
structured storage system. In LADIS 2008. Configuration:
http://cassandra.apache.org (2013).

[31] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, July
1978.

[32] J. Levandoski, D. Lomet, M. Mokbel, and K. Zhao.
Deuteronomy: Transaction support for cloud data. In CIDR
2011.

[33] G. Linden. Make data useful. https://sites.google.com/site/
glinden/Home/StanfordDataMining.2006-11-29.ppt, 2006.

[34] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t settle for eventual: scalable causal
consistency for wide-area storage with COPS. In SOSP 2011.

[35] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency geo-replicated
storage. In NSDI 2013.

[36] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency,
availability, convergence. Technical Report TR-11-22,
Computer Science Department, UT Austin, May 2011.

[37] F. Mattern. Virtual time and global states of distributed
systems. Parallel and Distributed Algorithms,
1(23):215–226, 1989.

[38] J. S. Mill. A System of Logic, Ratiocinative and Inductive,
Being a Connected View of the Principles of Evidence, and
the Methods of Scientific Investigation, volume 1. John W.
Parker, West Strand, London, 1843.

[39] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J.
Walker, E. Walton, J. M. Chow, D. Edwards, S. Kiser, and
C. Kline. Detection of mutual inconsistency in distributed
systems. IEEE Trans. Softw. Eng., 9(3):240–247, May 1983.

[40] M. Patiño-Martinez, R. Jiménez-Peris, B. Kemme, and
G. Alonso. Consistent database replication at the middleware
level. ACM TOCS, 23(4):375–423, 2005.

[41] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and
A. J. Demers. Flexible update propagation for weakly
consistent replication. In SOSP 1997.

[42] M. Rawashdeh. Bolstering our infrastructure.
http://engineering.twitter.com/2012/11/
bolstering-our-infrastructure.html (2013).

[43] A. Ritter, C. Cherry, and B. Dolan. Unsupervised modeling
of Twitter conversations. In HLT 2010.

[44] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in system design. ACM Trans. Comput. Syst.,
2(4):277–288, Nov. 1984.

[45] A. Schiper, K. Birman, and P. Stephenson. Lightweight
causal and atomic group multicast. ACM Trans. Comput.
Syst., 9(3):272–314, Aug. 1991.

[46] R. Schwarz and F. Mattern. Detecting causal relationships in
distributed computations: In search of the holy grail.
Distributed Computing, 7:149–174, 1994.

[47] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In SOSP 2011.

[48] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer,
M. M. Theimer, and B. B. Welch. Session guarantees for
weakly consistent replicated data. In PDIS 1994.

[49] W. Vogels. Eventually consistent. Commun. ACM,
52(1):40–44, Jan. 2009.

[50] W. Vogels. Choosing consistency.
http://www.allthingsdistributed.com/2010/02/
strong_consistency_simpledb.html, 2010.

[51] S. Ye and S. F. Wu. Measuring message propagation and
social influence on Twitter.com. In SocInfo 2010.

[52] R. Zafarani and H. Liu. Social computing data repository at
ASU, 2009. TUAW dataset.

[53] M. Zawirski, A. Bieniusa, V. Balegas, N. Preguica,
S. Duarte, M. Shapiro, and C. Baquero. Geo-replication all
the way to the edge. 2013. Personal communication and draft
under submission.
http://asc.di.fct.unl.pt/∼nmp/swiftcomp/swiftcloud.html.

