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ABSTRACT

As video volumes grow, analysts are increasingly able to query
the real world. Since manually watching these growing volumes
of video is infeasible, analysts have increasingly turned to deep
learning to perform automatic analyses. However, these meth-
ods are: costly (running up to 10x slower than real time, i.e.,
3 fps) and cumbersome to deploy, requiring writing complex,
imperative code with many low-level libraries (e.g., OpenCV,
MXNet). There is an incredible opportunity to leverage tech-
niques from the data management community to automate and
optimize these analytics pipelines. In this paper, we describe
our ongoing work in the Stanford DAWN lab on BlazeIt, an
analytics engine for scalable and usable video analytics that
currently contains an optimizing query engine. We propose a
demonstration of BlazeIt’s query language, FrameQL, its use
cases, and our preliminary work on debugging machine learning,
which will show the feasibility of video analytics at scale. We
further describe the challenges that arise from large-scale video,
progress we have made in automating and optimizing video
analytics pipelines, and our plans to extend BlazeIt.

1 Introduction

Video can be used to answer queries about the real world, both
over large historical datasets (e.g., how many people were in
Times Square in July?) and in real time (e.g., which streets are
the busiest now?) in a variety of domains ranging from urban
planning, autonomous vehicle planning, and ornithology. For
example, an urban planner working on traffic meter setting or
city planning [5] may be interested in whether Mondays have
notably different traffic volumes than Tuesdays, and counts the
number of cars that enter and exit on various highway exits.
An analyst at an autonomous car company may notice the
car behaves strangely at lane divers with poor markings and
searches for events at lane dividers with poor lane markings [20].
An ornithologist may be interested in the feeding patterns of
birds and monitors various bird feeders.

It is not cost effective and is too time-consuming to manually
watch these growing quantities of video (London alone has over
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Figure 1: Architecture diagram for BlazeIt.

500k CCTVs [1]) to answer these questions. Automated meth-
ods of video analysis are increasingly important in answering
such queries.
Fortunately, modern computer vision (CV) techniques have

made great strides in automating these tasks, with near human-
levels of accuracy for some restricted tasks [9] and rapid progress
on others [8] in the form of deep neural networks and models.
These trends present an incredible opportunity for visual data
management research. We believe that applying data manage-
ment techniques to video will enable analyses over the real world,
as relational DBs have enabled analyses over structured data.
Unfortunately, it is prohibitively expensive to naively deploy

these deep models at scale. While these models could be run
exhaustively over video to extract relevant information and
subsequently be used to answer queries via a traditional query
engine, they come at great computational cost. Running a deep
model over a single frame of video can take up to hundreds of
billions of FLOPs (and run up to 10× slower than real-time),
making it infeasible to exhaustively extract information from
video. Systems builders have created custom pipelines for spe-
cific tasks (e.g., binary detection) [11, 15], but these systems
cannot adopt to user’s queries. As a result, we believe it to be
necessary to rethink analytics for video.

In addition to the computational expense, analysis with deep
networks poses several other challenges:

• Scalability: we believe the trend of deeper and more com-
putationally expensive models will continue. As networks
today are already infeasible at scale, we view scalability
as a major obstacle to video analytics.

• Usability: using these deep networks requires knowledge



of CV, deep learning, and programming, and often requires
writing complex, ad-hoc code.

• Integration with the data ecosystem: many video
queries (e.g., searching for actions or events) are not easily
expressed in standard SQL.

• Storage and indexing: As running deep models over
every frame of video is infeasible, we can only index a
small fraction of the video. Additionally, existing video
storage formats are not well suited for indexing.

• Real-time analysis and actuation: as cameras pro-
liferate, so will the demand for real-time analysis and
actuation (e.g., decision making). Due to the size of video,
streaming the data back to a central server is infeasible.

We have begun to build a system called BlazeIt for usable
and scalable video analytics to demonstrate the feasibility of
video analytics at scale and address the challenges we have listed.
BlazeIt currently contains an optimizing query engine and its
system diagram is shown in Figure 1.

In the remainder of this paper, we describe our current
progress in BlazeIt, our plans to extend BlazeIt, and a
description of our demonstration of BlazeIt.

2 Related Work

BlazeIt builds on a long tradition of data management for
multimedia and video, and on recent advances in CV. We outline
some relevant parts of the literature below.

Visual data management. Visual data management has
aimed to organize and query visual data [6, 24]. These sys-
tems were followed by a range of “multimedia” database for
storing [4, 19], querying [3, 18], and managing [13, 27] video
data. These systems use classic CV techniques such as low-level
image features (e.g., colors, textures) and/or rely on textual
annotations for semantic queries. However, recent advances in
CV allow the automatic population of semantic data and we
believe it is critical to reinvestigate these systems.

Many query languages for visual data have been developed [12,
22]. However, much of the prior work has assumed the data
is provided (e.g., actors in a movie) or that low-level image
features are queried. In this work, we describe how these fields
can be automatically populated and optimized.

Modern video analytics. Systems builders have created
specific pipelines for video analytics, but have yet to built a
complete query system with a rich query language. For example,
[2, 11, 15] optimize binary detection (the presence or absence
of a particular object class in video). However, these systems
cannot adapt to user’s queries. In BlazeIt, we augment these
pipelines with a rich query language and novel optimizations
which these systems do not support.

Other systems reduce the latency of live queries [28] or increase
the throughput of batch analytics [25] when the computation
is pre-defined as a black-box computation graph. These systems
cannot perform certain optimizations such as in BlazeIt, as
they do not have access to the computation semantics. BlazeIt
could be run on such systems for live queries or scale-out.

A range of contemporary systems aim to optimize complemen-
tary functions, including arbitrary UDFs [23], visualization [26],
and patch-based visual analytics [17]. To the best of our knowl-
edge, BlazeIt is the first system with a declarative query lan-
guage and query optimizer for visual analytics that automatically
extracts information from pixel data directly, without requiring
knowledge of the neural networks used to process the pixel data.

SELECT FCOUNT(*)

FROM taipei

WHERE class = 'car'

ERROR WITHIN 0.1

AT CONFIDENCE 95%

(a) The FrameQL query for
counting the frame-averaged
number of cars.

SELECT timestamp

FROM taipei

GROUP BY timestamp

HAVING SUM(class='bus')>=1

AND SUM(class='car')>=5

LIMIT 10 GAP 300

(b) The FrameQL query for
selecting 10 frames of at least one
bus and five cars, with each frame
at least 10 seconds apart.

SELECT *

FROM taipei

WHERE class = 'bus' AND redness(content) >= 17.5

AND area(mask) > 100000

GROUP BY trackid

HAVING COUNT(*) > 15

(c) The FrameQL query for selecting all the information of red
buses at least 100,000 pixels large, in the scene for at least 0.5s (at
30 fps, 0.5s is 15 frames). The last constraint is for noise reduction.

Figure 2: Three FrameQL example queries.

3 BlazeIt Overview

Over the past two years, we have built systems for scalable and
usable video analytics in the DAWN lab at Stanford Univer-
sity, beginning with NoScope [15]. NoScope leveraged model
specialization, in which a smaller, cheaper model is trained to
mimic a larger reference model on a reduced task (e.g., counting
cars in a frame vs full object detection). However, our work on
the initial NoScope system only optimizes binary detection.
In response, we have initiated work on BlazeIt [14], which

significantly expandsNoScope by including an optimizing query
engine and a query language, FrameQL. BlazeIt’s primary
goal is to execute FrameQL queries efficiently, as materializing
the records is the primary computational bottleneck. Despite
our progress, several challenges remain. We describe BlazeIt
below and describe our plans to extend BlazeIt in Section 4.

3.1 FrameQL Overview

BlazeIt queries are specified via FrameQL, a SQL-like lan-
guage. FrameQL allows users to query the objects appearing in
a video feed over space and time by content and location at the
frame level. We choose a declarative language for two reasons.
First, by providing a table-like schema using the standard re-
lational algebra, we enable users with only familiarity with SQL
to query videos, whereas extracting the data necessary for these
queries manually would require expertise in deep learning, CV,
and programming. Second, the separation of the specification
and implementation enables new forms of optimizations.
In FrameQL’s data model, each video (stored and com-

pressed in formats such as H.264) is represented as a relation,
so they can be composed with relational operators. FrameQL
supports selection, projection, and aggregation. FrameQL’s
data schema contains fields relating to the time, location, and
class of objects, scene and global identifiers, the box contents,
and the features from the object detection method. BlazeIt
can populate these fields automatically.
We show three examples in Figure 2, with full details in [14].

3.2 BlazeIt’s Architecture

To materialize FrameQL records, BlazeIt uses object detec-
tion, which, given a frame of video, returns the set of bounding
boxes and class information of the objects in the video. These



object detectors come in the form of deep networks.
In traditional query processing engines, the records are typi-

cally cheap to process (e.g., 100s of cycles to apply a predicate),
but materializing the records for a frame of video, i.e., perform-
ing object detection, is extremely expensive (e.g., billions of
FLOPs for Mask R-CNN [8]). This computational cost also
makes the solution of materializing all the records infeasible.
When the user issues an FrameQL query, BlazeIt’s query

engine optimizes and executes the query. BlazeIt’s primary
challenge is executing the query efficiently: naive methods, such
as performing object detection on every frame or using No-
Scope [15] as a filter, are often prohibitively slow. To optimize
and execute the query, BlazeIt inspects the query contents
to see if optimizations can be applied. For example, BlazeIt
cannot optimize SELECT *, but it can optimize computing the
average number of cars per frame by sampling and applying
model specialization [15].
Because object detection is the major computational bottle-

neck, BlazeIt’s optimizer primarily attempts to reduce the
number of object detection calls while achieving the target accu-
racy. BlazeIt leverages three novel optimizations and existing
techniques from NoScope to reduce the computational cost of
object detection. One key primitive we use in BlazeIt is called
model specialization, which we developed in NoScope [15].

BlazeIt currently targets aggregation (e.g., Figure 2a), scrub-
bing (e.g., Figure 2b), and content-based selection (e.g., Fig-
ure 2c):

• Aggregation: to optimize aggregation, BlazeIt uses
specialized networks to directly compute the answer or to
reduce the variance in sampling.

• Scrubbing: to optimize scrubbing, BlazeIt trains spe-
cialized networks to search for frames matching the pred-
icate and adapts importance sampling for fast search.

• Content-based selection: to optimize content-based
selection, BlazeIt infers, from the query, a set of filters
that discards irrelevant frames.

These optimizations can give up to three orders of magnitude
speedup. [14] provides full details.

4 Ongoing Work
While the core ideas in FrameQL and in BlazeIt’s current
optimizations offer significant speedups in video analytics, many
challenges remain. We describe several of these challenges, as
well as how we are incorporating solutions into BlazeIt.

Scalability. While model specialization currently can speed
up restricted tasks (e.g., counting, classification), some queries
require the full functionality of object detection, the overwhelm-
ing bottleneck for many queries. We are exploring ways of
automatically specializing object detection methods.
Off-the-shelf object detectors are trained on generic datasets,

but are often deployed in specific scenarios, e.g., on a street
corner in New York or inside a store. While powerful object
detection methods (e.g., Mask R-CNN [8]) may be able to be
deployed in all such scenarios, weaker models (e.g., SSD [21] with
a MobileNet [10] backbone) may not be as accurate. However,
similar to how specialized models forego the full generality for
inference speed, we plan to explore fast methods of specializing
these weaker object detection models in restricted scenarios (e.g.,
a model inside a store may not need to detect cars).

Storage and indexing. While storage of video has been
extensively studied for efficient compression, there are new
opportunities for storage and indexing for neural network-based

analytics engines. For efficient storage, videos are compressed
using spatial information. For example, many storage formats
(including H.264) largely consist of two types of frames: I-frames,
which capture full frames of video, and P-frames, which capture
deltas between frames. We believe learning format-specific
neural networks for compressed data is promising and can avoid
decoding P-frames in many situations, similar to [7].
Additionally, we have found that specialized neural networks

can operate on significantly reduced representations of the video
frames (e.g., scaled-down frames or the results of specific con-
volution layers). We plan to explore methods of indexing via
specialized networks for exploratory queries, while maintaining
high accuracy for downstream queries.

Real-time analytics and actuation. While batch analytics
can be useful for understanding aggregate behavior, many sce-
narios require real-time analytics and actuation, e.g., real-time
traffic meter setting.
Deep learning raises a new set of concerns for real-time an-

alytics. Many robots (e.g., autonomous vehicles, drones) and
sensors (e.g., street cameras) will contain accelerators that run
deep networks for a restricted set of tasks and possibly reduced
accuracy. For example, an autonomous vehicle may have an
object detection network, but no model for collecting the de-
mographic information of the pedestrians it sees. Additionally,
it will become increasingly costly to transfer data to a central
server for storage and processing.

We believe model specialization for real-time analytics on edge
devices and bandwidth reduction are promising. For example,
edge devices have a number of competing constraints (e.g., power,
bandwidth, accuracy) and we believe extending inference-aware
model search to account for multiple constraints is promising.

Usability via debugging. Despite advances in deep learning
and specialization, deep and specialized models are not always
accurate, often in predictable ways. The accuracy of these
methods is a major obstacle to accurate analysis.
We have begun work on a model debugging system that will

help identify and fix model issues via model assertions [16].
Model assertions are boolean statements over the output of
models and are similar to program assertions. For example, an
analyst may code an assertion that there should not be 3 cars
within another car bounding box (a common error for lower-
quality object detection methods). These assertions can be used
to fix behavior at run-time, or collect data to improve models.

5 Demonstration

To highlight the ease of use of FrameQL for video analytics, we
will present a demonstration of our UI and accompanying query
engine. Our demonstration will contain two parts: a textual
interface for users to issue FrameQL queries and a visualization
tool to display the frames and metadata of the returned results.
The textual interface will accept FrameQL queries such as

in Figure 2. For queries that return summary statistics (i.e.,
aggregation), the demo will display the output as is. For queries
that return frame numbers and box information, we will pro-
vide a visualization tool that can show frames or a sequence of
frames with the boxes (and metadata) drawn on the frames. An
example of the interface is shown in Figure 3 and an example
of a visualized frame is shown in Figure 4b.
We will demonstrate two use cases of BlazeIt in the ur-

ban planning scenario: 1) exploratory queries and 2) model
debugging via user-defined invariants.

Exploratory query use case. We will first demonstrate the
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BlazeIt Demo

Video name: Submit

Ingest

Query

SELECT timestamp
FROM taipei
GROUP BY timestamp
HAVING SUM(class='bus') >= 1
   AND SUM(class='car') >= 5
LIMIT 2 GAP 300

SQL output

timestamp
1402039
49302

Visualization

Frame: 1402039

Figure 3: An example query with example answer and
visualized frame.

(a) An example when the assertion
triggers.

(b) Simply collecting instances of
objects is not sufficient.

Figure 4: An example of an error an object detection method
can make on night-street.

ease of use of FrameQL for an urban planning use case. The
analyst has access to a set of cameras at street corners.

First, we demonstrate how the urban planner can count the
number of cars in the video, which can be accomplished with
the query in Figure 2a. The query specifies an error bound via
ERROR for fast execution. This count information can be used
to set traffic metering or for understanding traffic patterns.

Second, we demonstrate how the urban planner can look for
rare events by querying for events of at least five cars and at
least one bus, which can be accomplished with the query in
Figure 2b. The urban planner may be interested in such events
to understand how public transit interacts with congestion.

Finally, we demonstrate how to perform content-based selec-
tion by searching for red buses, which can be accomplished by
the query shown in Figure 2c. The urban planner may be in-
terested in searching for such events to understand how tourism
affects traffic and looks for red buses as a proxy for tour buses.
This query shows how to exhaustively select frames with red
buses. Here, redness and area return the measure of redness
of an image and the area of a box respectively.

Model debugging use case. We will additionally demon-
strate ongoing work [16] to extend BlazeIt with debugging
capabilities via user-defined invariants.

An analyst may view a video of a street corner and notices a
common error is multiple overlapping boxes of a car when there
should only be one box. Collecting instances of this error is
prohibitively expensive with random sampling or by collecting
instances of objects, as shown Figure 4b.

The analyst writes an assertion that several boxes of cars
should not overlap. By running this assertion, the analyst is
able to collect training instances (Figure 4a) to improve the
model. We will show the improved model performance after it
is trained on the result of the triggered assertions.

6 Conclusions
Video is a rich, rapidly growing source of high value, high volume
data. We have outlined several key challenges in querying video,
ranging from scalability to storage and indexing. In response,
we are developing BlazeIt to demonstrate the feasibility of
usable video analytics at scale. We show that that a large class
of queries regarding the spatiotemporal information of objects
in video can be answered in FrameQL and that BlazeIt can
deliver several orders of magnitude speedup over baselines by
leveraging model specialization, sampling, and learned filters.
However, much work remains to make video analytics usable
and scalable. We believe BlazeIt will be a valuable platform
to build scalable and usable video analytics engines.
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