
Coordination Avoidance in Distributed Databases

By

Peter David Bailis

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Joseph M. Hellerstein, Co-Chair
Professor Ion Stoica, Co-Chair

Professor Ali Ghodsi
Professor Tapan Parikh

Fall 2015

Coordination Avoidance in Distributed Databases
Revision of November 2, 2015

Copyright 2015
by

Peter David Bailis

1

Abstract

Coordination Avoidance in Distributed Databases

by

Peter David Bailis

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Joseph M. Hellerstein, Co-Chair
Professor Ion Stoica, Co-Chair

The rise of Internet-scale geo-replicated services has led to upheaval in the design of modern
data management systems. Given the availability, latency, and throughput penalties asso-
ciated with classic mechanisms such as serializable transactions, a broad class of systems
(e.g., “NoSQL”) has sought weaker alternatives that reduce the use of expensive coordina-
tion during system operation, often at the cost of application integrity. When can we safely
forego the cost of this expensive coordination, and when must we pay the price?

In this thesis, we investigate the potential for coordination avoidance—the use of as
little coordination as possible while ensuring application integrity—in several modern data-
intensive domains. We demonstrate how to leverage the semantic requirements of appli-
cations in data serving, transaction processing, and web services to enable more efficient
distributed algorithms and system designs. The resulting prototype systems demonstrate
regular order-of-magnitude speedups compared to their traditional, coordinated counter-
parts on a variety of tasks, including referential integrity and index maintenance, transac-
tion execution under common isolation models, and database constraint enforcement. A
range of open source applications and systems exhibit similar results.

i

To my family

ii

Contents

List of Figures v

List of Tables viii

Acknowledgments ix

1 Introduction 1
1.1 Coordination Avoidance . 3
1.2 Primary Contributions . 6
1.3 Outline and Previously Published Work . 9

2 Coordination: Concepts and Costs 10
2.1 Coordination and Correctness in Database Systems 10
2.2 Understanding the Costs of Coordination . 12

2.2.1 Latency . 12
2.2.2 Throughput and Scalability . 14
2.2.3 Availability and Failures . 17
2.2.4 Summary: Costs . 19
2.2.5 Outcome: NoSQL, Historical Context, Safety and Liveness 19

2.3 System Model . 21

3 Invariant Confluence and Coordination 27
3.1 Invariant Confluence: Criteria Defined . 27
3.2 Invariant Confluence and Coordination-Freedom 28
3.3 Discussion and Limitations . 33
3.4 Summary . 34

4 Coordination Avoidance and Weak Isolation 36
4.1 ACID in the Wild . 36
4.2 Invariant Confluence Analysis: Isolation Levels 37

4.2.1 Invariant Confluent Isolation Guarantees 39
4.2.2 Sticky Availability . 44
4.2.3 Non-Invariant Confluent Semantics 45

CONTENTS iii

4.2.4 Summary . 48
4.3 Implications: Existing Algorithms and Empirical Impact 49

4.3.1 Existing Algorithms . 50
4.3.2 Empirical Impact: Isolation Guarantees 51

4.4 Isolation Models . 56
4.5 Summary . 64

5 Coordination Avoidance and RAMP Transactions 65
5.1 Overview . 67
5.2 Read Atomic Isolation in the Wild . 68
5.3 Semantics and System Model . 71

5.3.1 RA Isolation: Formal Specification 71
5.3.2 RA Implications and Limitations . 72
5.3.3 RA Compared to Other Isolation Models 73
5.3.4 RA and Serializability . 76
5.3.5 System Model and Scalability . 80

5.4 RAMP Transaction Algorithms . 81
5.4.1 RAMP-Fast . 82
5.4.2 RAMP-Small: Trading Metadata for RTTs 84
5.4.3 RAMP-Hybrid: An Intermediate Solution 87
5.4.4 Summary and Additional Details . 88
5.4.5 Distribution and Fault Tolerance . 91
5.4.6 Additional Semantics . 92
5.4.7 Further Optimizations . 93

5.5 Experimental Evaluation . 93
5.5.1 Experimental Setup . 94
5.5.2 Experimental Results: Comparison 95
5.5.3 Experimental Results: CTP Overhead 100
5.5.4 Experimental Results: Scalability . 100

5.6 Applying and Modifying the RAMP Protocols 101
5.6.1 Multi-Datacenter RAMP . 102
5.6.2 Quorum-Replicated RAMP Operation 104
5.6.3 RAMP, Transitive Dependencies, and Causal Consistency 105

5.7 RSIW Proof . 108
5.8 RAMP Correctness and Independence . 111
5.9 Discussion . 114
5.10 Summary . 115

6 Coordination Avoidance for Database Constraints 117
6.1 Invariant Confluence of SQL Constraints . 117

6.1.1 Invariant Confluence for SQL Relations 118
6.1.2 Invariant Confluence for SQL Data Types 120

CONTENTS iv

6.1.3 SQL Discussion and Limitations . 121
6.2 More Formal Invariant Confluence Analysis of SQL Constraints 122
6.3 Empirical Impact: SQL-Based Constraints 130

6.3.1 TPC-C Invariants and Execution . 130
6.3.2 Evaluating TPC-C New-Order . 132
6.3.3 Analyzing Additional Applications 136

6.4 Constraints from Open Source Applications 137
6.4.1 Background and Context . 139
6.4.2 Feral Mechanisms in Rails . 142
6.4.3 Rails Invariant Confluence Analysis 153

6.5 Quantifying Integrity Violations in Rails . 156
6.6 Other Frameworks . 165
6.7 Implications for Databases . 167

6.7.1 Summary: Database Shortcomings Today 167
6.7.2 Domesticating Feral Mechanisms . 168

6.8 Detailed Validation Behavior, Experimental Workload 170
6.8.1 Uniqueness Validation Behavior . 170
6.8.2 Association Validation Behavior . 171
6.8.3 Uniqueness Validation Schema . 171
6.8.4 Uniqueness Stress Test . 172
6.8.5 Uniqueness Workload Test . 172
6.8.6 Association Validation Schema . 172
6.8.7 Association Stress Test . 173
6.8.8 Association Workload Test . 174

6.9 Summary . 175

7 Related Work 176

8 Conclusions 184
8.1 Design Patterns for Coordination Avoidance 184
8.2 Limitations . 185
8.3 Future Work . 186

8.3.1 Automating Coordination Avoidance 187
8.3.2 Comprehending Weak Isolation . 188
8.3.3 Emerging Application Patterns . 189
8.3.4 Statistical Coordination Avoidance 190

8.4 Closing Thoughts . 191

Bibliography 193

v

List of Figures

1.1 An illustration of a distributed, replicated database and its relation to appli-
cation servers and end users. In modern distributed databases, data is stored
on several servers that may be located in geographically distant regions (e.g.,
Virginia and Oregon, or even different continents) and may be accessed by mul-
tiple database clients (e.g., application servers, analytics frameworks, database
administrators) simultaneously. The key challenge that we investigate in this
thesis is how to minimize the amount of synchronous communication across
databases while providing “always on,” scalable, and high performance access
to each replica. 2

1.2 In this thesis, we develop the principle of Invariant Confluence, a necessary and
sufficient condition for safe, convergent, coordination-free execution, and apply
it to a range of application domains at increasing levels of abstraction: database
isolation, database constraints, and safety properties from modern database-
backed applications. Each guarantee that is invariant confluent is guaranteed to
have at least one coordination-free implementation; we investigate the design of
several implementations in this work, which operate at the database infrastruc-
ture tier (Figure 1.1). 6

2.1 CDF of round-trip times for slowest inter- and intra- availability zone links com-
pared to cross-region links. 13

2.2 Microbenchmark performance of coordinated and coordination-free execution
of transactions of varying size writing to eight items located on eight separate
multi-core servers. 16

2.3 Atomic commitment latency as an upper bound on conflicting serializable trans-
action throughput over local-area and wide-area networks. 18

2.4 An example coordination-free execution of two transactions, T1 and T2, on two
servers. Each transaction writes to its local replica, then, after commit, the
servers asynchronously exchange state and converge to a common state (D3). . . 23

LIST OF FIGURES vi

3.1 A invariant confluent execution illustrated via a diamond diagram. If a set of
transactions T is invariant confluent, then all database states reachable by ex-
ecuting and merging transactions in T starting with a common ancestor (Ds)
must be mergeable (t) into an I-valid database state. 29

4.1 Partial ordering of invariant confluent, sticky (in boxes), and non-invariant con-
fluent models (circled) from Table 4.2. Directed edges represent ordering by
model strength. Incomparable models can be simultaneously achieved, and the
availability of a combination of models has the availability of the least available
individual model. 50

4.2 YCSB latency for two clusters of five servers each deployed within a single dat-
acenter and cross-datacenters (note log scale for multi-datacenter deployment). . 53

4.3 YCSB throughput for two clusters of five servers each deployed within a single
datacenter and cross-datacenters. 54

4.4 Proportion of reads and writes versus throughput. 56
4.5 Scale-out of Eventual and RC. 56
4.6 Example of IMP anomaly. 60
4.7 DSG for Figure 4.6. 60
4.8 Example of OTV anomaly. 60
4.9 DSG for Figure 4.8. 61
4.10 Example of N-MR violation when wx(1) � wx(2) and T4 directly session-

depends on T3. 61
4.11 DSG for Figure 4.10. wrx dependency from T1 to T4 omitted. 61
4.12 Example of N-MW anomaly if T2 directly session-depends on T1. 62
4.13 DSG for Figure 4.12. 62
4.14 Example of MRWD anomaly. 62
4.15 DSG for Figure 4.14. 62
4.16 Example of MYR anomaly if T2 directly session-depends on T1. 63
4.17 DSG for Figure 4.14. 63

5.1 Comparison of RA with isolation levels from [9, 32]. RU: Read Uncommitted,
RC: Read Committed, CS: Cursor Stability, MAV: Monotonic Atomic View, ICI:
Item Cut Isolation, PCI: Predicate Cut Isolation, RA: Read Atomic, SI: Snapshot
Isolation, RR: Repeatable Read (Adya PL-2.99), S: Serializable. 76

5.2 Space-time diagram for RAMP-F execution for two transactions T1 and T2 per-
formed by clients C1 and C2 on partitions Px and Py. Lightly-shaded boxes
represent current partition state (lastCommit and versions), while the single
darker box encapsulates all messages exchanged during C2’s execution of trans-
action T2. Because T1 overlaps with T2, T2 must perform a second round of reads
to repair the fractured read between x and y. T1’s writes are assigned timestamp
1. In our depiction, each item does not appear in its list of writes (e.g., Px sees
{y} only and not {x,y}. 82

LIST OF FIGURES vii

5.3 Space-time diagram for RAMP-S execution for two transactions T1 and T2 per-
formed by clients C1 and C2 on partitions Px and Py. Lightly-shaded boxes
represent current partition state (lastCommit and versions), while the single
darker box encapsulates all messages exchanged during C2’s execution of trans-
action T2. T1 first fetches the highest committed timestamp from each partition,
then fetches the corresponding version. In this depiction, partitions only return
timestamps instead of actual versions in response to first-round reads. 86

5.4 Throughput and latency under varying client load. We omit latencies for LWLR,
which peaked at over 1.5s. 97

5.5 Algorithm performance across varying workload conditions. RAMP-F and RAMP-H
exhibit similar performance to NWNR baseline, while RAMP-S’s 2 RTT reads incur
a greater performance penalty across almost all configurations. RAMP transac-
tions consistently outperform RA isolated alternatives. 99

5.6 RAMP transactions scale linearly to over 7 million operations/s with comparable
performance to NWNR baseline. 101

5.7 Control flow for operations under multi-datacenter RAMP strategies with client
in Cluster A writing to partitions X and Y. In the high availability RAMP strat-
egy (Figure 5.7a), a write must be prepared on F+ 1 servers (here, F = 3) before
is committed. In the sticky RAMP strategy, a write can be prepared and commit-
ted within a single datacenter and asynchronously propagated to other datacen-
ters, where it is subsequently prepared and committed (Figure 5.7b). The sticky
strategy requires that clients maintain affinity with a single cluster in order to
guarantee available and correctly isolated behavior. 103

6.1 TPC-C New-Order throughput across eight servers. 133
6.2 Coordination-avoiding New-Order scalability. 136
6.3 Use of mechanisms over each project’s history. We plot the median value of each

metric across projects and, for each mechanism, omit projects that do not con-
tain any uses of the mechanism (e.g., if a project lacks transactions, the project
is omitted from the median calculation for transactions). 148

6.4 CDFs of authorship of invariants (validations plus associations) and commits.
Bolded line shows the average CDF across projects, while faint lines show CDFs
for individual projects. The dotted line shows the 95th percentile CDF value. . 149

6.5 Use of concurrency control mechanisms in Rails applications. We maintain the
same ordering of applications for each plot (i.e., same x-axis values; identical to
Table 6.3) and show the average for each plot using the dotted line. 151

6.6 Uniqueness stress test integrity violations. 159
6.7 Uniqueness workload integrity violations. 161
6.8 Foreign key stress association anomalies. 164
6.9 Foreign key workload association anomalies. 164

viii

List of Tables

2.1 Mean RTT times on EC2 (min and max highlighted) 13
2.2 Key properties of the system model and their informal effects. 21

4.1 Default and maximum isolation levels for ACID and NewSQL databases. 38
4.2 Summary of invariant confluent, sticky, and non-invariant confluent models con-

sidered in this paper. Non-invariant confluent models are labeled by cause: pre-
venting lost update†, preventing write skew‡, and requiring recency guarantees⊕. 49

5.1 Comparison of basic algorithms: RTTs required for writes (W), reads (R) with-
out concurrent writes and in the worst case (O), stored metadata and metadata
attached to read requests (in addition to a timestamp for each). 90

6.1 Example SQL (top) and ADT invariant confluence along with references to for-
mal proofs in Section 6.2. 118

6.2 TPC-C Declared “Consistency Conditions” (3.3.2.x) and invariant confluence
analysis results with respect to the workload transactions (Invariant type: MV:
materialized view, SID: sequential ID assignment, FK: foreign key; Transactions:
N: New-Order, P: Payment, D: Delivery). 131

6.3 Corpus of applications used in analysis (M: Models, T: Transactions, PL: Pes-
simistic Locking, OL: Optimistic Locking, V: Validations, A: Associations). Stars
record number of GitHub Stars as of October 2014. 147

6.4 Use of and invariant confluence of built-in validations. 155

ix

Acknowledgments

I would like to acknowledge my advisors: Ali Ghodsi, Joe Hellerstein, and Ion Stoica.
Ali has been a thoroughly conscientious and tenacious collaborator and mentor. Ali pushed
our work to greater levels of technical depth, introducing me to the tradition of distributed
computing and encouraging both precision and pursuit of principle. His unceasing sup-
port and thoughtful advice bolstered both the quality of this research as well as my spirit
and my faith in the research process. Joe encouraged me to find my own balance between
what Melville calls “audacity and reverence.” I am especially grateful for Joe’s support and
patience in allowing me freedom during my graduate experience as well as Joe’s careful
commentary on this document. Ion has proven an example of industriousness and perse-
verance. His persistent encouragement to “find the nugget” deepened my appreciation for
simplicity in design as well as clarity of thought and writing.

I am also grateful to several individuals who made major contributions to the research
in this thesis. Alan Fekete, who visited us twice on sabbatical, was essential in our focus on
database safety properties, from isolation guarantees to constraints. Alan is an exemplar
of modesty despite technical brilliance. I especially admire his desire to keep learning well
into his career as well as his uncanny ability to comb through formalism with diligence and
grace. Mike Franklin was a dear collaborator at the beginning and end of this work, and
his leadership has been an inspiring example for me. Tapan Parikh, my outside dissertation
committee member, provided a valuable, human-centric perspective on this work.

I have been fortunate to overlap with a multitude of wonderful researchers during my
time at Berkeley. In particular, Neil Conway and Peter Alvaro were both great friends and
colleagues, and our shared enthusiasm for distributed databases, cooking, and nature was
a great source of inspiration for me. I especially admire Peter’s quiet sense of wonder and
reverence for the literature as well as Neil’s admiration for and cultivation of engineering
and design as high craft. Shivaram Venkataraman was an unflappably positive collaborator
in our earliest days of graduate studies and became a terrific labmate and travel compan-
ion, from Santa Cruz to Turkey and Chania. Patrick Wendell was an invaluable sounding
board regarding the interfaces between academia and industry as well as an unforgettable
roommate. I could always count on a fun conversation (or dinner outing) with Kay Ouster-

ACKNOWLEDGMENTS x

hout, Aurojit Panda, Colin Scott, and the NetSys lab. Justine Sherry was instrumental in
cultivating a positive culture within our cohort and was a superbly capable co-founder of
@TinyToCS. Evan Sparks, Dan Haas, Daniel Crankshaw, Sanjay Krishnan, Jiannan Wang,
and the many other members of the Berkeley Database Seminar were always game for a
good conversation. The many members of the Berkeley Database group, Cloud seminar,
CCN group, AMPLab, and BOOM project made for wonderful, joyful company.

Many others provided helpful feedback during the course of this work, including: Shel
Finkelstein and Pat Helland, my guides to real-world inconsistency (and “outconsistency”)
in enterprise databases; Daniel Abadi, who never fails to elicit a fascinating conversation;
Phil Bernstein, whose feedback is consistently top-notch and provides astute historical con-
text; Doug Terry, whose pioneering work on weak replication and whose kind encourage-
ment were both significant inspirations to me; Mike Stonebraker, whose unflagging energy
is contagious, and who provides frequent and welcome reminders to consider the market
for and impact of my research; Eric Brewer, Sam Madden, and Scott Shenker, who have pro-
vided gracious support and thoughtful guidance; and Divy Agrawal, Amr El Abaddi, and
Sharad Mehotra, for rousing conversations about semantics-based concurrency control.

I am also grateful to the many people building, operating, and managing distributed
systems and databases in the field who provided feedback on and inspiration for this
work, including Michael R. Bernstein, Rick Branson, Mark Callaghan, Adrian Colyer,
Sean Cribbs, Jonathan Ellis, Alex Feinberg, Andy Gross, Coda Hale, Colin Jones, Evan
Jones, Kyle Kingsbury, Adam Marcus, Caitie McCaffrey, Christopher Meiklejohn, Mike
Miller, Jeremiah Peschka, Mark Phillips, Henry Robinson, Mehul Shah, Xavier Shay, Justin
Sheehy, Ines Sombra, Kelly Sommers, and Sriram Srinivasan. It is an exciting and perhaps
unparalleled time in the history of data management, and this dialogue with practice has
greatly enriched this work as well as my experience and enthusiasm during my studies.

While my graduate studies have been brief, I feel that my training in research began long
before I arrived at Berkeley. I am especially indebted to Vijay Janapa Reddi, Margo Seltzer,
David Brooks, Radhika Nagpal, Matt Welsh, Justin Werfel, and Christopher Goodrich
for taking the chance to work with me, teaching me the process and joy of research at
an early stage of my career, and encouraging the development of intellectual audacity and
perseverance. Over time, I have come to realize how rare such experiences are and how
privileged I am to have had such a group of individuals in my life to enable them.

This work was supported in part by a National Science Foundation Graduate Fellowship
under Grant DGE 1106400 and by a Berkeley Fellowship for Graduate Study from the UC
Berkeley Graduate Division.

Finally, I am deeply grateful for support and encouragement from my family and friends.

1

Chapter 1

Introduction

This thesis examines the design of robust and efficient distributed database systems.

Over the past decade, the challenges of distributed systems design have become increas-
ingly mainstream. The rise of new application domains such as Internet services and the
continued decrease of storage and computing costs have led to massive increases in request
and data volumes. To address these trends, application developers have frequently turned to
distributed systems designs. Scale-out application programming frameworks, data serving
systems, and data processing platforms enjoy unprecedented popularity today [31,38,179].
Coupled with the introduction of inexpensive and elastic cloud computing [24], these fac-
tors have led distribution and replication to become common features in modern application
and system designs. As a result, a growing class of software must address the difficulties
of robust operation over computer networks, which include communication delays, partial
failures, and inherent uncertainty about global system state [97].

In many applications, the difficulties of distributed systems design are relegated to a
database tier. Application development best practices delegate the management of applica-
tion state to a database back-end: application programmers implement application logic,
while a back-end data infrastructure system handles data storage, query processing, and
concurrency control [215]. This separation of concerns means database systems frequently
act as the keystone of reliable distributed applications (Figure 1.1). Thus, database systems
must directly address the challenges of distribution, replication, and fault tolerance—while
providing a user-friendly interface for application developers and end users.

In this work, we investigate a conceptually simple class of designs for robust distributed
databases: we study the design of databases that allow applications to make non-trivial
progress independent of network behavior. That is, we study the design of database sys-
tems that provide coordination-free execution: whenever database clients can access at least

2

Application Tier

Replica

Application
Server

Replica

Analytics
Engine

Datacenter (VA) Datacenter (OR)

Application
Server

Replica

Analytics
Engine

Database Tier

Figure 1.1: An illustration of a distributed, replicated database and its relation to applica-
tion servers and end users. In modern distributed databases, data is stored on several servers
that may be located in geographically distant regions (e.g., Virginia and Oregon, or even
different continents) and may be accessed by multiple database clients (e.g., application
servers, analytics frameworks, database administrators) simultaneously. The key challenge
that we investigate in this thesis is how to minimize the amount of synchronous communica-
tion across databases while providing “always on,” scalable, and high performance access
to each replica.

one copy of database state, they are guaranteed to make non-trivial progress. This means
that, in the presence of communication failures between servers, each client’s operations
may still proceed, providing “always on” functionality, or guaranteed availability. Even
when database servers are able to communicate with one another, communication is not
required. This allows low latency operation: each client’s requests can be processed us-
ing locally accessible resources. Finally, coordination-free execution ensures scalability: as
more servers are added, the database can make use of them without disrupting existing
servers. This results in increased capacity. Thus, coordination-free execution offers attrac-
tive performance and availability benefits while ensuring that, subject to the availability of
additional resources, additional requests can be serviced on demand.

This coordination-free database system design represents a departure from classic database
system designs. Traditionally, database systems exposed a serializable transaction interface:
if user operations are bundled into transactions, or groups of multiple operations over mul-
tiple data items, a database providing serializability guarantees that the result of executing
the transactions is equivalent to some serial execution of the transactions [53]. Serializabil-
ity is remarkably convenient for programmers, who do not need to reason about concur-
rency or distribution. However, serializability is inconvenient for databases: serializability
(provably) requires coordination [92], negating the benefits of coordination-free execution.
Intuitively, enforcing a serial ordering between transactions precludes the ability to guaran-
tee the transactions’ independent progress when executed on multiple servers.

1.1. COORDINATION AVOIDANCE 3

As a result, increased application demands for availability, low latency, and scalability
have led to a recent schism within mainstream database system designs [174, 179]. A pro-
liferation of database systems, often called “NoSQL” systems, forego serializability (and
other “strong” semantics) in order to provide coordination-free execution. However, in
turn, these NoSQL systems provide few, if any semantic guarantees about their query re-
sults and about database state (also called safety properties; e.g., “no two users share a user-
name”) [38,54,156]. In contrast with serializability, which guarantees that safety properties
preserved by individual transactions will be preserved under their serial composition, these
NoSQL stores leave the enforcement of application safety to the application—a challenging
and error-prone proposition [20, 132]. Thus, database users and application programmers
today are left with one of two options: ensure safety via serializability and coordination, or
forego safety within the database but enjoy the benefits of coordination-free execution.

In this thesis, we examine this apparent tension between ensuring application safety
properties within the database and enjoying the scalability, availability, and performance
benefits of coordination-free execution. Is enforcing safety properties always at odds with
coordination-free execution? If we rely on serializability, the answer is yes. Instead, we con-
sider an alternative: the enforcement of non-serializable semantic guarantees in a coordination-
free manner. By examining the safety properties of today’s database-backed applications,
we determine whether coordination is strictly necessary to enforce them and explore im-
plementations that limit the use of coordination. Thus, this thesis explores the relationship
between correctness—according to useful safety guarantees—and coordination. More pre-
cisely, what is the coordination cost of a given safety guarantee? What is the minimum
communication we must perform to enforce various correctness criteria?

1.1 Coordination Avoidance

Our primary goal in this thesis is to build database systems that coordinate only when
strictly required in order to guarantee application safety. To realize this goal, we examine
which semantic guarantees databases can provide under coordination-free execution—and
explore implementations that fulfill this potential. We study a range of guarantees from
both classic database systems as well as guarantees required by modern database-backed
applications. Today, most of these guarantees are either implemented using coordination
or are not provided by coordination-free systems. However, we demonstrate that many of
these requirements can be correctly implemented without coordination and provide algo-
rithms and system implementations for doing so. This enables what we call coordination
avoidance: the use of as little coordination as possible while maintaining safety guarantees
on behalf of database users.

1.1. COORDINATION AVOIDANCE 4

Thesis Statement: Many semantic requirements of database-backed applications can be ef-
ficiently enforced without coordination, thus improving scalability, latency, and availability.

To achieve this goal, we first develop a new, general rule for determining whether a
coordination-free implementation of a given safety property exists, called invariant conflu-
ence. Informally, invariant confluence determines whether the result of executing operations
on independent copies of data can be combined (or “merged”) into a single, coherent (i.e.,
convergent) copy of database state. Given a set of operations, a safety property that we
wish to maintain over all copies of database state, and a merge function, invariant conflu-
ence tells us whether coordination-free execution is possible. Invariant confluence is both
necessary and sufficient: if invariant confluence holds, a coordination-free, convergent im-
plementation exists. If invariant confluence does not hold, no system can implement the
semantics while also providing coordination-free, convergent execution.

Given this invariant confluence criterion, we examine a set of common semantic guar-
antees found in database systems and database-backed applications today to determine
whether a coordination-free execution strategy for enforcing them exists. We perform sev-
eral case studies, which we describe in detail below. In many cases, although existing imple-
mentations of these guarantees may rely on coordination, we show that coordination-free
implementations of the semantics exist. This provides the scalability, performance, and
availability benefits of coordination-free execution—but without compromising desirable
semantic guarantees. None of these guarantees is serializable, but all of them correspond to
existing or emerging demands from applications today.

Our use of invariant confluence recognizes latent potential for coordination-free exe-
cution in existing and emerging applications. In demonstrating this potential, we high-
light a need for conscientious consideration of coordination in the design of database sys-
tems: in many invariant confluent scenarios, traditional and/or legacy implementations
designed for non-distributed environments over-coordinate and fail to capture the poten-
tial for coordination-free execution. Conversely, when invariant confluence does not hold,
understanding when a coordination-free implementation does not exist spares system de-
signers the effort of searching for a more efficient implementation when in fact such an
implementation does not exist.

Of course, simply recognizing that a coordination-free implementation exists does not
by itself lead to coordination-free systems. Rather, we must also find a coordination-free
implementation of invariant confluent semantics. Therefore, we present the design, imple-
mentation, and evaluation of several sets of invariant confluent guarantees. We demonstrate
order-of-magnitude improvements in latency and throughput over traditional algorithms,
validating the power of coordination-free systems design. In addition to these case studies,
we also present more general design principles for realizing coordination avoidance in prac-

1.1. COORDINATION AVOIDANCE 5

tice. We note the importance of separating visibility from progress, ensuring composability
of operations, and controlling visibility via multiversioning.

By example. As a simple example, consider the common Read Committed (RC) isola-
tion guarantee [9], which is the default semantics in fifteen of eighteen popular relational
databases, including Oracle, SAP Hana, and Microsoft SQL Server (Chapter 4). Informally,
Read Committed ensures that users never read non-final writes to data; if, within a trans-
action, a user sets her username to “Sally” and, subsequently, sets her username to “Sal,”
no other user should ever read that the user’s username is “Sally.” The classic strategy for
implementing Read Committed isolation dates to the 1970s and relies on locking: when our
user wants to update her username record, she acquires a mutually exclusive lock on the
record [125]. This is a reasonable strategy for a single-node database, but the coordination
required to implement this mutual exclusion can be disastrous in a modern distributed en-
vironment: while our first user holds the lock on her username record, all other users who
wish to also access the same username record must wait.

While coordination is sufficient to enforce RC isolation (via locking), is it strictly neces-
sary? We can apply the principle of invariant confluence here: informally, if each individual
user never observes non-final writes (i.e., each individual read-write history is valid under
RC isolation), then their collective behavior (i.e., the “merged” histories) will not exhibit
any reads of non-final writes. Thus, insofar as each individual user respects RC isolation,
all users will, and so it is invariant confluent. As a result, there must be a coordination-free
algorithm for enforcing RC isolation; now we must find one. One strategy is to store mul-
tiple versions of each record and mark each version with a special bit recording whether
the corresponding write is a final write or not. If the database only shows users records
that have been marked as final writes upon transaction commit, users will never observe
non-final writes. Moreover, users can create versions, mark them as final, and read versions
marked as final entirely concurrently, on separate copies of state, achieving our goal of a
coordination-free implementation of RC isolation.

While this example is relatively simple, it demonstrates the power of rethinking legacy
implementations of important semantics. In Chapter 4, we demonstrate how a slightly
modified protocol achieves orders of magnitude improvements in performance on modern
cloud computing infrastructure.

In the remainder of this chapter, we outline the key contributions of this work and
describe the structure of the remainder of this thesis.

1.2. PRIMARY CONTRIBUTIONS 6

Isolation
Guarantees

Read/Write Traces

Read Uncommitted
Read Committed
Repeatable Read

Cut Isolation
Atomic Visibility

Transactions
x

Invariants
x

Merge Operator

Write buffering
Sticky routing
RAMP-Fast
RAMP-Small
RAMP-Hybrid

Abstract Execution
Model

Database
Constraints

ANSI SQL,
OLTPBenchmark

Uniqueness
Primary Key
Foreign Key
Sequentiality

Abstract Data Types

Weak Isolation
RAMP Transactions

Nested Atomic
Transactions

Open Source
Codebases
Ruby on Rails

Redmine
Fedena

OpenCongress
Diaspora

ShareTribe

Feral Validations
Weak Isolation

RAMP Transactions

Pr
im

ar
y

A
pp

lic
at

io
ns

Examples
Enforcement
Techniques

Pr
in

ci
pl

e Invariant
Confluence

Arbitrary Database State

Figure 1.2: In this thesis, we develop the principle of Invariant Confluence, a necessary and
sufficient condition for safe, convergent, coordination-free execution, and apply it to a range
of application domains at increasing levels of abstraction: database isolation, database con-
straints, and safety properties from modern database-backed applications. Each guarantee
that is invariant confluent is guaranteed to have at least one coordination-free implemen-
tation; we investigate the design of several implementations in this work, which operate at
the database infrastructure tier (Figure 1.1).

1.2 Primary Contributions

In this section, we summarize the primary contributions of this work.

Coordination-free execution and Invariant Confluence. We identify coordination-free exe-
cution as fundamental to available, low latency, and scalable system execution. To do so, we
present a system model and show a direct correspondence between these desirable system
properties and the ability to guarantee non-trivial progress in an asynchronous network.

1.2. PRIMARY CONTRIBUTIONS 7

We subsequently develop the invariant confluence property, a necessary and sufficient
condition for ensuring that a safety guarantee can be guaranteed under coordination-free,
convergent execution of a given set of transactions. This is the first necessary and sufficient
condition for these properties that we have encountered. In effect, invariant confluence lifts
traditional partitioning arguments from distributed systems from the domain of event traces
to the domain of arbitrary application logic and constraints over data. We use this property
to examine and optimize a range of semantics from database systems (Figure 1.2), which
we describe in turn below.

Coordination-free Isolation Guarantees. While transactional guarantees are often asso-
ciated with serializability and its necessarily coordinated implementations, most databases
in practice provide weaker forms of transactional isolation, or variants of admissible read-
write interleavings (Figure 1.2). In a survey of 18 “ACID” and “NewSQL” databases, we
find that only three offered serializability by default and only nine offered it as as an option
at all. We investigate the weaker models offered by these databases and show that many
are invariant confluent. For example, common isolation models such as Read Committed
(default in eight databases) and ANSI Repeatable Read isolation are invariant confluent.
Many guarantees, like Read Committed, arbitrated visibility but not concurrency (much
like causal consistency). The resulting taxonomy is one of the first unified treatments of
weak isolation, distributed register consistency, session guarantees, and coordination re-
quirements in the literature. Using these results, we implement a coordination-free proto-
type implementing weak isolation guarantees that achieves up to two order-of-magnitude
latency reductions when deployed across datacenters.

In addition to investigating existing isolation guarantees, we examine new guarantees.
A number of applications leverage database-provided functionality for enforcing referen-
tial integrity, secondary indexing, and multi-get and multi-put operations, yet there is no
coordination-free mechanism for enforcing them. Accordingly, a number of practitioner
reports on systems (e.g., from Facebook, Google, LinkedIn, and Yahoo!) specifically high-
light these use cases as scenarios where, lacking a coordination-free algorithm, architects
explicitly sacrificed correctness for latency and availability. In response, we develop a new,
invariant confluent isolation model called Read Atomic (RA) isolation and set of scalable,
coordination-free algorithms called Read Atomic Multi-Partition (RAMP) Transactions for
addressing the isolation requirements of these use cases. Informally, RA guarantees atomic
visibility of updates: once one write from a transaction is visible, all writes will be visi-
ble. Existing protocols for achieving RA isolation (or stronger), such as distributed locking,
couple atomic visibility with mutual exclusion; RAMP achieves the former without the cost
of the latter. RAMP uses limited multi-versioning to allow clients to operate concurrently
over the same data items while ensuring that readers can correctly detect and repair incom-

1.2. PRIMARY CONTRIBUTIONS 8

plete writes. Across a range of workloads (including high contention scenarios), RAMP
transactions incur limited overhead and outperform existing mechanisms for achieving RA
isolation while scaling linearly.

Coordination-free Database Constraints and Application Criteria. Moving from read-write
traces to higher-level semantic properties (Figure 1.2), we examine the integrity constraints
and invariants offered by databases today—including the foreign key constraints addressed
by RAMP but also row-level check constraints, uniqueness constraints, and constraints on
abstract data types—and classify each as invariant confluent or not. Many are invariant
confluent, so we subsequently apply this classification to a number of database workloads
from the OLTPBenchmark suite [98]. Many invariants in these workloads pass the invariant
confluence test as well. For example, in the TPC-C benchmark, the gold standard for
transaction processing performance, ten of twelve invariants are invariant confluent under
the workload. Given this classification, we develop a database prototype and coordination-
avoiding execution strategy for TPC-C that, on a cluster of 200 servers, achieves a 25-fold
improvement in throughput over the prior best result (over 12.7M New-Order transactions
per second).

While we are able to find invariant confluent database integrity constraints and bench-
marks, are real applications invariant confluent? Moreover, are invariants a practical choice
of correctness criteria? To answer these questions, we examine open source web applica-
tions to inspect their safety properties (Figure 1.2). We find that popular web programming
frameworks—including Ruby on Rails, Django, and Spring/Hibernate—have introduced
support for validations, or declarative, application-level invariants. We subsequently ana-
lyze the use of validations in 67 of the most popular Ruby on Rails applications on GitHub
and find that, in fact, validation usage is fourteen times more common than the use of
database transactions. Moreover, more than 86.9% (of over 9900 invariants) are invariant
confluent. However, the remainder are not invariant confluent and therefore require coor-
dination. For these invariants, we profile the incidence of constraint violations both with
and without validations. In addition to demonstrating the applicability of invariant con-
fluence, this study exposes a surprising practitioner trend away from transactions towards
using invariants via validations.

In all, these results highlight a widespread potential for coordination-avoiding database
system design within both classic and emerging database-backed applications. While co-
ordination cannot always be avoided, in many common scenarios, we find it is possible
to guarantee application safety within the database while also providing coordination-free
execution. Our resulting database system prototypes and their regular order-of-magnitude
speedups compared to conventional approaches evidence the power of this latent potential
for coordination-avoiding execution.

1.3. OUTLINE AND PREVIOUSLY PUBLISHED WORK 9

1.3 Outline and Previously Published Work

The remainder of this dissertation proceeds as follows. Chapter 2 provides background
on coordination and defines our system model. Chapter 3 presents the Invariant Confluence
property. Chapters 4, 5,and 6 examine the coordination requirements and coordination-
free implementations of transaction isolation, database functionality such as indexes, and
constraints. Chapter 7 discusses related work and Chapter 8 concludes with a discussion of
lessons learned, topics for future work, and closing thoughts.

Chapter 2 includes material from several previous publications [32, 34, 38, 40, 42–44].
Chapter 3 revises material from [34]. Chapter 4 revises [32] and [36]. Chapter 5 revises [37]
and includes material from [35]. Chapter 6 revises material from [34] and [33] and includes
material from [39]. Chapter 8 includes material from [86,122].

10

Chapter 2

Coordination: Concepts and Costs

In this chapter, we further examine the concept of coordination and why we seek to
avoid it. We discuss traditional uses of coordination to maintain correct data in database
systems and measure its costs in modern distributed environment, which we will attempt
to circumvent in the remainder of this thesis. We also present our formal system model for
replicated databases.

2.1 Coordination and Correctness in Database Systems

As repositories for application state, databases are traditionally tasked with maintaining,
informally, “correct” data—that is, data that obey some semantic guarantees about their
integrity—on behalf of users. Thus, during concurrent access to data, a database ensuring
data correctness must therefore decide which user operations can execute simultaneously
and which, if any, cannot. Informally, we say that two operations within a database must
coordinate if they cannot execute concurrently on independent copies of the database state
(Section 2.3 provides a more formal treatment).

By example. Consider a database-backed payroll application that maintains information
about employees and departments within a small business. In the application, a.) each
employee is assigned a unique ID number and b.) each employee belongs to exactly one de-
partment. A database ensuring correctness must maintain these application-level semantic
guarantees (or data invariants) on behalf of the application (i.e., without application-level
intervention). In our payroll application, this is non-trivial: for example, if the application
attempts to simultaneously create two employees by examining the set of currently assigned
IDs and choosing an unassigned ID for each new employee, then the database must ensure
the employees are assigned distinct IDs.

2.1. COORDINATION AND CORRECTNESS IN DATABASE SYSTEMS 11

Serializability and conflicts. The classic answer to maintaining application-level invariants
is to use serializable isolation: execute each user’s ordered sequence of operations, or trans-
actions, such that the end result is equivalent to some sequential execution [53, 123, 215].
If each transaction preserves correctness in isolation, composition via serializable execution
ensures correctness. In our payroll example, the database would execute the two employee
creation transactions such that one transaction appears to execute after the other. The
second transaction would observe the ID that the first transaction chose, thus avoiding
duplicate ID assignment.

While serializability is a powerful abstraction, it comes with a cost: for arbitrary trans-
actions (and for all implementations of serializability’s more conservative variant—conflict
serializability), any two operations to the same item—at least one of which is a write—will
result in a read/write conflict. Under serializability, these conflicts require coordination: to
provide a serial ordering, conflicts must be totally ordered across transactions, and so trans-
actions cannot proceed entirely independently [53]. As a canonical example, given initial
database state containing two variables x and y, where {x = ⊥,y = ⊥}, if transaction T1

reads from y and writes x = 1 and and T2 reads from x and writes y = 1, then a database
cannot both execute T1 and T2 independently on separate copies of state while maintaining
serializability [32,92].1

Because serializable semantics require coordination, all database implementations that
provide serializability will coordinate. For example, a database could use two-phase lock-
ing [125] to provide serializability: in a simplified protocol, the first time a transaction
accesses a data item x, the transaction can acquire an exclusive lock on x; once the trans-
action has completed all of its operations on the database, it can release all of its locks. In
this protocol, locks form a point of coordination between concurrent transactions: while
one transaction holds an exclusive lock on an item, other transactions that wish to operate
on the same item cannot make progress.

Semantics, Sufficiency, and Necessity. It is often convenient to reason about semantic
guarantees instead of concrete implementations of those guarantees. Instead of examining
concurrency control mechanisms one-by-one (e.g., multi-version concurrency control, opti-
mistic concurrency control, pre-scheduling, and so on), we can unequivocally determine—as
in the case of serializability—that all implementations of a given semantics require coordi-
nation to enforce.

1This read-write pattern might arise in our ID assignment scenario: T1 attempts to reserve ID 1 for its user,
x, while T2 attempts to reserve ID 1 for its user, y. If the two transactions run concurrently on separate copies
of the database, neither T1 nor T2 would observe the others’s updates. We present this example in terms of
reads and writes because it is standard and to highlight the fact that serializability enforces concurrency by
examining read/write access to variables, not by examining the program semantics.

2.2. UNDERSTANDING THE COSTS OF COORDINATION 12

However, the converse does not hold: just because a given implementation of a guaran-
tee uses coordination does not mean that the guarantee necessarily requires coordination for
enforcement. For example, even though a database may employ serializability to enforce
an invariant, the invariant may not require coordination for correct enforcement. There
may or may not be ways to enforce the invariants without coordination. In general, we
can always coordinate. The core question is whether coordination is necessary for a given
invariant or semantic property.

2.2 Understanding the Costs of Coordination

Why worry about coordination? Peter Deutsch starts his classic list of “Fallacies of
Distributed Computing” with two concerns fundamental to distributed database systems:
“1.) The network is reliable. 2.) Latency is zero” [97]. In a distributed setting, network
failures may prevent database servers from communicating, and, in the absence of failures,
communication is slowed by factors like physical distance, network congestion, and routing.
Thus, as we discuss here, the costs of coordination can be observed across three primary
dimensions: increased latency, decreased throughput, and, in the event of partial failures,
unavailability. In this section, we examine these costs in detail.

2.2.1 Latency

Even with fault-free networks, distributed systems face the challenge of network com-
munication latency. If two operations running on two separate servers must coordinate,
then the latency experienced by the operations will be bounded from below by the amount
of time required to exchange information between the sites. In this section, we quantify
network latencies of modern cloud computing environments. These are often large and
may exceed hundreds of milliseconds in a geo-replicated, multi-datacenter context. Funda-
mentally, the speed at which two servers can communicate is (according to modern physics)
bounded by the speed of light. In the best case, two servers on opposite sides of the Earth
communicating via a hypothetical link through the planet’s core would require a minimum
85.1 ms round-trip time (RTT; 133.7 ms if sent at surface level). As services are repli-
cated to multiple, geographically distinct sites, the cost of communication between replicas
increases.

In actual server deployments, messages travel slower than the speed of light due to
routing, congestion, and computational overheads. To illustrate the behavior of intra-
datacenter, inter-datacenter, and inter-planetary networks, we performed a measurement
study of network behavior on Amazon’s Elastic Compute Cloud (EC2), a widely used pub-

2.2. UNDERSTANDING THE COSTS OF COORDINATION 13

H2 H3
H1 0.55 0.56
H2 0.50

(a) Within us-east-b availability zone

C D
B 1.08 3.12
C 3.57

(b) Across us-east availability zones

OR VA TO IR SY SP SI
CA 22.5 84.5 143.7 169.8 179.1 185.9 186.9
OR 82.9 135.1 170.6 200.6 207.8 234.4
VA 202.4 107.9 265.6 163.4 253.5
TO 278.3 144.2 301.4 90.6
IR 346.2 239.8 234.1
SY 333.6 243.1
SP 362.8

(c) Cross-region (CA: California, OR: Oregon, VA: Virginia, TO: Tokyo,
IR: Ireland, SY: Sydney, SP: São Paulo, SI: Singapore)

Table 2.1: Mean RTT times on EC2 (min and max highlighted)

10-1 100 101 102 103

RTT (ms)

0.0
0.2
0.4

0.6
0.8
1.0

C
D

F

east-b:east-b
east-c:east-d
CA:OR
SI:SP

Figure 2.1: CDF of round-trip times for slowest inter- and intra- availability zone links
compared to cross-region links.

lic compute cloud. We measured one week of ping times (i.e., round-trip times, or RTTs)
between all seven EC2 geographic “regions,” across three “availability zones” (closely co-
located datacenters), and within a single “availability zone” (datacenter), at a granularity of
1s. We summarize the results of our network measurement study in Table 2.1. On average,
intra-datacenter communication (Table 2.1a) is between 1.82 and 6.38 times faster than
across geographically co-located datacenters (Table 2.1b) and between 40 and 647 times
faster than across geographically distributed datacenters (Table 2.1c). The cost of wide-
area communication exceeds the speed of light: for example, while a speed-of-light RTT

2.2. UNDERSTANDING THE COSTS OF COORDINATION 14

from São Paulo to Singapore RTT is 106.7 ms, ping packets incur an average 362.8 ms
RTT (95th percentile: 649 ms). As shown in Figure 2.1, the distribution of latencies varies
between links, but the overall trend is clear: coordination may lead to substantial delays.
Quantifying and minimizing communication delays is also an active area of research in the
networking community [230].

2.2.2 Throughput and Scalability

Coordination also affects throughput. If a transaction takes d seconds to execute, the
maximum throughput of coordinating transactions operating on the same items under a
general-purpose (i.e., interactive, non-batched) transaction model is limited by 1

d
. Any op-

erations that arrive in excess of this limit will also have to wait. Within a single server,
delays can be small, permitting tens to hundreds of thousands of conflicting transactions
per item per second. In a partitioned database system, where different items are located on
different servers, or in a replicated database system, where the same item is located (and
is available for operations) on multiple servers, the cost increases: delay is lower-bounded
by network latency. On a local area network, delay may vary from several microseconds
(e.g., via Infiniband or RDMA) to several milliseconds on today’s cloud infrastructure, per-
mitting anywhere from a few hundred transactions to a few hundred thousand transactions
per second. However, as we have seen, a wide-area network, delay is lower-bounded by the
speed of light (worst-case on Earth, around 75 ms, or about 13 operations per second [32]).
Under network partitions [41], as delay tends towards infinity, these penalties lead to un-
availability [32, 118]. In contrast, operations executing without coordination can proceed
concurrently and will not incur these penalties.

To further understand the costs of coordination, we performed two sets of measurements—
one using a database prototype and one using traces from prior studies. We first compared
the throughput of a set of coordinated and coordination-free transaction execution. Our
basic workload is simple: a set of transactions read and increment a set of integers stored
on separate servers.

First, we implemented two coordinated algorithms: traditional two-phase locking and
an optimized variant of two-phase locking, both on in-memory data. In two-phase locking,
each client acquires locks one at a time, requiring a full round trip time (RTT) for every lock
request. For an N item transaction, locks are held for 2N+ 1 message delays (the +1 is due
to broadcasting the unlock/commit command to the participating servers). Our optimized
two-phase locking only uses one message delay (half RTT) to perform each lock request:
the client specifies the entire set of items it wishes to modify at the start of the transaction
(in our implementation, the number of items in the transaction and the starting item ID),

2.2. UNDERSTANDING THE COSTS OF COORDINATION 15

and, once a server has updated its respective item, the server forwards the remainder of the
transaction to the server responsible for the next write in the transaction (similar to linear
commit protocols [53]). For anN-item transaction, locks are only held forNmessage delays
(the final server both broadcasts the unlock request to all other servers and also notifies the
client), while a 1-item transaction does not require distributed locking.

To avoid deadlock (which we found was otherwise common in this high-contention
microbenchmark), our implementation totally orders any lock requests according to item
and executes them sequentially (e.g., lock item 1 then lock item 2 and so on). Our imple-
mentation also piggybacks operation commands along with lock requests, further avoiding
message delays. Since we are only locking one item per server, our microbenchmark code
does not use a dynamic lock manager and instead associates a single lock with each item;
this further lowers locking overheads.

Our coordination-free transaction implementation is simpler: it uses no locks and simply
performs the increment operation across each transaction in parallel, without acquiring
locks.

We partitioned eight in-memory items (integers) across eight cr1.8xlarge Amazon EC2
instances with clients located on a separate set of cr1.8xlarge instances. Figure 2.2 re-
ported in depicts results for the coordination-free implementation and the optimized two-
phase locking case. Unsurprisingly, two-phase locking performs worse than optimized two-
phase locking, but both incur substantial penalties due to coordination delay over the net-
work.

With single-item, non-distributed transactions, the coordination-free implementation
achieves, in aggregate, over 12M transactions per second and bottlenecks on physical re-
sources—namely, CPU cycles. In contrast, the lock-based implementation achieves approx-
imately 1.1M transactions per second: it is unable to fully utilize all 32 multi-core processor
contexts due to lock contention. For distributed transactions, coordination-free throughput
decreases linearly (as an N-item transaction performs N writes), while the throughput of
coordinating transactions drops by over three orders of magnitude.

While the above microbenchmark demonstrates the costs of a particular implementa-
tion of coordination, we also studied the effect of more fundamental, implementation-
independent overheads (i.e., also applicable to optimistic and scheduling-based concurrency
control mechanisms). We determined the maximum attainable throughput for coordinated
execution within a single datacenter (based on data from [230]) and across multiple dat-
acenters (based on data from [32]) due to blocking coordination during atomic commit-
ment [53].

We simulate traditional two-phase commit [53] and decentralized two-phase commit [124]
using network models derived from existing studies. For an N-server transaction, classic

2.2. UNDERSTANDING THE COSTS OF COORDINATION 16

1 2 3 4 5 6 7

Number of Items per Transaction

101

102

103

104

105

106

107

108
Th

ro
ug

hp
ut

(tx
ns

/s
)

Coordination-Free
Optimized 2PL

2PL

Figure 2.2: Microbenchmark performance of coordinated and coordination-free execution
of transactions of varying size writing to eight items located on eight separate multi-core
servers.

two-phase commit (C-2PC) requires N (parallel) coordinator to server RTTs, while decen-
tralized two-phase commit (D-2PC) requires N (parallel) server to server broadcasts, or N2

messages. Our simulation is straightforward, but we make several optimizations to improve
the throughput of each algorithm. First, we assume that transactions are pipelined, so that
each server can prepare immediately after it has committed the prior transaction. Second,
our pipelines are ideal in that we do not consider deadlock: only one transaction prepares
at a given time. Third, we do not consider the cost of local processing of each transaction:
throughput is determined entirely by communication delay.

Figure 2.3 shows that, in the local area, with only two servers (e.g., two replicas or two
coordinating operations on items residing on different servers), throughput is bounded by
1125 transactions per second (via D-2PC; 668 transactions per second via C-2PC). Across
eight servers, D-2PC throughput drops to 173 transactions per second (respectively 321 for
C-2PC) due to long-tailed latency distributions. In the wide area, the effects are more severe:
if coordinating from Virginia to Oregon, D-2PC message delays are 83 ms per commit,
allowing 12 operations per second. If coordinating between all eight EC2 availability zones,
throughput drops to slightly over 2 transactions per second in both algorithms.

These results should also be unsurprising: coordinating—especially over the network—
can incur serious throughput penalties. In contrast, coordination-free operations can exe-
cute without incurring these costs. The costs of actual workloads can vary: if coordinating

2.2. UNDERSTANDING THE COSTS OF COORDINATION 17

operations are rare, concurrency control will not be a bottleneck. For example, a serializ-
able database executing transactions with disjoint read and write sets can perform as well
as a non-serializable database without compromising correctness [140]. However, as these
results demonstrate, minimizing the amount of coordination and its degree of distribution
can therefore have a tangible impact on performance, latency, and availability [8, 32, 118].
While we study real applications in Section 6.3, these measurements highlight the worst of
coordination costs on modern hardware.

While this study is based solely on reported latencies, deployment reports corroborate
our findings. For example, Google’s F1 uses optimistic concurrency control via WAN with
commit latencies of 50 to 150 ms. As the authors discuss, this limits throughput to between
6 to 20 transactions per second per data item [207]. Megastore’s average write latencies
of 100 to 400 ms suggest similar throughputs to those that we have predicted [45]. Again,
aggregate throughput may be greater as multiple 2PC rounds for disjoint sets of data items
may safely proceed in parallel. However, worst-case access patterns—in effect, serial access
to data items—will greatly limit throughput and scalability. Adding more servers will not
assist; parallel processing is ineffective for workloads that must proceed serially.

2.2.3 Availability and Failures

According to James Hamilton, Vice President and Distinguished Engineer on the Ama-
zon Web Services team, “network partitions should be rare but net gear continues to cause
more issues than it should” [128]. Anecdotal evidence confirms Hamilton’s assertion. In
April 2011, a network misconfiguration led to a twelve-hour series of outages across the
Amazon EC2 and RDS services [29]. Subsequent misconfigurations and partial failures such
as another EC2 outage in October 2012 have led to full site disruptions for popular web
services like Reddit, Foursquare, and Heroku [99]. At global scale, hardware failures—
like the 2011 outages in Internet backbones in North America and Europe due a router
bug [204]—and misconfigurations like the BGP faults in 2008 [176] and 2010 [178] can
cause widespread partitioning behavior.

Many of our discussions with practitioners—especially those operating on public cloud
infrastructure—as well as reports from large-scale operators like Google [93] confirm that
partition management is an important consideration for service operators today. System
designs that do not account for partition behavior may prove difficult to operate at scale: for
example, less than one year after its announcement, Yahoo!’s PNUTS developers explicitly
added support for weaker, highly available operation. The engineers explained that “strict
adherence [to strong consistency] leads to difficult situations under network partitioning or
server failures...in many circumstances, applications need a relaxed approach” [181].

2.2. UNDERSTANDING THE COSTS OF COORDINATION 18

2 3 4 5 6 7 8
Number of Servers in 2PC

0

200

400

600

800

1000

1200

M
ax

. T
hr

ou
gh

pu
t (

tx
ns

/s
)

D-2PC
C-2PC

a.) Maximum serializable transaction throughput over local-area network in [230]

+OR +CA +IR +SP +TO +SI +SY
Participating Datacenters (+VA)

0

2

4

6

8

10

12

M
ax

. T
hr

ou
gh

pu
t (

tx
n/

s)

D-2PC
C-2PC

b.) Maximum serializable transaction throughput over wide-area network in [32] with transactions
originating from a coordinator in Virginia (VA; OR: Oregon, CA: California, IR: Ireland, SP: São

Paulo, TO: Tokyo, SI: Singapore, SY: Sydney)

Figure 2.3: Atomic commitment latency as an upper bound on conflicting serializable trans-
action throughput over local-area and wide-area networks.

2.2. UNDERSTANDING THE COSTS OF COORDINATION 19

Several recent studies rigorously quantify partition behavior. A 2011 study of several
Microsoft datacenters observed over 13,300 network failures with end-user impact, with
an estimated median 59,000 packets lost per failure. The study found a mean of 40.8 net-
work link failures per day (95th percentile: 136), with a median time to repair of around
five minutes (and up to one week). Perhaps surprisingly, provisioning redundant networks
only reduces impact of failures by up to 40%, meaning network providers cannot easily
curtail partition behavior [119]. A 2010 study of over 200 wide-area routers found an av-
erage of 16.2–302.0 failures per link per year with an average annual downtime of 24–497
minutes per link per year (95th percentile at least 34 hours) [223]. In HP’s managed enter-
prise networks, WAN, LAN, and connectivity problems account for 28.1% of all customer
support tickets while 39% of tickets relate to network hardware. The median incident du-
ration for highest priority tickets ranges from 114–188 minutes and up to a full day for all
tickets [222]. Other studies confirm these results, showing median time between connec-
tivity failures over a WAN network of approximately 3000 seconds with a median time to
repair between 2 and 1000 seconds [175] as well as frequent path routing failures on the
Internet [150]. A recent, informal report by Kingsbury and Bailis catalogs a host of addi-
tional practitioner reports [40]. Not surprisingly, isolating, quantifying, and accounting for
these network failures is an area of active research in networking community [165].

2.2.4 Summary: Costs

Coordination is expensive. Empirical measurements on existing infrastructure confirm
its latency and throughput costs, and a host of reports describe the difficulty of dealing
with failures. Given an absence of quantitative failure data, we focus primarily on the
performance-related aspects of coordination in this dissertation. However, our pursuit of
coordination avoidance benefits all three dimensions.

2.2.5 Outcome: NoSQL, Historical Context, Safety and Liveness

The above costs have become especially pressing over the past decade, leading to a
schism among distributed database systems designers. An increasing number of modern
applications demand low latency and available operation at unprecedented scale. For
example, Facebook’s RocksDB reportedly handles nine billion queries per second [182],
while increased latency may have a marked impact on web application engagement and
revenue [162, 163, 203]. As a result, the database market has been inundated by a large
number of data stores promising coordination-free execution (see Chapter 7). This market
shift is perhaps the most significant development in transaction processing over the past
decade.

2.2. UNDERSTANDING THE COSTS OF COORDINATION 20

While these stores, often collectively labeled “NoSQL,” provide admirable scalability
and behavioral properties, they infrequently provide useful semantics for developers. That
is, the common denominator among these semantics is a particular property called eventual
consistency: informally, if no additional updates are made to a given data item, all reads
to that item will eventually return the same value [224]. While this is a useful property, it
leaves some unfortunate holes. First, what is the eventual state of the database? A database
always returning the value 42 is eventually consistent, even if 42 was never written. The
database can eventually choose (i.e., converge to) an arbitrary value. Second, what values
can be returned before the eventual state of the database is reached? If replicas have not yet
converged, what guarantees can be made about the data returned?

To more precisely explain why eventual consistency is not strong enough, we consider
two concepts from distributed systems. A safety property guarantees that “nothing bad
happens”: for example, every value that is read was, at some point in time, written to
the database. A liveness property guarantees that “something good eventually happens”:
for example, all requests eventually receive a response [17]. The difficulty with eventual
consistency is that it makes no safety guarantees—eventual consistency is purely a liveness
property. Something good eventually happens—eventually all reads return the same value—
but there are no guarantees with respect to what value is eventually returned, and any value
can be returned out in the meantime. For truly meaningful guarantees, safety and liveness
properties need to be taken together: without one or the other, systems can provide trivial
implementations that provide less-than-satisfactory results.

In practice, eventually consistent systems often provide “strongly consistent” (e.g., lin-
earizable) behavior with frequency; for example, using production latency data from LinkedIn’s
eventually consistent database clusters, we found that, under common deployment settings,
99.9% of reads delivered the last completed write within 45.5 ms of the write’s comple-
tion [42–44]. However, given the possibility of “inconsistent” behavior, programmers must
either explicitly account for this possibility or otherwise “code around” these anomalies
(Chapter 7). Here, we wish to guarantee safety under all circumstances.

Our goal in this work is to preserve convergence and coordination-free execution while
simultaneously preserving safety guarantees as found in modern applications and databases.
Thus, we attempt to restore safety to this class of scalable databases without compromising
their benefits. In the next section, we formally define these concepts.

2.3. SYSTEM MODEL 21

Property Informal Effect
Global validity Invariants hold over committed states
Transactional availability Non-trivial response guaranteed
Convergence Updates are eventually reflected in shared state
Coordination-freedom No synchronous coordination

Table 2.2: Key properties of the system model and their informal effects.

2.3 System Model

In this section, we present a more formal model for transaction execution and define
our desirable criteria for transaction execution, including coordination-free execution. We
begin with an informal description of our model and provide more formal definitions in the
remainder of the section.

Informally, in our model, transactions operate over logical replicas, or independent snap-
shots of database state. Transaction writes are applied at one or more replicas initially when
the transaction commits and then are integrated into other replicas asynchronously via a
“merge” operator that incorporates those changes into the snapshot’s state. Given a set
of invariants describing valid database states, as Table 2.2 outlines, we seek to understand
when it is possible to ensure invariants are always satisfied (global validity) while guaran-
teeing a response (transactional availability) and the existence of an eventually agreed upon
common state shared between replicas (convergence), all without communication during
transaction execution (coordination-freedom). This model need not directly correspond to
a given implementation and may not even correspond to the operation of a distributed sys-
tem, as it can be implemented via multi-versioning. Rather, it serves as a useful abstraction.
The remainder of this section defines these concepts.

Databases. We represent a state of a database as a set D of unique versions of data items
located on an arbitrary set of database servers, where each version is located on at least one
server. Thus, each server contains a local database that is a subset of the database located
on all servers (the global database). We will denote version i of item x as xi and use D to
denote the set of possible database states—that is, the set of sets of versions. The global
database is initially populated by an initial state D0 (typically but not necessarily empty).

Transactions, Replicas, and Merging. Application clients submit requests to the database
in the form of transactions, or ordered groups of operations on data items. Each transaction
operates on a logical replica, or set of versions of the items mentioned in the transaction.
At the beginning of the transaction, the replica reflects a subset of the global database
state and is formed from all of the versions of the relevant items from the local databases

2.3. SYSTEM MODEL 22

of one or more physical servers that are contacted during transaction execution. As the
transaction executes, it may add versions (of items in its writeset) to its replica. Thus, we
define a transaction T as a transformation on a replica: T : D → D. We treat transactions
as opaque transformations that can contain writes (which add new versions to the replica’s
set of versions) or reads (which return a specific set of versions from the replica).

Upon completion, each transaction can commit, signaling success, or abort, signaling
failure. Upon commit, the replica state is subsequently merged (t:D × D → D) into the
local database of at least one server. We require that the merged effects of a committed
transaction will eventually become visible to other transactions—that is, its versions will be
present within those transactions’ replicas—that later begin execution on the same server.2

Over time, effects eventually propagate to other servers, again through the use of the merge
operator. Though not strictly necessary (see “Alternative Merge” below), we assume the
merge operator is commutative, associative, and idempotent [19, 205] and that, for all
states Di, D0 tDi = Di. In our initial model, we define merge as set union of the versions
contained at different servers. For example, if server Rx = {v} and Ry = {w}, then RxtRy =

{v,w}.

In effect, each transaction can modify its replica state without modifying any other con-
currently executing transactions’ replica state. Replicas therefore provide transactions with
partial “snapshot” views of the global database (that we will use to simulate concurrent ex-
ecutions, similar to revision diagrams [68]). Importantly, two transactions’ replicas do not
necessarily correspond to two physically separate servers; rather, a replica is simply a partial
“view” over the global state of the database. For now, we assume advance knowledge of
all transactions to be submitted to the system.

Invariants. To determine whether a database state is valid according to application cor-
rectness criteria, we reason about a set of declared invariants, or predicates over databases:
I : D → {true, false} [105]. Thus, our invariants capture safety of data stored in the
database. In our payroll example, we could specify an invariant that only one user in
a database has a given ID. This invariant—as well as almost all invariants we consider—is
naturally expressed as a part of the database schema (e.g., via DDL); however, our approach
allows us to reason about invariants even if they are known to the developer but not de-
clared to the system. Invariants directly capture the notion of ACID Consistency [53,123],
and we say that a database state is valid under an invariant I (or I-valid) if it satisfies the
predicate:

Definition 1. A replica state R ∈ D is I-valid iff I(R) = true.

2This implicitly disallows servers from always returning the initial database state when they have newer
writes on hand. This is a relatively pragmatic assumption but also simplifies our later reasoning about admis-
sible executions.

2.3. SYSTEM MODEL 23

Server 1
D0={}

Server 2
D0={}

Server 1
D1={x1}

commit T1 commit T2

Server 2
D2={x2}

Server 2
D3={x1,x2}

Server 1
D3={x1,x2}

TIM
E

(ASYNCHRONOUS) MERGE OF DIVERGENT SERVER STATES

COORDINATION-FREE EXECUTION

replica={x1} replica={x2}

Figure 2.4: An example coordination-free execution of two transactions, T1 and T2, on
two servers. Each transaction writes to its local replica, then, after commit, the servers
asynchronously exchange state and converge to a common state (D3).

We require that D0 be valid under invariants. Section 3.3 provides additional discussion
regarding our use of invariants.

Availability. To ensure each transaction receives a non-trivial response, we adopt the
following definition of availability [32]:

Definition 2. A system provides transactionally available execution iff, whenever a client
executing a transaction T can access servers containing one or more versions of each item
in T , then T eventually commits unless T aborts due to an explicit abort operation in T or if
committing T would violate a declared invariant over T ’s replica state.

Under the above definition, a transaction can only abort if it explicitly chooses to abort
itself or if committing would violate invariants over the transaction’s replica state.3

Convergence. Transactional availability allows replicas to maintain valid state indepen-
dently, but it is vacuously possible to maintain “consistent” database states by letting repli-
cas diverge (contain different state) forever. This guarantees safety but not liveness [202].
To force state sharing, we adopt the following definition:

3This basic definition precludes fault tolerance (i.e., durability) guarantees beyond a single server fail-
ure [32]. We can relax this requirement and allow communication with a fixed number of servers (e.g., F + 1
servers for F-fault tolerance; F is often small [95]) without affecting our results. This does not affect scalability
because, as more replicas are added, the communication overhead required for durability remains constant.

2.3. SYSTEM MODEL 24

Definition 3. A system is convergent iff, for each pair of servers, in the absence of new
writes to the servers and in the absence of indefinite communication delays between the
servers, the servers eventually contain the same versions for any item they both store.

To capture the process of reconciling divergent states, we use the previously introduced
merge operator: given two divergent server states, we apply the merge operator to produce
convergent state. We assume the effects of merge are atomically visible: either all effects of
a merge are visible or none are. This assumption is not always necessary but it simplifies
our discussion and, as we later discuss, is maintainable without coordination [32,37].

Our treatment of convergence uses a pair-wise definition (i.e., each pair converges) [171]
rather than a system-wide definition (i.e., all nodes converge). This is more restrictive than
system-wide convergence but allows us to make guarantees on progress despite partitions
between subsets of the servers. This also precludes the use of protocols such as background
consensus, which can stall indefinitely in the presence of partitions. Like many of the other
decisions in our model, this too could be relaxed if system-wide convergence is sufficient.

Maintaining validity. To make sure that both divergent and convergent database states
are valid and, therefore, that transactions never observe invalid states, we introduce the
following property:

Definition 4. A system is globally I-valid iff all replicas always contain I-valid state.

Coordination. Our system model is missing one final constraint on coordination between
concurrent transaction execution:

Definition 5. A system provides coordination-free execution for a set of transactions T iff
the progress of executing each t ∈ T is only dependent on t’s replica’s state (i.e., the versions
of the items t reads).

That is, in a coordination-free execution, each transaction’s progress towards commit/abort
is independent of other operations (e.g., writes, locking, validations) being performed on be-
half of other transactions. Thus, transaction execution cannot rely on blocking synchroniza-
tion or communication with other concurrently running transactions. This coordination-
free execution corresponds to availability under the asynchronous network model used in
distributed computing [118]: progress is guaranteed despite the possibility of indefinite de-
lays between servers.

A note on partial replication. We have explicitly considered a replicated model. This
was a natural in allowing us to reason about distributed and multi-versioned databases.
Our model captures both fully replicated databases, where all data items are located on all

2.3. SYSTEM MODEL 25

servers, and partially replicated databases, where data items are located on a proper subset
of servers. That is, as long as clients can access some copy of the data items they are looking
for, they are allowed to proceed. This allows us to reason about properties over the entire
set of data items (i.e., the abstraction of a replica is a copy of the whole database), without
having to describe data placement. The distinction is not relevant from the perspective of
reasoning about coordination requirements: if two operations can proceed independently,
irrespective of any side-effects, timing, or other information produced (or not) by the other,
then the question of whether the data they operate under is stored on multiple servers or
one server is irrelevant.

To illustrate this point, a coordination-free algorithm designed for a partially replicated
system will trivially execute on a fully replicated system. A coordination-free algorithm
designed for a fully replicated system can execute on a partially replicated system by having
each client operate over its own independent set of versions until writes quiesce. The latter
is not practical but illustrates our point. In practice, building efficient algorithms for parti-
tioned databases is challenging; for example, Chapter 5 is devoted to a suite of algorithms
for enforcing a common semantics in partially-replicated databases.

However, in a partially replicated system implementation, checking whether an invariant
is satisfied over a transaction’s logical replica state prior to transaction commit may require
transactions to access servers containing data that they did not directly mention in their
program text. In effect, each transaction must end with an inline invariant check over any
data it modifies and any data referenced by invariants over the data it modifies to avoid
the transaction committing a non-I-valid state. Thus, in a partially replicated system, this
checking can incur communication overhead (e.g., to ensure that the opposite end of a
foreign key relation is present)—although not always (e.g., to check for a null value upon
insertion). This cost is fundamental to general-purpose invariant verification in partially
replicated systems and has well-studied relatives in active database systems [14,228] but is—
as a consequence of our decision not to distinguish fully-replicated and partially-replicated
stores—not transparent in our model.

A note on convergence. We have chosen to implement convergence using anti-entropy [96,
200] via the merge operator. In our model, servers exchange versions by shipping the side
effects of transactions rather than the transactions themselves. Alternatives, such as ship-
ping closures containing the transactions [189] are possible but are less common in prac-
tice [38,95]. Our goal here is that, under a merge function like set union, transaction effects
are propagated, and transactions are not “rewritten” as in alternative extended transaction
models such as compensating actions (Chapter 7).

Alternative Merges. As discussed above, merge need not necessarily be associative, commu-

2.3. SYSTEM MODEL 26

tative, and idempotent. For example, in Bayou [189], users write arbitrary merge functions
(that may not be commutative, associative, or idempotent) and the server processes deter-
mine a total ordering on merge operations in the background. As long as there is eventually
connectivity between all servers, Bayou guarantees convergence. Thus, the system is con-
vergent insofar as all servers replay all relevant merge operations even though the merges
themselves are not. Nevertheless, due to their practical implementation, we focus on asso-
ciative, commutative, and idempotent merges here.

By example. Figure 2.4 illustrates a coordination-free execution of two transactions T1

and T2 on two separate, fully-replicated physical servers. Each transaction commits on its
local replica, and the result of each transaction is reflected in the transaction’s local server
state. After the transactions have completed, the servers exchange state and, after applying
the merge operator, converge to the same state. Any transactions executing later on either
server will obtain a replica that includes the effects of both transactions.

27

Chapter 3

Invariant Confluence and Coordination

With a system model and goals in hand, we now address the question: when do applica-
tions require coordination for correctness? The answer depends not just on an application’s
transactions or on an application’s invariants. Rather, the answer depends on the combi-
nation of the two under consideration. Our contribution in this section is to formulate
a criterion that will answer this question for specific combinations in an implementation-
agnostic manner.

In this section, we focus almost exclusively on providing a general answer to this ques-
tion. The remainder of this thesis is devoted to practical interpretation and application of
these results.

3.1 Invariant Confluence: Criteria Defined

To begin, we introduce the central property (adapted from the constraint programming
literature [100]) in our main result: invariant confluence. Applied in a transactional context,
the invariant confluence property informally ensures that divergent but I-valid database
states can be merged into a valid database state—that is, the set of valid states reachable
by executing transactions and merging their results is closed (w.r.t. validity) under merge.
In the next sub-section, we show that invariant confluence analysis directly determines the
potential for safe, coordination-free execution.

We say that a database Di is a I-T -reachable state if, given an invariant I and set of
transactions T (with merge function t), there exists a partially ordered set of transaction
and merge function invocations that yields Di, and each intermediate state produced by
transaction execution or merge invocation is also I-valid. We call these previous states
ancestor states. Each ancestor state is either the initial state D0 or is I-T -reachable from D0.

3.2. INVARIANT CONFLUENCE AND COORDINATION-FREEDOM 28

We can now formalize the invariant confluence property:

Definition 6 (Invariant Confluence). A set of transactions T is invariant confluent with re-
spect to invariant I if, for all I-T -reachable states Di, Dj with a common ancestor state,
Di tDj is I-valid.

Figure 3.1 depicts a invariant confluent merge of two I-T -reachable states, each start-
ing from a shared, I-T -reachable state Ds. Two sequences of transactions tin . . . ti1 and
tjm . . . tj1 each independently modify Ds. Under invariant confluence, the states produced
by these sequences (Din and Djm) must be valid under merge.

We require our merged states in the invariant confluence formulation to have a com-
mon ancestor to rule out the possibility of merging states that could not have arisen from
transaction execution (e.g., even if no transaction assigns IDs, merging two states that each
have unique but overlapping sets of IDs could be invalid). Moreover, in practice, every
non-invariant confluent set of transactions and invariants we encountered had a counter-
example execution consisting of a divergent execution consisting of a single pair of transac-
tions. However, we admit the possiblity that more exotic transactions and merge functions
might lead to complex behavior in non-single-step divergence, so we consider arbitrary his-
tories here. Precisely characterizing the difference in expressive power between invariant
confluent transactions under single-transaction divergence versus multi-transaction diver-
gence is an interesting question for future work.

Invariant confluence holds for specific combinations of invariants and transactions. In
our payroll database example from Section 2.1, removing a user from the database is in-
variant confluent with respect to the invariant that user IDs are unique. However, two
transactions that remove two different users from the database are not invariant confluent
with respect to the invariant that there exists at least one user in the database at all times.
Later chapters discuss actual combinations of transactions and invariants (and with greater
precision).

3.2 Invariant Confluence and Coordination-Freedom

We now apply invariant confluence to our goals from Section 2.3:

Theorem 1. A globally I-valid system can execute a set of transactions T with coordination-
freedom, transactional availability, and convergence if and only if T is invariant confluent
with respect to I.

Theorem 1 establishes invariant confluence as a necessary and sufficient condition for
invariant-preserving, coordination-free execution. If invariant confluence holds, there exists

3.2. INVARIANT CONFLUENCE AND COORDINATION-FREEDOM 29

Ds
I(Ds)=True

Di1
I(Di1)=True

Din
I(Din)=True

Dj1
I(Dj1)=True

Djm
I(Djm)=True

ti1 tj1

ti2

tin

tj2

tjm

Din ⊔ Djm
I(Din ⊔ Djm)=TrueIMPLICATION (merge must be valid)

(valid divergence
from initial state)

PRECONDITION

Figure 3.1: A invariant confluent execution illustrated via a diamond diagram. If a set of
transactions T is invariant confluent, then all database states reachable by executing and
merging transactions in T starting with a common ancestor (Ds) must be mergeable (t)
into an I-valid database state.

a correct, coordination-free execution strategy for the transactions; if not, no possible im-
plementation can guarantee these properties for the provided invariants and transactions.
That is, if invariant confluence does not hold, there exists at least one execution of transac-
tions on separate replicas that will violate the given invariants when servers converge. To
prevent invalid states from occurring, at least one of the transaction sequences will have to
forego availability or coordination-freedom, or the system will have to forego convergence.
Invariant confluence analysis is independent of any given implementation, and effectively
“lifts” prior discussions of scalability, availability, and low latency [8,32,118] to the level of
application (i.e., not “I/O” [20]) correctness. This provides a useful handle on the implica-
tions of coordination-free execution without requiring reasoning about low-level properties
such as physical data location and the number of servers.

We provide a full proof of Theorem 1 below but first provide a sketch. The back-
ward direction is by construction: if invariant confluence holds, each replica can check
each transaction’s modifications locally and replicas can merge independent modifications
to guarantee convergence to a valid state. The forwards direction uses a partitioning argu-
ment [118] to derive a contradiction: we construct a scenario under which a system cannot
determine whether a non-invariant confluent transaction should commit without violating
one of our desired properties (either compromising validity or availability, diverging forever,
or coordinating). The structure of our argument is not novel, but the ability to discuss the
effects of operations without discussing the underlying system behavior (e.g., the presence
of network partitions) is useful.

3.2. INVARIANT CONFLUENCE AND COORDINATION-FREEDOM 30

To begin, we demonstrate the possibility of forcing a coordination-free system into any
I-T -reachable database state via a carefully crafted sequence of partitioning behavior.

Lemma 1. Given a set of transactions T and invariants I, a globally I-valid, coordination-
free, transactionally available, and convergent system is able to produce any I-T -reachable
state Si.

Proof Lemma 1. Let αi represent a partially ordered sequence of transactions Ti and merge
procedure invocations Mi (call this a history) starting from S0 that produces Si.

We REPLAY the history α on a set of servers as follows. Starting from the initial state S0,
we traverse the partial order according to a topological sort. Initially, we mark all opera-
tions (transactions or merges) in α as not done. We begin by executing all transactions Ti in
αi that have no predeceding operations in α. For each transaction t ∈ Ti, we execute t on a
server that is unable to communicate with any other server.1 Upon transaction commit, we
merge each replica’s modifications into the server. (Recall that, because Si is I-T -reachable,
each transaction in α is an I-valid transformation and must either eventually commit or
abort itself to preserve transactional availability, and, due to coordination-freedom, the re-
sult of the execution is dependent solely on its input—in this case, S0.) We subsequently
mark each executed transaction t as done and denote the server that executed t as st.2

Next, we repeatedly select an operation oi from α that is marked as not done but whose
preceding operations are all marked as done.

If oi is a transaction with preceding operation oj, performed corresponding server sj,
we partition sj, and a second server si, a server containing state S0, such that sj and si
can communicate with each other but cannot communicate with any other server. Under
convergent execution, sj and si must eventually contain the same state (given that sj t S0 is
defined in our model to be sj). Following convergence, we partition sj and si so they can
no longer communicate.3 We subsequently execute oi on si. Again, oi must either commit
or abort itself to preserve transactional availability, and its behavior is solely dependent on
its input due to coordination-freedom. Once oi is completed, we mark it as done.

1Without loss of generality, we discuss replicated databases, where each server contains the entire set of
items referenced in the history. It is trivial to extend the REPLAY procedure to a partially replicated environ-
ment by replacing each server with a set of servers that contains all data items necessary for each operation.

2Recall from Section 2.3 that we consider arbitrary groups of servers. Thus, we simply execute each
operation in the history on a new server. We could be more parsimonious with our use of servers in this
procedure but choose not to do so for simplicity.

3In the event that oi is the only event that immediately follows oj in α, we could simply execute oi on
sj. In the event that multiple operations immediately follow oj in α, we need to ensure that each operation
proceeds independently. Thus, we are conservative and give every operation its own server that contains the
effects of the preceding operations in α.

3.2. INVARIANT CONFLUENCE AND COORDINATION-FREEDOM 31

If oi is a merge procedure with preceding operations oj and ok on corresponding servers
sj and sk, we produce servers sj ′ and sk ′ containing the same contents as sj and sk, re-
spectively, as above, by partitioning sj ′ and sj and, respectively, sk and sk ′, waiting until
convergence, then repartitioning each. Subsequently, we place sj ′ and sk ′ in the same net-
work partition, forcing the merge (oi) of these states via the convergence requirement. We
subsequently mark oi as done.

When all operations in α are marked as done, the final operation we have performed
will produce server containing state Si. We have effectively (serially) traversed the history,
inducing the partially ordered sequence of transactions and merges by triggering partitions;
we force transaction commits due to transactional availability and merges due to our pair-
wise convergence requirement.

Given this possibility, we proceed to prove Theorem 1 from Section 3.2.

Proof Theorem 1. (⇐) We begin with the simpler proof, which is by construction. Assume
a set of transactions T are invariant confluent with respect to an invariant I. Consider
a system in which each server executes the transactions it receives against a replica of its
current state and checks whether or not the resulting state is I-valid. If the resulting state is
I-valid, the replica commits the transaction and its mutations to the state. If not, the replica
aborts the transaction. Servers opportunistically exchange copies of their local states and
merge them. No individual replica will install an invalid state upon executing transactions,
and, because T is invariant confluent under I, the merge of any two I-valid replica states
from individual servers (i.e., I-T -reachable states) as constructed above is I-valid. Therefore,
the converged database state will be I-valid. Transactional availability, convergence, and
global I-validity are all maintained via coordination-free execution.

(⇒) Assume a system M guarantees globally I-valid operation for set of transactions T
and invariant I with coordination-freedom, transactional availability, and convergence, but
T is not I-confluent. Then there exist two I-T -reachable states Sa and Sb with common
ancestor I-T -reachable state So such that, by definition, I(Sa) and I(Sb) are true, but I(Sa t
Sb) is false. Call the history that corresponds to Sa αa and the thisory that corresponds to
Sb αb.4

Consider two executions of system M corresponding to histories αa and αb. In each
execution, we begin by forcing M to produce a server containing So (via invoking REPLAY

from Lemma 1 on M). In αa, we subsequently REPLAY the history from So using M. In
αb, we subsequently REPLAY the history αb starting from Sc. Call Tfa and Tfb the final (set
of) transactions that produced each of Sa and Sb (that is, the set of transactions in each

4We may be able to apply Newman’s lemma and only consider single-transaction divergence (in the case
of convergent and therefore “terminating” executions) [100,144], but this is not necessary for our results.

3.2. INVARIANT CONFLUENCE AND COORDINATION-FREEDOM 32

execution that are not followed by any other transaction). During the execution of αa and
αb, all transactions in each of Tfa and Tfb will have committed to maintain transactional
availability, their end result will be equivalent to the result in Sa and Sb, which are both
I-valid, by assumption.

We now consider a third execution, αc. αc produces a server containing So by perform-
ing REPLAY using M, as above. Then, αc independently performs REPLAY for αa and αb

but does not execute or proceed further in either history than the first element of Tfa or Tfb.
Instead, we consider these specially:

First, note that, if we independently REPLAY the transactions in Tfa and Tfb, and M
commits them, then we will have completed all operations in αa and αb. In this case, M
will produce two servers sa and sb containing states Sa and Sb. If we partition servers sa
and sb such that they can communicate with each other but cannot communicate with any
other servers, si and sj must eventually converge. When sa and sb eventually converge,
they will converge to Sa t Sb. However, I(Sa t Sb) is false, which would violate global
I-validity. Thus, M cannot commit all of the transactions in Tfa and Tfb.

On the other hand, suppose we independently REPLAY the the transactions in Tfa and
Tfb and M aborts one of the transactions ta in Tfa. In this case, the server that aborts ta
(call this server sac) will have exactly the same information (set of versions) available to it
as the server that executed ta in the execution corresponding to αa above (call this second
server saa). However, in the execution corresponding to αa, saa committed ta. Thus, in
one execution (αa),M commits ta (on sac) and, in another execution (αc),M aborts ta (on
saa), even though the contents of the servers are identical. Thus, despite the fact that the
configurations are indistinguishable, M performs a different operation, a contradiction. If
we REPLAY the transactions in Tfa and Tfb and M aborts one of the transactions tb in Tfb,
we will similarly observe a contradiction: a server in the execution corresponding to αc will
have aborted a transaction despite having the same information available to it as another
server in the execution corresponding to αb, which committed the same transaction. Thus,
to the servers executing Tfb, αa is indistinguishable from αc, and, to the servers executing
Tfb, αb is indistinguishable from αc.

Therefore, to preserve transactional availability in the execution corresponding to αc,
M must sacrifice one of global validity (by allowing the merge of Sa and Sb, resulting
in an invalid state), convergence (by never merging the contents of the servers containing
Sa and Sb), or coordination-freedom (by requiring communication between servers during
REPLAY).

3.3. DISCUSSION AND LIMITATIONS 33

3.3 Discussion and Limitations

Invariant Confluence captures a simple, informal rule: coordination can only be avoided
if all local commit decisions are globally valid. (Alternatively, commit decisions are com-
posable.) If two independent decisions to commit can result in invalid merged (converged)
state, then replicas must coordinate in order to ensure that only one of the decisions is to
commit. Given the existence of an unsafe execution and the inability to detect the unsafe
execution using only local information, a globally valid system must coordinate in order to
prevent the invalid execution from arising.

Use of invariants. Our use of invariants in invariant confluence is key to achieving a
necessary and not simply sufficient condition. By directly capturing correctness criteria via
invariants, invariant confluence analysis only identifies “true” conflicts. This allows invari-
ant confluence analysis to perform a more accurate assessment of whether coordination is
needed compared to related conditions such as commutativity (Chapter 7).

However, the reliance on invariants also has drawbacks. Invariant confluence analy-
sis only guards against violations of any specified invariants. If invariants are incorrectly
or incompletely specified, a invariant confluent database system may violate correctness.
If users cannot guarantee the correctness and completeness of their invariants and opera-
tions, they should opt for a more conservative analysis or mechanism such as employing
serializable transactions. In fact, without such a correctness specification, for arbitrary
transaction schedules, serializability is—in a sense—the “optimal” strategy [149]. Alterna-
tively, restricting the programming language—for example, to allow only invariant conflu-
ent operations or operations that exhibit other, possibly more conservative properties like
monotonicity or commutativity (Chapter 7)—can also assist here. In either case, by cast-
ing correctness in terms of admissible application states instead of (simply) a property of
read-write executions over distributed replicas, we achieve a more precise statement of co-
ordination overheads. Finally, when full application invariants are unavailable, individual,
high-value transactions may be amenable to optimization via invariant confluence coordi-
nation analysis. Accordingly, our development of invariant confluence analysis provides
developers with a powerful option—but only if used correctly. If used incorrectly, invariant
confluence allows incorrect results, or, if not used at all, developers must resort to existing
alternatives.

This final point raises several questions: can we specify invariants in real-world use
cases? Classic database concurrency control models assume that “the [set of application
invariants] is generally not known to the system but is embodied in the structure of the
transaction” [105, 220]. Nevertheless, since 1976, databases have introduced support for
a finite set of invariants [52, 115, 120, 126, 145] in the form of primary key, foreign key,

3.4. SUMMARY 34

uniqueness, and row-level “check” constraints [161]. We can (and, in the remainder of this
dissertation, do) analyze these invariants, which can—like many program analyses [80]—
lead to new insights about execution strategies. We have found the process of invariant
specification to be non-trivial but feasible in practice. In many cases, specifications for
certain invariants already exist but have not been examined in the context of coordination-
free implementation.

Physical and logical replication. We have used the concept of replicas to reason about con-
current transaction execution. However, as previously noted, our use of replicas is simply
a formal device used to capture concurrency in the system implementation, independent of
the actual concurrency control mechanisms at work. Specifically, reasoning about replicas
allows us to separate the analysis of transactions from their implementation: just because a
transaction is executed with (or without) coordination does not mean that all query plans or
implementations require (or do not require) coordination [32]. Simply because an applica-
tion is invariant confluent does not mean that all implementations will be coordination-free.
Rather, invariant confluence ensures that a coordination-free implementation exists.

(Non-)determinism. Invariant confluence analysis effectively captures points of unsafe
non-determinism [20] in transaction execution. As we have seen in many of our examples
thus far, total non-determinism under concurrent execution can compromise application-
level consistency [19, 144]. But not all non-determinism is bad: many desirable properties
(e.g., classical distributed consensus among processes) involve forms of acceptable non-
determinism (e.g., any proposed outcome is acceptable as long as all processes agree) [124].
In many cases, maximizing concurrency requires admitting the possibility of non-determinism
in outcomes.

Invariant confluence analysis allows this non-deterministic divergence of database states
but makes two useful guarantees about those states. First, the requirement for global va-
lidity ensures safety (in the form of invariants). Second, the requirement for convergence
ensures liveness (in the form of convergence). Accordingly, via its use of invariants, in-
variant confluence allows users to scope non-determinism while only permitting systems to
produce “acceptable” states.

3.4 Summary

In this chapter, we developed a framework for determining whether a given safety prop-
erty can be maintained without coordination while still guaranteeing availability of opera-
tions and convergence of data. This invariant confluence generalizes partitioning arguments
from distributed systems and allows us to reason about semantic properties at the applica-

3.4. SUMMARY 35

tion level. In effect, if the set of database states reachable by applying program operations
and merge invocations is closed with respect to declared invariants, a coordination-free
implementation of those operations and invariants is possible. In the remainder of this dis-
sertation, we will apply this invariant confluence to several semantic properties found in
real database systems.

36

Chapter 4

Coordination Avoidance and Weak
Isolation

In this section, we begin to apply the invariant confluence property to the semantics
found in today’s database systems. We examine the potential for coordination-free execu-
tion of transaction under a number of weak isolation guarantees. These non-serializable
transaction semantics are widespread use in today’s database engines and therefore provide
an attractive target for invariant confluence analysis. They are also among the lowest-level
semantics we will investigate in this thesis; that is, these guarantees pertain to the admis-
sible interleavings of individual reads and writes to opaque variables, rather than whole
program behavior or invariants over database states. Thus, our primary motivation in this
section is to examine a range of widely-deployed—if not widely understood—guarantees.
Subsequently, we will move upwards in levels of abstraction.

We provide background on the use of weak isolation in Section 4.1. We examine the
invariant confluence of these guarantees and provide several coordination-free implementa-
tions in Section 4.2. In Section 4.3, we experimentally evaluate their benefits. Section 4.4
presents a more formal model for these guarantees.

4.1 ACID in the Wild

Even within a single-node database, the coordination penalties associated with serializ-
ability can be severe. In this context, coordination manifests itself in the form of decreased
concurrency, performance degradation, multi-core scalability limitations, and, sometimes,
aborts due to deadlock or contention [125]. Accordingly, since the early 1970s, database
systems have offered a range of ACID properties weaker than serializability: the host of

4.2. INVARIANT CONFLUENCE ANALYSIS: ISOLATION LEVELS 37

so-called weak isolation models describe varying restrictions on the space of schedules that
are allowable by the system [9, 22, 49]. None of these weak isolation models guarantees
serializability, but, as we see below, their benefits to concurrency are frequently consid-
ered by database administrators and application developers to outweigh costs of possible
consistency anomalies that might arise from their use.

To better understand the prevalence of weak isolation, we surveyed the default and max-
imum isolation guarantees provided by 18 databases, often claiming to provide “ACID” or
“NewSQL” functionality [36]. As shown in Table 4.1, only three out of 18 databases pro-
vided serializability by default, and eight did not provide serializability as an option at all.
This is particularly surprising when we consider the widespread deployment of many of
these non-serializable databases, like Oracle, which are known to power major businesses
and product functionality. While we have established that serializability is unachievable in
coordination-free systems, the widespread usage of these alternative, weak models indicates
that this inability may be of limited importance to applications built upon database systems
today. If application writers and database vendors have already decided that the benefits of
weak isolation outweigh potential application inconsistencies, then, in a coordination-free
system that that prohibits serializability, similar decisions may be tenable.

It has been unknown which of these common isolation levels can be provided with
coordination-free execution. Existing algorithms for providing weak isolation are often
designed for a single-node context and often rely on coordination-based concurrency con-
trol mechanisms like locking or mututal exclusion. Moreover, we are not aware of any
prior literature that provides guidance as to the relationship between weak isolation and
coordination-free execution: prior work has examined the relationship between serial-
izability and coordination-freedom [92] and has studied several variants of weak isola-
tion [9,49,125] but not weak isolation and coordination-free execution together.

4.2 Invariant Confluence Analysis: Isolation Levels

In this section, we determine the invariant confluence of a number of these weak isola-
tion guarantees. We also provide a treatment of several distributed consistency models that
are complementary to these isolation guarantees. As Brewer states, “systems and database
communities are separate but overlapping (with distinct vocabulary)” [63]. With this chal-
lenge in mind, we build on existing properties and definitions from the database and dis-
tributed systems literature, providing an informal explanation and example for each guar-
antee.1 The database isolation guarantees require particular care, since different DBMSs

1For clarity, we call these “distributed consistency” guarantees “isolation models” as well.

4.2. INVARIANT CONFLUENCE ANALYSIS: ISOLATION LEVELS 38

Database Default Maximum
Actian Ingres 10.0/10S S S
Aerospike RC RC
Akiban Persistit SI SI
Clustrix CLX 4100 RR RR
Greenplum 4.1 RC S
IBM DB2 10 for z/OS CS S
IBM Informix 11.50 Depends S
MySQL 5.6 RR S
MemSQL 1b RC RC
MS SQL Server 2012 RC S
NuoDB CR CR
Oracle 11g RC SI
Oracle Berkeley DB S S
Oracle Berkeley DB JE RR S
Postgres 9.2.2 RC S
SAP HANA RC SI
ScaleDB 1.02 RC RC
VoltDB S S
RC: read committed, RR: repeatable read,
SI: snapshot isolation, S: serializability,
CS: cursor stability, CR: consistent read

Table 4.1: Default and maximum isolation levels for ACID and NewSQL databases.

often use the same terminology for different mechanisms and may provide additional guar-
antees in addition to our implementation-agnostic definitions. We draw largely on Adya’s
dissertation [9] and somewhat on its predecessor work: the ANSI SQL specification [22]
and Berenson et al.’s subsequent critique [49].

In this section, we provide a short proof sketch of each guarantee and provide a more
comprehensive treatment in Section 4.4. For each invariant confluent guarantee, we also
offer proof-of-concept coordination-free algorithms. These are not necessarily optimal or
even efficient: the goal is to illustrate the existence of algorithms. However, we will investi-
gate performance implications in Section 4.3.

Informal model. In our examples, per Adya [9], we exclusively consider read and write
operations, denoting a write of version vi with unique timestamp i drawn from a totally
ordered domain (e.g., integers) to data item d as wd(vi) and a read from data item d

returning vi as rd(v). We assume that all data items have the null value, ⊥, at database
initialization, and, unless otherwise specified, all transactions in the examples commit.

4.2. INVARIANT CONFLUENCE ANALYSIS: ISOLATION LEVELS 39

In our invariant confluence analysis, we reason about read-write histories (or simply
histories: sets of transactions consisting of read and write operations and their return values.
Each history can be represented as a graph of operations with various edges that we describe
below; thus, in our invariant confluence model, we reason about the results of transaction
executions in the database as histories—or, in effect, traces of transaction execution. In
this section, we examine invariants over histories, and the set-oriented nature of histories
lends itself naturally to a set-oriented merge. Compared to later analyses (e.g., those in
Chapter 6), these are relatively straightforward, and we keep their discussion brief.

Our use of read/write histories is somewhat awkward given our data-centric expression
of invariants. However, this model is necessary for compatibility with existing descriptions
of weak isolation guarantees. One consolation is that this formalism highlights the unintu-
itive nature of these guarantees. We study them because they are in widespread use today,
but we find them difficult to reason about. As we move towards higher layers of abstrac-
tion in later chapters, the higher level specifications are—in our experience—much more
intuitive and natural to reason about.

We also assume in this section that the final versions written to each data item within
a transaction are assigned the same timestamp. This practice is standard in treatments
of multi-version serializability theory [53] but is not actually enforced by Adya’s original
model. It does not affect the generality of our results2 but makes several of them clearer.

We begin with invariant confluent guarantees and then present non-invariant confluent
guarantees.

4.2.1 Invariant Confluent Isolation Guarantees

To begin, Adya captures Read Uncommitted isolation as PL-1. In this model, writes to
each object are totally ordered, corresponding to the order in which they are installed in
the database. In a distributed database, different replicas may receive writes to their local
copies of data at different times but should handle concurrent updates (i.e., overwrites) in
accordance with the total order for each item. PL-1 requires that writes to different objects
be ordered consistently across transactions, prohibiting Adya’s phenomenon G0 (also called
“Dirty Writes” [49]). If we build a graph of transactions with edges from one transaction to
another when the former overwrites the latter’s write to the same object then, under Read

2Namely, if we draw timestamps from an infinite domain, we can partition the ID space among replicas.
In an implementation, this may require new servers joining a cluster to obtain a subset of the ID space from
at least one existing cluster member. In a practical implementation, this could require a substantial number of
bits for timestamp allocation. However, at an extreme, 256 bits support extreme transaction volumes.

4.2. INVARIANT CONFLUENCE ANALYSIS: ISOLATION LEVELS 40

Uncommitted, the graph should not contain cycles [9]. Consider the following example:

T1 : wx(1) wy(1)

T2 : wx(2) wy(2)

In this example, under Read Uncommitted, it is unacceptable for the database to both order
T1’s wx(1) before T2’s wx(2) and order T2’s wy(2) before T1’s wy(1).

Read Uncommitted is invariant confluent under read and write operations; we provide a
sketch here. The G0 phenomenon described above only pertains to write operations, so we
do not consider read operations. With unique and totally ordered timestamps, G0 graphs
are acyclic by construction. To show this, consider any two transactions Ti and Tj appearing
in a G0 graph G, and the final versions of each item produced by Ti (timestamped k) and
the final versions of each item produced by Tj (timestamped l, either k < l or l < k. In
either case, G is acyclic. Merging two acyclic graphs does not produce new transactions,
and all transactions within the two graphs will similarly be totally ordered.

Because Read Uncommitted is invariant confluent, we can find a coordination-free im-
plementation. (However, note that traditional implementations such as the lock-based im-
plementation due to Gray in the original formulation of Read Uncommitted [125]), do
require coordinate.) Read Uncommitted is easily achieved by marking each of a transac-
tion’s writes with the same timestamp (unique across transactions; e.g., combining a client’s
ID with a sequence number) and applying a “last writer wins” conflict reconciliation policy
at each replica. Later properties will strengthen Read Uncommitted.

Read Committed isolation is particularly important in practice as it is the default isola-
tion level of many DBMSs (Section 4.1). Centralized implementations differ, with some
based on long-duration exclusive locks and short-duration read locks [125] and others
based on multiple versions. These implementations often provide properties beyond what
is implied by the name “Read Committed” and what is captured by the implementation-
agnostic definition. However, under the implementation-independent definition of Read
Committed, transactions should not access uncommitted or intermediate (i.e., non-final)
versions of data items. This prohibits both “Dirty Writes”, as above, and also “Dirty
Reads” phenomena. This isolation is Adya’s PL-2 and is formalized by prohibiting Adya’s
G1{a-c} (or ANSI’s P1, or “broad” P1 [2.2] from Berenson et al.). For instance, in the
example below, T3 should never read a = 1, and, if T2 aborts, T3 should not read a = 3:

T1 : wx(1) wx(2)

T2 : wx(3)

T3 : rx(a)

4.2. INVARIANT CONFLUENCE ANALYSIS: ISOLATION LEVELS 41

Read Committed is also invariant confluent for read and write operations. The basic
idea is relatively straightforward: if two histories do not contain reads of uncommitted or
intermediate versions of data items, unioning them will not introduce additional reads of
uncommitted or intermediate versions, nor will unioning them change any of the values of
that any of the reads returned (preventing G1a and G1b). Adya’s G1c is prevented by the
fact that G0 graphs are acyclic for writes (as above) and transactions can only read-depend
on other transactions that appear in their histories; thus, unioning two histories that do not
exhibit G1c cannot introduce new edges to incur G1c.

Because Read Committed is invariant confluent, we can find a coordination-free im-
plementation: if no client ever writes uncommitted data to shared copies of data, then
transactions will never read each others’ dirty data. As a simple solution, clients can buffer
their writes until they commit, or, alternatively, can send them to servers, who will not de-
liver their value to other readers until notified that the writes have been committed. Unlike
a lock-based implementation, this implementation does not guarantee that readers observe
the most recent write to a data item, but it the implementation-agnostic definition.

Several different properties have been labeled Repeatable Read isolation. As we will
show in Section 4.2.3, some of these are not achievable in a coordination-free system. How-
ever, the ANSI-standard, implementation-agnostic definition [22] is achievable and directly
captures the spirit of the term: if a transaction reads the same data more than once, it sees
the same value each time (preventing “Fuzzy Read,” or P2). In this paper, to disambiguate
between other definitions of “Repeatable Read,” we will call this property “cut isolation,”
since each transaction reads from a non-changing cut, or snapshot, over the data items. If
this property holds over reads from a set of individual data items, we call it Item Cut Isola-
tion, and, if we also expect a cut over predicate-based reads (e.g., SELECT WHERE; preventing
Phantoms [125], or Berenson et al.’s P3/A3), we have the stronger property of Predicate
Cut-Isolation. In the example below, under both levels of cut isolation, T3 must read a = 1:

T1 : wx(1)

T2 : wx(2)

T3 : rx(1) rx(a)

Item Cut Isolation is invariant confluent for reasoning similar to Read Committed: if
two histories are valid under Item Cut Isolation, unioning them will not change the return
values of reads.

Because Item Cut Isolation is invariant confluent, we can find a coordination-free imple-
mentation: we can have transactions store a copy of any read data at the client such that
the value that they read for each item never changes unless they overwrite it themselves.

4.2. INVARIANT CONFLUENCE ANALYSIS: ISOLATION LEVELS 42

These stored values can be discarded at the end of each transaction and can alternatively
be accomplished on servers via multi-versioning. Predicate Cut Isolation is also achievable
in coordination-free systems via similar caching middleware or multi-versioning that tracks
entire logical ranges of predicates in addition to item based reads.

ACID Atomicity Guarantees

Atomicity, informally guaranteeing that either all or none of transactions’ effects should
succeed, is core to ACID guarantees. Although, at least by the ACID acronym, atomicity
is not an “isolation” property, atomicity properties also restrict the updates visible to other
transactions. Accordingly, here, we consider the isolation effects of atomicity, which we
call Monotonic Atomic View (MAV) isolation. Under MAV, once some of the effects of
a transaction Ti are observed by another transaction Tj, thereafter, all effects of Ti are
observed by Tj. That is, if a transaction Tj reads a version of an object that transaction
Ti wrote, then a later read by Tj cannot return a value whose later version is installed by
Ti. Together with item cut isolation, MAV prevents Read Skew anomalies (Berenson et
al.’s A5A) and is useful in several contexts such as maintaining foreign key constraints,
consistent global secondary indexing, and maintenance of derived data. In the example
below, under MAV, because T2 has read T1’s write to y, T2 must observe b = c = 1 (or later
versions for each key):

T1 : wx(1) wy(1) wz(1)

T2 : rx(a) ry(1) rx(b) rz(c)

T2 can also observe a = ⊥, a = 1, or a later version of x. In the hierarchy of existing
isolation properties, we place MAV below Adya’s PL-2L (as it does not necessarily en-
force transitive read-write dependencies) but above Read Committed (PL − 2). Notably,
MAV requires disallows reading intermediate writes (Adya’s G1b): observing all effects of a
transaction implicitly requires observing the final (committed) effects of the transaction as
well.

Perplexingly, discussions of MAV are absent from existing treatments of weak isolation.
This is perhaps again due to the single-node context in which prior work was developed:
on a single server (or a fully replicated database), MAV is achievable via lightweight locking
and/or local concurrency control over data items [90,143]. In contrast, in a distributed envi-
ronment, MAV over arbitrary groups of non-co-located items is considerably more difficult
to achieve with coordination-free execution.

MAV is invariant confluent for read and write operations. The reasoning is similar to
Read Committed and Item Cut Isolation: if two histories obey MAV, then their union does

4.2. INVARIANT CONFLUENCE ANALYSIS: ISOLATION LEVELS 43

not change the effects of the reads in each history, and therefore every transaction T in the
unioned history reads from the same transactions in the original history in which T was
originally found, and T will not miss the effects of transactions it depends upon.

Because MAV is invariant confluent, we can find a coordination-free implementation.
Due to its utility, we develop an advanced set of implementations of MAV in Chapter 5.

Session Guarantees

A useful class of safety guarantees refer to real-time or client-centric ordering within a
session, “an abstraction for the sequence of...operations performed during the execution of
an application” [216]. These “session guarantees” have been explored in the distributed
systems literature [216, 224] and sometimes in the database literature [91]. For us, a ses-
sion describes a context that should persist between transactions: for example, on a social
networking site, all of a user’s transactions submitted between “log in” and “log out” oper-
ations might form a session. Session guarantees are often expressed in a non-transactional
context, and there are several ways to extend them to transactions. Per [91], we examine
them in terms of ordering across transactions.

Several session guarantees can be made with coordination-free execution. We describe
them informally below:

The monotonic reads guarantee requires that, within a session, subsequent reads to a given
object “never return any previous values”; reads from each item progress according to a
total order (e.g., the order from Read Uncommitted).

The monotonic writes guarantee requires that each session’s writes become accessible to
other transactions in the order they were committed. Any order on transactions (as in Read
Uncommitted isolation) should also be consistent with any precedence (e.g., Adya’s ordering
on versions of each item) that a global oracle would observe.

The writes follow reads guarantee requires that, if a session observes an effect of transaction
T1 and subsequently commits transaction T2, then another session can only observe effects
of T2 if it can also observe T1’s effects (or later values that supersede T1’s); this corresponds
to Lamport’s “happens-before” relation [157]. Any order on transactions should respect
this transitive order.

The above guarantees are invariant confluent for reads and writes and can be achieved
by forcing servers to wait to reveal new writes (say, by buffering them in separate local stor-
age) until each write’s respective dependencies are visible on all replicas. This mechanism
effectively ensures that all clients read from a globally agreed upon lower bound on the

4.2. INVARIANT CONFLUENCE ANALYSIS: ISOLATION LEVELS 44

versions written. This is coordination-free because a client will never block due to inability
to find a server with a sufficiently up-to-date version of a data item. However, it does not
imply that transactions within a session will observe previous updates within the session
or, in the presence of partitions, make forward progress through the version history. The
problem is that under our standard definition of transactional availability, a system must
handle the possibility that, under a partition, an unfortunate client will be forced to issue
its next requests against a partitioned, out-of-date server.

4.2.2 Sticky Availability

To address the above concern, we can introduce the concept of “stickiness”: clients can
ensure continuity between operations (e.g., reading their prior updates to a data item) by
maintaining affinity or “stickiness” with a server or set of servers [224]. In a fully replicated
system, where all servers are replicas for all data items, stickiness is simple: a client can
maintain stickiness by contacting the same server for each of its requests. However, to stay
“sticky” in a partially-replicated system, where servers are replicas for subsets of the set of
data items (which we consider in this paper), a client must maintain stickiness with a single
logical copy of the database, which may consist of multiple physical servers. We say that a
system provides sticky availability if, whenever a client’s transactions is executed against a
copy of database state that reflects all of the client’s prior operations, it eventually receives a
response, even in the presence of indefinitely long partitions (where “reflects” is dependent
on semantics). A client may choose to become sticky available by acting as a server itself; for
example, a client might cache its reads and writes [39,216,233]. Any guarantee achievable
in a coordination-free system is achievable in a sticky coordination-free system but not vice-
versa. In the above example, if the client remains sticky with the server that executed T1,
then the client can read its writes. While sticky availability is implicit in prior work, we
believe this is one of the first instances where it is discussed in detail.

Sticky availability permits three additional guarantees, which we first define and then
show are unavailable in a generic coordination-free system:

Read your writes requires that whenever a session reads a given data item d after writing a
version di to it, the read returns the di or another version dj, where j > i.

PRAM (Pipelined Random Access Memory) provides the illusion of serializing each of the
operations (both reads and writes) within each session and is the combination of monotonic
reads, monotonic writes, and read your writes [134].

Causal consistency [13] results from the combination of all session guarantees [67] (i.e.,
PRAM with writes-follow-reads) and is also referred to by Adya as PL-2L isolation [9]).

4.2. INVARIANT CONFLUENCE ANALYSIS: ISOLATION LEVELS 45

Read your writes is not achievable in a coordination-free system. Consider a client that
executes the following two transactions:

T1 : wx(1)

T2 : rx(a)

If the client executes T1 against a server that is partitioned from the rest of the other servers,
then, for transactional availability, the server must allow T1 to commit. If the same client
subsequently executes T2 against the same (partitioned) server in the same session, then it
will be able to read its writes. However, if the network topology changes and the client can
only execute T2 on a different replica that is partitioned from the replica that executed T1,
then the system will have to either stall indefinitely to allow the client to read her writes
(violating transactional availability) or will have to sacrifice read your writes guarantees.

Accordingly, read your writes, and, by proxy, causal consistency and PRAM require
stickiness. Read your writes is provided by default in a sticky system. Causality and PRAM
guarantees can be accomplished with well-known variants [13, 39, 168, 216, 233] of the
prior session guarantee algorithms we presented earlier: only reveal new writes to clients
when their (respective, model-specific) dependencies have been revealed.

4.2.3 Non-Invariant Confluent Semantics

At this point, we have considered most of the previously defined (and useful) isolation
guarantee that are available to coordination-free systems. Before summarizing our possibil-
ity results, we will present impossibility results, also defined in terms of previously identified
isolation anomalies. Most notably, it is impossible to prevent Lost Update or Write Skew in
a coordination-free system.

Unachievable ACID Isolation

In this section, we demonstrate that preventing Lost Update and Write Skew—and
therefore providing Snapshot Isolation, Repeatable Read, and one-copy serializability—
inherently requires foregoing high availability guarantees.

Berenson et al. define Lost Update as when one transaction T1 reads a given data item,
a second transaction T2 updates the same data item, then T1 modifies the data item based
on its original read of the data item, “missing” or “losing” T2’s newer update. Consider a

4.2. INVARIANT CONFLUENCE ANALYSIS: ISOLATION LEVELS 46

database containing only the following transactions:

T1 : rx(a) wx(a+ 2)

T2 : wx(2)

If T1 reads a = 1 but T2’s write to x precedes T1’s write operation, then the database will end
up with a = 3, a state that could not have resulted in a serial execution due to T2’s “Lost
Update.”

It is impossible to prevent Lost Update in a highly available environment. Consider two
clients who submit the following T1 and T2 as part of two separate histories H1 and H2.

T1 : rx(100) wx(100 + 20 = 120)

T2 : rx(100) wx(100 + 30 = 130)

Regardless of whether x = 120 or x = 130 is chosen by a replica, the database state could
not have arisen from a serial execution ofH1 andH2.3 To prevent this, either T1 or T2 should
not have committed. Each client’s respective server might try to detect that another write
occurred, but this requires knowing the version of the latest write to x. In our example, this
reduces to a requirement for linearizability, which is, via Gilbert and Lynch’s proof of the
CAP Theorem, provably at odds with coordination-free execution [118].

Write Skew is a generalization of Lost Update to multiple keys. It occurs when one
transaction T1 reads a given data item x, a second transaction T2 reads a different data item
y, then T1 writes to y and commits and T2 writes to x and commits. As an example of
Write Skew, consider the following two transactions:

T1 : ry(0) wx(1)

T2 : rx(0) wy(1)

As Berenson et al. describe, if there was an integrity constraint between x and y such that
only one of x or y should have value 1 at any given time, then this write skew would violate
the constraint (which is preserved in serializable executions). Write skew is a somewhat
esoteric anomaly—for example, it does not appear in TPC-C [110]—but can result in im-
proper behavior in many unexpected scenarios, such as transfers from one bank account
to another [110]. As a generalization of Lost Update, Write Skew is also unavailable to
coordination-free systems.

3In this example, we assume that, as is standard in modern databases, databases accept values as they
are written (i.e., register semantics). However, if we replace the write operation with a richer semantics, like
“increment,” we can avoid this issue. However, the problem persists in the general case.

4.2. INVARIANT CONFLUENCE ANALYSIS: ISOLATION LEVELS 47

Consistent Read, Snapshot Isolation (including Parallel Snapshot Isolation [210]), and
Cursor Stability guarantees are all unavailable because they require preventing Lost Update
phenomena. Repeatable Read (defined by Gray [125], Berenson et al. [49], and Adya [9])
and One-Copy Serializability [26] need to prevent both Lost Update and Write Skew.
Their prevention requirements mean that these guarantees are inherently unachievable in
a coordination-free system.

Unachievable Recency Guarantees

Distributed data storage systems often make various recency guarantees on reads of
data items. Unfortunately, an indefinitely long partition can force an available system to
violate any recency bound, so recency bounds are not enforceable by coordination-free sys-
tems [118]. One of the most famous of these guarantees is linearizability [134], which states
that reads will return the last completed write to a data item. There are also several other
(weaker) variants such as safe and regular register semantics. When applied to transactional
semantics, the combination of one-copy serializability and linearizability is called strong (or
strict) one-copy serializability [9] (e.g., Spanner [85]). It is also common, particularly in sys-
tems that allow reading from masters and slaves, to provide a guarantee such as “read a
version that is no more than five seconds out of date” or similar. None of these guarantees
are invariant confluent.

Durability

A client requiring that its transactions’ effects survive F server faults requires that the
client be able to contact at least F + 1 non-failing replicas before committing. This affects
availability and, according to the model we have adopted, F > 1 fault tolerance is not
achievable in an invariant confluent system. However, with minor modifications to the
model, we can ensure durability at a penalty to operation availability. Namely, if we modify
the definition of transactional availability (Definition 2) such that a transaction terminates
if it can access at least F+1 servers for each item its transaction, the remainder of our results
hold for systems with at least F + 1 physical servers. This is a moderately subtle concept,
but an important consequence is that communication overhead associated with ensuring
durability is a function of F and not of the physical cluster size. Thus, if a cluster doubles in
size from fifty to one hundred physical servers, the overheads due to durability are constant,
whereas the overheads for, say, a majority consensus algorithm will double (as the majority
is a function of the number of nodes).

4.2. INVARIANT CONFLUENCE ANALYSIS: ISOLATION LEVELS 48

4.2.4 Summary

As we summarize in Table 4.2, a wide range of isolation levels are achievable in coordination-
free systems. With sticky availability, a system can achieve read your writes guarantees,
PRAM, and causal consistency. However, many other prominent semantics, such as Snap-
shot Isolation, One-Copy Serializability, and Strong Serializability cannot be achieved due
to the inability to prevent Lost Update and Write Skew phenomena.

We illustrate the hierarchy of invariant confluent, sticky, and non-invariant confluent
isolation models we have discussed in Figure 4.1. Many models are simultaneously achiev-
able, but we find several particularly compelling. If we combine all coordination-free and
sticky guarantees, we have transactional, causally consistent snapshot reads (i.e., Causal
Transactional Predicate Cut Isolation). If we combine MAV and P-CI, we have transac-
tional snapshot reads (see Chapter 5). We can achieve RC, MR, and RYW by simply sticking
clients to servers. We can also combine unavailable models—for example, an unavailable
system might provide PRAM and One-Copy Serializability [91].

To the best of our knowledge, this is the first unification of transactional isolation, dis-
tributed consistency, and session guarantee models. Interestingly, strong one-copy serializ-
ability subsumes all other models, while considering the (large) power set of all compatible
models (e.g., the diagram depicts 144 possible coordination-free combinations) hints at the
vast expanse of consistency models found in the literature. This taxonomy is not exhaus-
tive, but we believe it lends substantial clarity to the relationships between a large subset of
the prominent ACID and distributed consistency models.

In light the of current practice of deploying weak isolation levels (Section 4.1), it is
perhaps surprising that so many weak isolation levels are achievable with coordination-
freedom. Indeed, isolation levels such as Read Committed expose and are defined in terms
of end-user anomalies that could not arise during serializable execution. However, the
widespread usage of these models suggests that, in many cases, applications can tolerate
these their associated anomalies. In turn, our results suggest that–despite idiosyncrasies
relating to concurrent updates and data recency–coordination-free database systems can
provide sufficiently strong semantics for many applications. For non-invariant confluent
semantics, coordination-free databases may expose more anomalies (e.g., linearizability vi-
olations) than a single-site database (particularly during network partitions). However, for,
invariant confluent isolation levels, users of single-site databases are subject to the same
(worst-case) application-level anomalies as a coordination-free implementation. The neces-
sary (indefinite) visibility penalties (i.e., the right side of Figure 4.1) and lack of support for
preventing concurrent updates (via the upper left half of Figure 4.1) mean coordination-
free systems are not well-suited for all applications (see Section 4.3): these limitations
are fundamental. However, common practices such as ad-hoc, user-level compensation

4.3. IMPLICATIONS: EXISTING ALGORITHMS AND EMPIRICAL IMPACT 49

Invariant Confluent Read Uncommitted (RU), Read
Committed (RC), Monotonic
Atomic View (MAV), Item Cut
Isolation (I-CI), Predicate Cut
Isolation (P-CI), Writes Follow
Reads (WFR), Monotonic Reads
(MR), Monotonic Writes (MW)

Sticky Read Your Writes (RYW),
PRAM, Causal

Unavailable Cursor Stability (CS)†, Snapshot
Isolation (SI)†, Repeatable Read
(RR)†‡, One-Copy Serializabil-
ity (1SR)†‡, Recency⊕, Safe⊕,
Regular⊕, Linearizability⊕,
Strong 1SR†‡⊕

Table 4.2: Summary of invariant confluent, sticky, and non-invariant confluent models
considered in this paper. Non-invariant confluent models are labeled by cause: preventing
lost update†, preventing write skew‡, and requiring recency guarantees⊕.

and per-statement isolation “upgrades” (e.g., SELECT FOR UPDATE under weak isolation)—
commonly used to augment weak isolation—are also applicable in coordination-free sys-
tems (although they may in turn compromise availability). That is, if an application already
selectively and explicitly opts-in to coordination via SQL keywords like SELECT FOR UPDATE,
a coordination-avoiding system can similarly use these hints as a basis for understanding
when coordination is required.

4.3 Implications: Existing Algorithms and Empirical Impact

Given our understanding of which isolation models are invariant confluent, in this sec-
tion, we analyze the implications of these results for existing systems and study coordination-
free implementations on public cloud infrastructure. Specifically, we revisit traditional
database concurrency control with a focus on coordination costs and on coordination-free
execution. We also perform a experimental evaluation of coordination-free versus non-
coordination-free properties on public cloud infrastructure.

4.3. IMPLICATIONS: EXISTING ALGORITHMS AND EMPIRICAL IMPACT 50

I-CI

P-CIRC

RU

MAV

MR MWWFR RYW recency

safe

regular

linearizable

causal

PRAM

CS

RR

SI

1SR

Strong-1SR

Figure 4.1: Partial ordering of invariant confluent, sticky (in boxes), and non-invariant
confluent models (circled) from Table 4.2. Directed edges represent ordering by model
strength. Incomparable models can be simultaneously achieved, and the availability of a
combination of models has the availability of the least available individual model.

4.3.1 Existing Algorithms

While we have shown that the semantics of many database isolation levels are achiev-
able with coordination-freedom, many traditional concurrency control mechanisms do not
provide coordination-free execution—even for invariant confluent isolation levels. Exist-
ing mechanisms often presume (or are adapted from) single-server, non-partitioned deploy-
ments or are otherwise adapted from mechanisms that enforce serializability as a primary
use case.

Most existing implementations of weak isolation are not coordination-free. Lock-based
mechanisms such as those in Gray’s original proposal [125] do not degrade gracefully in
the presence of partial failures. (Note, however, that lock-based protocols do offer the
benefit of recency guarantees.) While multi-versioned storage systems allow for a vari-
ety of transactional guarantees, few offer traditional weak isolation (e.g., non-“tentative
update” schemes) in this context. Chan and Gray’s read-only transactions have item-cut
isolation with causal consistency and MAV (session PL-2L [9]) but are unavailable in the
presence of coordinator failure and assume serializable update transactions [73]; this is
similar to read-only and write-only transactions more recently proposed by Eiger [168].
Brantner’s S3 database [62] and Bayou [216] can all provide variants of session PL-2L with
coordination-free execution, but none provide this coordination-free functionality with-
out substantial modification. Accordingly, it is possible to implement many guarantees
weaker than serializability—including coordination-free semantics—and still not achieve a

4.3. IMPLICATIONS: EXISTING ALGORITHMS AND EMPIRICAL IMPACT 51

coordination-free implementation. Thus, coordination-free execution must often be explic-
itly considered in concurrency control designs.

4.3.2 Empirical Impact: Isolation Guarantees

To investigate the performance implications of coordination-free weak isolation im-
plementation in a real-world environment, we implemented a database prototype of sev-
eral of the guarantees in this chapter. We verify that, as Chapter 2’s measurements sug-
gested, “strongly consistent” algorithms incur substantial latency penalties (over WAN, 10
to 100 times higher than their coordination-free counterparts) compared to coordination-
free-compliant algorithms, which scale linearly. Our goal is not a complete performance
analysis of coordination-free semantics but instead a demonstration of coordination-free
designs on real-world infrastructure.

Implementation. Our prototype database is a partially replicated (hash-based partitioned)
key-value backed by LevelDB and implemented in Java using Apache Thrift. It supports
eventual consistency (hereafter, eventual) using a last-writer-wins reconciliation policy for
concurrent writes, effectively providing Read Uncommitted replication, via standard all-to-
all anti-entropy between replicas. We support non-coordination-free operation whereby all
operations for a given key are routed to a (randomly) designated master replica for each key
(guaranteeing single-key linearizability, as in Gilbert and Lynch’s CAP Theorem proof [118]
and in PNUTS [83]’s “read latest” operation; hereafter, master) as well as distributed two-
phase locking. Servers are durable: they synchronously write to LevelDB before responding
to client requests.

Configuration. We deploy the database in clusters—disjoint sets of database servers that
each contain a single, fully replicated copy of the data—across one or more datacenters and
stick all clients within a datacenter to their respective cluster (trivially providing read-your-
writes and monotonic reads guarantees). By default, we deploy 5 Amazon EC2 m1.xlarge

instances (15GB RAM, with 4 cores comprising 8 “EC2 Compute Units”) as servers in
each cluster. For our workload, we link our client library to the YCSB benchmark [84],
which is well suited to LevelDB’s key-value schema, grouping every eight YCSB operations
from the default workload (50% reads, 50% writes) to form a transaction. We increase the
number of keys in the workload from the default 1,000 to 100,000 with uniform random
key access, keeping the default value size of 1KB, and running YCSB for 180 seconds per
configuration.

Geo-replication. We first deploy the database prototype across an increasing number of
datacenters. Figures 4.2A and 4.3A shows that, when operating two clusters within a

4.3. IMPLICATIONS: EXISTING ALGORITHMS AND EMPIRICAL IMPACT 52

single datacenter, mastering each data item results in approximately half the throughput and
double the latency of eventual. This is because coordination-free models are able to utilize
replicas in both clusters instead of always contacting the (single) master. RC—essentially
eventual with buffering—is almost identical to eventual. Latency increases linearly with
the number of YCSB clients.

In contrast, when the two clusters are deployed across the continental United States
(Figures 4.2B and 4.3B), the average latency of master increases to 300ms (a 278–4257%
latency increase; average 37ms latency per operation). For the same number of YCSB client
threads, master has substantially lower throughput than the coordination-free configura-
tions. Increasing the number of YCSB clients does increase the throughput of master, but
our Thrift-based server-side connection processing did not gracefully handle more than sev-
eral thousand concurrent connections. In contrast, across two datacenters, the performance
of eventual and RC are near identical to a single-datacenter deployment.

4.3. IMPLICATIONS: EXISTING ALGORITHMS AND EMPIRICAL IMPACT 53

Eventual RC Master

0 200 400 600 800 1000
0

20
40
60
80

100
120

A
vg

. L
at

en
cy

 (
m

s)

Number of YCSB Clients

A.) Within us-east (VA)

0 200 400 600 800 1000Av
g.

 L
at

en
cy

 (m
s)

Number of YCSB Clients

B.) Between us-east (CA) and us-west-2 (OR)

0 500 1000 1500 2000 2500Av
g.

 L
at

en
cy

 (m
s)

Number of YCSB Clients

C.) Between us-east (VA), us-west-1 (CA),
us-west-2 (OR), eu-west (IR), ap-northeast (SI)

Figure 4.2: YCSB latency for two clusters of five servers each deployed within a single
datacenter and cross-datacenters (note log scale for multi-datacenter deployment).

4.3. IMPLICATIONS: EXISTING ALGORITHMS AND EMPIRICAL IMPACT 54

Eventual RC Master

A.) Within us-east (VA)

0 200 400 600 800 1000
Number of YCSB Clients

0
2
4
6
8

10
12
14
16
18

To
ta

l T
hr

ou
gh

pu
t

(1
00

0
Tx

ns
/s

)

B.) Between us-east (CA) and us-west-2 (OR)

0 200 400 600 800 1000
Number of YCSB Clients

0
2
4
6
8

10
12
14
16
18

To
ta

l T
hr

ou
gh

pu
t

(1
00

0
Tx

ns
/s

)

C.) Between us-east (VA), us-west-1 (CA),
us-west-2 (OR), eu-west (IR), ap-northeast (SI)

0 500 1000 1500 2000 2500
Number of YCSB Clients

0
5

10
15
20
25
30
35
40

To
ta

l T
hr

ou
gh

pu
t

(1
00

0
Tx

ns
/s

)

Figure 4.3: YCSB throughput for two clusters of five servers each deployed within a single
datacenter and cross-datacenters.

4.3. IMPLICATIONS: EXISTING ALGORITHMS AND EMPIRICAL IMPACT 55

When five clusters (as opposed to two, as before) are deployed across the five EC2 dat-
acenters with lowest communication cost (Figures 4.2C and 4.3C), the trend continues:
master latency increases to nearly 800ms per transaction. As an attempt at reducing this
overhead, we implemented and benchmarked a variant of quorum-based replication as in
Dynamo [95], in which clients sent requests to all replicas, which completed as soon as a
majority of servers responded (guaranteeing regular semantics [134]). This strategy (not
pictured) did not substantially improve performance due to the network topology and be-
cause worst-case server load was unaffected.

Because master performed far better than our textbook implementation, we have omit-
ted performance data for two-phase locking. In addition to incurring the same WAN round-
trip latency, locking also incurred substantial overheads due to mutual exclusion. While
techniques such as those recently proposed in Calvin [217] can reduce the overhead of seri-
alizable transactions by avoiding locking, our mastered implementation and the data from
Section 2.2.1 are reasonable lower bounds on latency.

Read proportion. Our default (equal) proportion of reads and writes is fairly pessimistic:
for example, Facebook reports 99.8% reads for their workload [168]. As Figure 4.4 demon-
strates, increasing the proportion of reads increases throughput; this is due to the decreased
cost of read operations on each node, and RC and eventual stay matched in terms of
throughput.

Scale-out. One of the key benefits of our coordination-free algorithms is that they are
shared-nothing [214], meaning they should not compromise scalability. Figure 6.2 shows
that varying the number of servers across two clusters in Virginia and Oregon (with 15
YCSB clients per server) results in linear scale-out for eventual and RC. RC and eventual

scale linearly: increasing the number of servers per cluster from 5 to 25 yields an approxi-
mately 5x throughput increase.

Summary. Our experimental prototype confirms our earlier analytical intuition. Coordination-
free systems can provide useful semantics without substantial performance penalties. Our
coordination-free algorithms circumvent high WAN latencies inevitable with non-coordination-
free implementations. Our results highlight Deutsch’s observation that ignoring factors
such as latency can “cause big trouble and painful learning experiences” [97]—in a single-
site context, paying the cost of coordination may be tenable, but, especially as services are
geo-replicated, costs increase. In the next chapter, we examine a more sophisticated set of
implementations.

4.4. ISOLATION MODELS 56

Eventual RC

0.0 0.2 0.4 0.6 0.8 1.0
Write Proportion

0
5

10
15
20
25
30

To
ta

l T
hr

ou
gh

pu
t

(1
00

0
Tx

ns
/s

)

Figure 4.4: Proportion of reads and writes versus throughput.

10 15 20 25 30 35 40 45 50
Total Number of Servers

0
10
20
30
40
50
60
70

To
ta

l T
hr

ou
gh

pu
t

(1
00

0
Tx

ns
/s

)

Figure 4.5: Scale-out of Eventual and RC.

4.4 Isolation Models

In this section, we formally define coordination-free transactional semantics as a refer-
ence for the previous section. Our formalism is based on that of Adya [9]. For the reader
familiar with his formalism, this is a mostly-straightforward exercise combining transac-
tional models with distributed systems semantics. While the novel aspects of this work
largely pertain to using these definitions, we believe it is instructive to accompany them by
appropriate definitions as well.

To begin, we describe our model of weakly isolated transactions. This is, with the excep-
tion of sessions, identical to that of Adya [9]. We omit a full duplication of his formalism
here but highlight several salient criteria. We refer the interested reader to Adya’s Ph.D.
thesis, Section 3.1 (pp. 33–43).

Users submit transactions to a database system that contains a set of objects, each of

4.4. ISOLATION MODELS 57

which is represented by multiple distinct versions. Each transaction is composed of writes,
which create new versions of an object, and reads, which return a written version or the
initial version of the object. A transaction’s last operation is either commit or abort, and
hence there is exactly one invocation of either these two operations per transaction. Trans-
actions can either read individual items or read based on predicates (or logical “ranges”) of
data items.

Definition 7 (Version set of a predicate-based operation). When a transaction executes a
read or write based on a predicate P, the system selects a version for each tuple in PâĂŹs
relations. The set of selected versions is called the Version set of this predicate-based oper-
ation and is denoted by Vset(P).

A history over transactions has two parts: first, a partial order of events, comprised of
several different types of edges that we describe below, reflects the ordering of operations
with respect to each transaction, and, second, a order (�) on the committed versions of
each object. The history forms a graph, with nodes corresponding to either transactions or
operations within a transaction, and edges constructed as we describe below.

As a departure from Adya’s formalism, to capture the use of session guarantees, we
allow transactions to be grouped into sessions. We represent sessions as a partial ordering
on committed transactions such that each transaction in the history appears in at most one
session.

Framework

To reason about isolation anomalies, we use Adya’s concept of a conflict graph, which is
composed of dependencies between transaction. The definitions in this section are directly
from Adya, with two differences. First, we expand Adya’s formalism to deal with per-item
dependencies. Second, we define session dependencies (Definition 20).

Definition 8 (Change the Matches of a Predicate-Based Read). A transaction Ti changes the
matches of a predicate-based read rj(P:Vset(P)) if Ti installs xi, xh immediately precedes
xi in the version order, and xh matches P whereas xi does not or vice-versa. In this case,
we also say that xi changes the matches of the predicate-based read. The above definition
identifies Ti to be a transaction where a change occurs for the matched set of rj (P: Vset(P)).

Definition 9 (Directly item-read-depends by x). Tj directly item-read-depends on transaction
Ti if Ti installs some object version xi and Tj reads xi.

Definition 10 (Directly item-read-depends). Tj directly item-read-depends on transaction Ti
if Tj directly item-read-depends by x on Ti for some data item x.

4.4. ISOLATION MODELS 58

Definition 11 (Directly predicate-read-depends by P). Transaction Tj directly predicate-
read-depends by P on transaction Ti if Tj performs an operation rj(P: Vset(P)), xk ∈ Vset(P),
i = k or xi � xk , and xi changes the matches of rj (P: Vset(P)).

Definition 12 (Directly Read-Depends [9, Definition 2]). Tj directly read-depends on trans-
action Ti if it directly item-read-depends or directly predicate-read-depends on Ti.

Definition 13 (Directly predicate-read-depends). Tj directly predicate-read-depends on Ti if
Tj directly predicate-read-depends by P on Ti for some predicate P.

Definition 14 (Directly item-anti-depends by x). Tj directly item-anti-depends by x on trans-
action Ti if Ti reads some object version xk and Tj installs x’s next version (after xk) in the
version order. Note that the transaction that wrote the later version directly item-anti-
depends on the transaction that read the earlier version.

Definition 15 (Directly item-anti-depends). Tj directly item-anti-depends on transaction Ti
if Tj directly item-anti-depends on transaction Ti.

Definition 16 (Directly predicate-anti-depends by P). Tj directly predicate-anti-depends by
P on transaction Ti if Tj overwrites an operation ri(P : Vset(P)). That is, if Tj installs a later
version of some object that changes the matches of a predicate based read performed by Ti.

Definition 17 (Directly Anti-Depends [9, Definition 4]). Transaction Tj directly anti-depends
on transaction Ti if it directly item-anti-depends or directly predicate-anti-depends on Ti.

Definition 18 (Directly Write-Depends by x). A transaction Tj directly write-depends by x
on transaction Ti if Ti installs a version xi and Tj installs x’s next version (after xi) in the
version order.

Definition 19 (Directly Write-Depends [9, Definition 5]). A transaction Tj directly write-
depends on transaction Ti if Ti directly write-depends by x on Tj for some item x.

Definition 20 (Session-Depends). A transaction Tj session-depends on transaction Ti if Ti
and Tj occur in the same session and Ti precedes Tj in the session commit order.

The dependencies for a history H form a graph called its Directed Serialization Graph
(DSG(H)). If Tj directly write-depends on Ti by x, we draw Ti

wwx−→ Tj. If Tj read-depends
on Ti by x, we draw Ti

wrx−→ Tj. If Tj directly anti-depends on transaction Tj by x, we draw

Ti
rwx Tj. If Tj session-depends on Ti in session S, we draw Ti

S−→ Tj [9, Definition 8].

We also consider the Unfolded Serialization Graph (USG(H)) that is a variation of the
DSG. The USG is specified for the transaction of interest, Ti, and a history, H, and is
denoted by USG(H, Ti). For the USG, we retain all nodes and edges of the DSG except for

4.4. ISOLATION MODELS 59

Ti and the edges incident on it. Instead, we split the node for Ti into multiple nodes—one
node for every read/write event in Ti. The edges are now incident on the corresponding
operation of of Ti.

USG(H, Ti) is obtained by transforming DSG(H) as follows:. For each node p (p 6= Ti)
inDSG(H), we add a node toUSG(H, Ti). For each edge from node p to node q inDSG(H),
where p and q are different from Ti, we draw a corresponding edge in USG(H, Ti). Now
we add a node corresponding to every read and write performed by Ti. Any edge that was
incident on Ti in the DSG is now incident on the corresponding read or write operation on
Ti in the USG. Finally, consecutive events in Ti are connected by order edges, e.g., if an
action (e.g., SQL statement) reads object yj and immediately follows a write on object x
in transaction Ti, we add an order-edge from wi(xi) to ri(yj) [9, Section 4.2.1]. Note that
creating a graph with “supernodes” replacing each set of read and write operations for each
Ti in USG(H) yields DSG(H).

Transactional Anomalies and Isolation Levels

Following Adya, we define isolation levels according to possible anomalies–typically
represented by cycles in the serialization graphs. Definitions 27–43 are not found in Adya
but are found (albeit not in this formalism) in Berenson et al. [49] and the literature on
session guarantees [216,224].

Definition 21 (Write Cycles (G0)). A history H exhibits phenomenon G0 if DSG(H) con-
tains a directed cycle consisting entirely of write-dependency edges.

Definition 22 (Read Uncommitted). A system that provides Read Uncommitted isolation
prohibits phenomenon G0.

Definition 23 (Aborted Reads (G1a)). A history H exhibits phenomenon G1a if it contains
an aborted transaction T1 and a committed transaction T2 such that T2 has read some object
(possibly via a predicate) modified by T1.

Definition 24 (Intermediate Reads (G1b)). A history H exhibits phenomenon G1b if it con-
tains a committed transaction T2 that has read a version of object x (possibly via a predicate)
written by transaction T1 that was not T1’s final modification of x.

Definition 25 (Circular Information Flow (G1c)). A history H exhibits phenomenon G1c if
DSG(H) contains a directed cycle consisting entirely of dependency edges.

Definition 26 (Read Committed). A system that provides Read Committed isolation pro-
hibits phenomenon G0, G1a, G1b, and G1c.

4.4. ISOLATION MODELS 60

Definition 27 (Item-Many-Preceders (IMP)). A historyH exhibits phenomenon IMP ifDSG(H)
contains a transaction Ti such that Ti directly item-read-depends by x on more than one
other transaction.

T1 : wx(1)
T2 : wx(2)
T3 : rx(1) rx(2)

Figure 4.6: Example of IMP anomaly.

T1

T2

T3

wrx

wrx

Figure 4.7: DSG for Figure 4.6.

Definition 28 (Item Cut Isolation (I-CI)). A system that provides Item Cut Isolation pro-
hibits phenomenon IMP.

Definition 29 (Predicate-Many-Preceders (PMP)). A history H exhibits phenomenon PMP
if, for all predicate-based reads ri(Pi : Vset(Pi)) and rj(Pj : Vset(Pj) in Tk such that the
logical ranges of Pi and Pj overlap (call it Po), the set of transactions that change the matches
of Po for ri and rj differ.

Definition 30 (Predicate Cut Isolation (P-CI)). A system that provides Predicate Cut Isola-
tion prohibits phenomenon PMP.

Definition 31 (Observed Transaction Vanishes (OTV)). A history H exhibits phenomenon
OTV if USG(H) contains a directed cycle consisting of exactly one read-dependency edge
by x from Tj to Ti and a set of edges by y containing at least one anti-dependency edge from
Ti to Tj and Tj’s read from y precedes its read from x.

T1 : wx(1) wy(1)
T2 : wx(2) wy(2)
T3 : rx(2) ry(1)

Figure 4.8: Example of OTV anomaly.

4.4. ISOLATION MODELS 61

T1 T2

T3

ww{x,y}

w
r
y

wrx rwy

Figure 4.9: DSG for Figure 4.8.

Definition 32 (Monotonic Atomic View (MAV)). A system that provides Monotonic Atomic
View isolation prohibits phenomenon OTV in addition to providing Read Committed iso-
lation.

The following session guarantees are directly adapted from Terry et al.’s original defini-
tions [216]:

Definition 33 (Non-monotonic Reads (N-MR)). A history H exhibits phenomenon N-MR
if DSG(H) contains a directed cycle consisting of a transitive session-dependency between
transactions Tj and Ti with an anti-dependency edge by i from Tj and a read-dependency
edge by i into Ti.

Definition 34 (Monotonic Reads (MR)). A system provides Monotonic Reads if it prohibits
phenomenon N-MR.

T1 : wx(1)
T2 : wx(2)
T3 : rx(2)
T4 : rx(1)

Figure 4.10: Example of N-MR violation when wx(1) � wx(2) and T4 directly session-
depends on T3.

T1 T2

T3 T4

wwx

si

wr
x

rwx

Figure 4.11: DSG for Figure 4.10. wrx dependency from T1 to T4 omitted.

4.4. ISOLATION MODELS 62

Definition 35 (Non-monotonic Writes (N-MW)). A history H exhibits phenomenon N-MW
if DSG(H) contains a directed cycle consisting of a transitive session-dependency between
transactions Tj and Ti and at least one write-dependency edge.

T1 : wx(1)
T2 : wy(1)
T3 : ry(1) rx(0)

Figure 4.12: Example of N-MW anomaly if T2 directly session-depends on T1.

T1 T2

T3

si

wryrw
x

Figure 4.13: DSG for Figure 4.12.

Definition 36 (Monotonic Writes (MW)). A system provides Monotonic Writes if it pro-
hibits phenomenon N-MW.

Definition 37 (Missing Read-Write Dependency (MRWD)). A historyH exhibits phenomenon
MRWD if, in DSG(H), for all committed transactions T1, T2, T3 such that T2 read-depends
on T1 and T3 read-depends on T2, T3 does not directly anti-depend on T1.

T1 : wx(1)
T2 : rx(1) wy(1)
T3 : ry(1) rx(0)

Figure 4.14: Example of MRWD anomaly.

T1 T2

T3

wrx

wryrw
x

Figure 4.15: DSG for Figure 4.14.

Definition 38 (Writes Follow Reads (WFR)). A system provides Writes Follow Reads if it
prohibits phenomenon MWRD.

4.4. ISOLATION MODELS 63

Definition 39 (Missing Your Writes (MYR)). A history H exhibits phenomenon MYR if
DSG(H) contains a directed cycle consisting of a transitive session-dependency between
transactions Tj and Ti, at least one anti-dependency edge, and the remainder anti-dependency
or write-dependency edges.

T1 : wx(1)
T2 : rx(0)

Figure 4.16: Example of MYR anomaly if T2 directly session-depends on T1.

T1 T2
si

rwx

Figure 4.17: DSG for Figure 4.14.

Definition 40 (Read Your Writes (RYW)). A system provides Read Your Writes if it prohibits
phenomenon MYR.

Definition 41 (PRAM Consistency). A system provides PRAM Consistency if it prohibits
phenomenon N-MR, N-MW, and MYR.

Definition 42 (Causal Consistency). A system provides Causal Consistency if it provides
PRAM Consistency and prohibits phenomenon MWRD.

Definition 43 (Lost Update). A history H exhibits phenomenon Lost if DSG(H) contains a
directed cycle having one or more item-antidependency edges and all edges are by the same
data item x.

Definition 44 (Write Skew (Adya G2-item)). A history H exhibits phenomenon Write Skew
if DSG(H) contains a directed cycle having one or more item-antidependency edges.

For Snapshot Isolation, we depart from Adya’s recency-based definition (see Adya Sec-
tion 4.3). Nonetheless, implementations of this definition will still be unavailable due to
reliance of preventing Lost Update.

Definition 45 (Snapshot Isolation). A system that provides Snapshot Isolation prevents phe-
nomena G0, G1a, G1b, G1c, PMP, OTV, and Lost Update.

For Repeatable Read, we return to Adya.

Definition 46 (Repeatable Read). A system that provides Repeatable Read Isolation pro-
hibits phenomena G0, G1a, G1b, G1c, and Write Skew.

4.5. SUMMARY 64

4.5 Summary

In this chapter, we have shown that many previously defined isolation and data consis-
tency models from the database and distributed systems communities are invariant conflu-
ent and can be implemented in a coordination-free manner. While traditional implementa-
tions of several of these semantics employ coordination, for those that we prove invariant
confluent, this is not strictly necessary. Thus, existing applications that are built using one
of these existing models may enjoy the benefits of coordination-free execution.

65

Chapter 5

Coordination Avoidance and RAMP
Transactions

In the previous chapter, we identified several existing isolation and distributed consis-
tency guarantees as coordination-free. Our goal was proof-of-concept algorithms and sys-
tems support for these levels. In this section, we go further. First, we develop a new isolation
model that is tailored to a set of existing use cases for which there is no existing, sufficiently
powerful invariant confluent semantics. Second, we develop high performance algorithms
for enforcing those semantics.

Specifically, in this chapter, we address a largely underserved class of applications re-
quiring multi-partition, atomically visible1 transactional access: cases where all or none
of each transaction’s effects should be visible. In fact, this access corresponds to two
semantics from the previous chapter: MAV combined with Cut Isolation. The status
quo for these multi-partition atomic transactions provides an uncomfortable choice be-
tween algorithms that are fast but deliver inconsistent results and algorithms that deliver
consistent results but are often slow and unavailable under failure. Many of the largest
modern, real-world systems opt for protocols that guarantee fast and scalable operation
but provide few—if any—transactional semantics for operations on arbitrary sets of data
items [65, 74, 83, 95, 138, 192, 227]. This may lead to anomalous behavior for several
use cases requiring atomic visibility, including secondary indexing, foreign key constraint
enforcement, and materialized view maintenance (Section 6.4.1). In contrast, many tradi-
tional transactional mechanisms correctly ensure atomicity of updates [53, 85, 217]. How-
ever, these algorithms—such as two-phase locking and variants of optimistic concurrency

1Our use of “atomic” (specifically, Read Atomic isolation) concerns all-or-nothing visibility of updates
(i.e., the ACID isolation effects of ACID atomicity; Section 5.3). This differs from uses of “atomicity” to
denote serializability [53] or linearizability [28].

66

control—are often coordination-intensive, slow, and, under failure, unavailable in a dis-
tributed environment [32, 89, 141, 187]. This specific dichotomy between scalability and
atomic visibility has been described as “a fact of life in the big cruel world of huge sys-
tems” [133].

Our contribution in this chapter is to demonstrate that atomically visible transactions
on partitioned databases are not at odds with scalability. We provide high-performance im-
plementations of a new, non-serializable isolation model called Read Atomic (RA) isolation,
corresponding to MAV with Cut Isolation. RA ensures that all or none of each transaction’s
updates are visible to others and that each transaction reads from an atomic snapshot of
database state (Section 5.3)—this is useful in the applications we target. We subsequently
develop three new, scalable algorithms for achieving RA isolation that we collectively title
Read Atomic Multi-Partition (RAMP) transactions (Section ??). RAMP transactions guar-
antee scalability and outperform existing atomic algorithms because they satisfy two key
scalability constraints. First, RAMP transactions guarantee coordination-free execution:
per Chapter 2, one client’s transactions cannot cause another client’s transactions to stall
or fail. Second, RAMP transactions guarantee partition independence: clients only contact
partitions that their transactions directly reference (i.e., there is no central master, coor-
dinator, or scheduler). Together, these properties ensure guaranteed completion, limited
coordination across partitions, and horizontal scalability for multi-partition access.

RAMP transactions are scalable because they appropriately control the visibility of up-
dates without inhibiting concurrency. Rather than force concurrent reads and writes to stall,
RAMP transactions allow reads to “race” writes: RAMP transactions can autonomously
detect the presence of non-atomic (partial) reads and, if necessary, repair them via a second
round of communication with servers. To accomplish this, RAMP writers attach metadata
to each write and use limited multi-versioning to prevent readers from stalling. The three
algorithms we present offer a trade-off between the size of this metadata and performance.
RAMP-Small transactions require constant space (a timestamp per write) and two round trip
time delays (RTTs) for reads and writes. RAMP-Fast transactions require metadata size that
is linear in the number of writes in the transaction but only require one RTT for reads
in the common case and two in the worst case. RAMP-Hybrid transactions employ Bloom
filters [59] to provide an intermediate solution. Traditional techniques like locking cou-
ple atomic visibility and mutual exclusion; RAMP transactions provide the benefits of the
former without incurring the scalability, availability, or latency penalties of the latter.

In addition to providing a theoretical analysis and proofs of correctness, we demon-
strate that RAMP transactions deliver in practice. Our RAMP implementation achieves
linear scalability to over 7 million operations per second on a 100 server cluster (at over-
head below 5% for a workload of 95% reads). Moreover, across a range of workload

5.1. OVERVIEW 67

configurations, RAMP transactions incur limited overhead compared to other techniques
and achieve higher performance than existing approaches to atomic visibility (Section 5.5).

While the literature contains an abundance of isolation models, we believe that the
large number of modern applications requiring RA isolation and the excellent scalability of
RAMP transactions justify the addition of yet another model. RA isolation is too weak for
some applications, but, for the many that it can serve, RAMP transactions offer substantial
benefits.

The remainder of this article proceeds as follows: Section 5.1 presents an overview of
RAMP transactions and describes key use cases based on industry reports. Section 5.3
defines Read Atomic isolation, presents both a detailed comparison with existing isola-
tion guarantees and a syntactic condition, the Read-Subset-Writes property, that guarantees
equivalence to serializable isolation, and defines two key scalability criteria for RAMP al-
gorithms to provide. Section 5.4 presents and analyzes three RAMP algorithms, which we
experimentally evaluate in Section 5.5. Section 5.6 presents modifications of the RAMP
protocols to better support multi-datacenter deployments and to enforce transitive depen-
dencies. Section 5.10 concludes with a discussion of extensions to the protocols presented
here.

5.1 Overview

In this chapter, we consider the problem of making transactional updates atomically
visible to readers—a requirement that, as we outline in this section, is found in several
prominent use cases today. The basic property we provide is fairly simple: either all or
none of each transaction’s updates should be visible to other transactions. For example,
if x and y are initially null and a transaction T1 writes x = 1 and y = 1, then another
transaction T2 should not read x = 1 and y = null. Instead, T2 should either read x = 1
and y = 1 or, possibly, x = null and y = null. Informally, each transaction reads from an
unchanging snapshot of database state that is aligned along transactional boundaries. We
call this property atomic visibility and formalize it via the Read Atomic isolation guarantee
in Section 5.3.

The classic strategy for providing atomic visibility is to ensure mutual exclusion between
readers and writers. For example, if a transaction like T1 above wants to update data items
x and y, it can acquire exclusive locks for each of x and y, update both items, then release
the locks. No other transactions will observe partial updates to x and y, ensuring atomic
visibility. However, this solution has a drawback: while one transaction holds exclusive
locks on x and y, no other transactions can access x and y for either reads or writes. By

5.2. READ ATOMIC ISOLATION IN THE WILD 68

using mutual exclusion to enforce the atomic visibility of updates, we have also limited con-
currency. In our example, if x and y are located on different servers, concurrent readers and
writers will be unable to perform useful work during communication delays. These com-
munication delays form an upper bound on throughput: effectively, 1

message delay operations
per second.

To avoid this upper bound, we separate the problem of providing atomic visibility from
the mechanism of mutual exclusion. By achieving the former but avoiding the latter, the
algorithms we develop in this paper are not subject to the scalability penalties of many
prior approaches. To ensure that all servers successfully execute a transaction (or that
none do), our algorithms employ an atomic commitment protocol (ACP). When coupled
with a coordinating concurrency control mechanism such as locking, ACPs are harmful to
scalability and availability: arbitrary failures can (provably) cause any ACP implementation
to stall [53]. We instead use ACPs with non-blocking concurrency control mechanisms;
this means that individual transactions can stall due to failures or communication delays
without forcing other transactions to stall. In a departure from traditional concurrency
control, we allow multiple ACP rounds to proceed in parallel over the same data.

The end result—what we call RAMP transactions—provide excellent scalability and
performance under contention (e.g., in the event of write hotspots) and are robust to partial
failure. RAMP transactions’ non-blocking behavior means that they cannot provide certain
guarantees like preventing concurrent updates. However, the applications we highlight—
for which Read Atomic isolation is sufficient to maintain correctness—will benefit from our
algorithms. The remainder of this section identifies several relevant use cases from industry
that require atomic visibility for correctness.

5.2 Read Atomic Isolation in the Wild

As a simple example, consider a social networking application: if two users, Sam and
Mary, become “friends” (a bi-directional relationship), other users should never see that
Sam is a friend of Mary but Mary is not a friend of Sam: either both relationships should
be visible, or neither should be. A transaction under Read Atomic isolation would correctly
enforce this behavior. We can further classify three general use cases for Read Atomic
isolation:

1. Foreign key constraints. Many database schemas contain information about relation-
ships between records in the form of foreign key constraints. For example, Facebook’s
TAO [65], LinkedIn’s Espresso [192], and Yahoo! PNUTS [83] store information about
business entities such as users, photos, and status updates as well as relationships between

5.2. READ ATOMIC ISOLATION IN THE WILD 69

them (e.g., the friend relationships above). Their data models often represent bi-directional
edges as two distinct uni-directional relationships. For example, in TAO, a user perform-
ing a “like” action on a Facebook page produces updates to both the LIKES and LIKED_BY

associations [65]. PNUTS’s authors describe an identical scenario [83]. These applications
require foreign key maintenance and often, due to their unidirectional relationships, multi-
entity update and access. Violations of atomic visibility surface as broken bi-directional
relationships (as with Sam and Mary above) and dangling or incorrect references. For ex-
ample, clients should never observe that Frank is an employee of department.id=5, but no
such department exists in the department table.

Under RA isolation, when inserting new entities, applications can bundle relevant enti-
ties from each side of a foreign key constraint into a transaction. When deleting associa-
tions, users can avoid dangling pointers by creating a “tombstone” at the opposite end of
the association (i.e., delete any entries with associations via a special record that signifies
deletion) [234].

2. Secondary indexing. Data is typically partitioned across servers according to a pri-
mary key (e.g., user ID). This allows fast location and retrieval of data via primary key
lookups but makes access by secondary attributes challenging (e.g., indexing by birth date).
There are two dominant strategies for distributed secondary indexing. First, the local sec-
ondary index approach co-locates secondary indexes and primary data, so each server con-
tains a secondary index that only references and indexes data stored on its server [45,
192]. This allows easy, single-server updates but requires contacting every partition for
secondary attribute lookups (write-one, read-all), compromising scalability for read-heavy
workloads [65, 85, 192]. Alternatively, the global secondary index approach locates sec-
ondary indexes (which may be partitioned, but by a secondary attribute) separately from
primary data [45, 83]. This alternative allows fast secondary lookups (read-one) but re-
quires multi-partition update (at least write-two).

Real-world services employ either local secondary indexing (e.g., Espresso [192], Cas-
sandra, and Google Megastore’s local indexes [45]) or non-atomic (incorrect) global sec-
ondary indexing (e.g., Espresso and Megastore’s global indexes, Yahoo! PNUTS’s pro-
posed secondary indexes [83]). The former uses coordination and limits the workloads
that are scalable but is correct. The latter does not use coordination and is scalable for a
range of workloads but is incorrect. For example, in a database partitioned by id with an
incorrectly-maintained global secondary index on salary, the query ‘SELECT id, salary

WHERE salary > 60,000’ might return records with salary less than $60,000 and omit
some records with salary greater than $60,000.

Under RA isolation, the secondary index entry for a given attribute can be updated
atomically with base data. For example, suppose a secondary index is stored as a mapping

5.2. READ ATOMIC ISOLATION IN THE WILD 70

from secondary attribute values to sets of item-versions matching the secondary attribute
(e.g., the secondary index entry for users with blue hair would contain a list of user IDs and
last-modified timestamps corresponding to all of the users with attribute hair-color=blue).
Insertions of new primary data require additions to the corresponding index entry, deletions
require removals, and updates require a “tombstone” deletion from one entry and an inser-
tion into another.

3. Materialized view maintenance. Many applications precompute (i.e., materialize)
queries over data, as in Twitter’s Rainbird service [227], Google’s Percolator [188], and
LinkedIn’s Espresso systems [192]. As a simple example, Espresso stores a mailbox of
messages for each user along with statistics about the mailbox messages: for Espresso’s
read-mostly workload, it is more efficient to maintain (i.e., pre-materialize) a count of un-
read messages rather than scan all messages every time a user accesses her mailbox [192].
In this case, any unread message indicators should remain in sync with the messages in the
mailbox. However, atomicity violations will allow materialized views to diverge from the
base data (e.g., Susan’s mailbox displays a notification that she has unread messages but all
60 messages in her inbox are marked as read).

With RAMP transactions, base data and views can be updated atomically. The main-
tenance of a view depends on its specification [58, 79, 139], but RAMP transactions pro-
vide appropriate concurrency control primitives for ensuring that changes are delivered to
the materialized view partition. For select-project views, a simple solution is to treat the
view as a separate table and perform maintenance as needed: new rows can be insert-
ed/deleted according to the specification, and, if necessary, the view can be (re-)computed
on demand (i.e., lazy view maintenance [238]). For more complex views, such as counters,
users can execute RAMP transactions over specialized data structures such as the CRDT
G-Counter [205].

Status Quo. Despite application requirements for Read Atomic isolation, few large-scale
production systems provide it. For example, the authors of Tao, Espresso, and PNUTS
describe several classes of atomicity anomalies exposed by their systems, ranging from dan-
gling pointers to the exposure of intermediate states and incorrect secondary index lookups,
often highlighting these cases as areas for future research and design [65, 83, 192]. These
systems are not exceptions: data stores like Bigtable [74], Dynamo [95], and many popular
“NoSQL” [179] and even some “NewSQL” [32] stores do not provide transactional guar-
antees for multi-item operations. Unless users are willing to sacrifice scalability by opting
for serializable semantics [85], they are often left without transactional semantics.

The designers of these Internet-scale, real-world systems have made a conscious decision
to provide scalability at the expense of multi-partition transactional semantics. Our goal

5.3. SEMANTICS AND SYSTEM MODEL 71

with RAMP transactions is to preserve this scalability but deliver atomically visible behavior
that is sufficient to maintain key consistency criteria for the use cases we have described.

5.3 Semantics and System Model

In this section, we formalize Read Atomic isolation and, to capture scalability, formulate
a pair of strict scalability criteria: coordination-free execution and partition independence.
Readers more interested in RAMP algorithms may wish to proceed to Section 5.4.

5.3.1 RA Isolation: Formal Specification

To formalize RA isolation, as is standard [9, 53] (and as in Chapter 4), we consider
ordered sequences of reads and writes to arbitrary sets of items, or transactions. We call the
set of items a transaction reads from and writes to its item read set and item write set. Each
write creates a version of an item and we identify versions of items by a timestamp taken
from a totally ordered set (e.g., natural numbers) that is unique across all versions of each
item. Timestamps therefore induce a total order on versions of each item, and we denote
version i of item x as xi. All items have an initial version ⊥ that is located at the start of
each order of versions for each item and is produced by an initial transaction T⊥. Each
transaction ends in a commit or an abort operation; we call a transaction that commits a
committed transaction and a transaction that aborts a aborted transaction. In our model,
we consider histories comprised of a set of transactions along with their read and write
operations, versions read and written, and commit or abort operations. In our example
histories, all transactions commit unless otherwise noted.

Definition 47 (Fractured Reads). A transaction Tj exhibits the fractured reads phenomenon
if transaction Ti writes versions xa and yb (in any order, where x and y may or may not be
distinct items), Tj reads version xa and version yc, and c < b.

We also define Read Atomic isolation to prevent transactions from reading uncommitted
or aborted writes. This is needed to capture the notion that, under RA isolation, readers
only observe the final output of a given transaction that has been accepted by the database.
To do so, we draw on existing definitions from the literature on weak isolation.

Our RAMP protocols provide this property by assigning the final write to each item
in each transaction the same timestamp. However, to avoid further confusion between
the standard practice of assigning each final write in a serializable multi-version history
the same timestamp [53] and the flexibility of timestamp assignment admitted in Adya’s
formulation of weak isolation, we continue with the above definitions.

5.3. SEMANTICS AND SYSTEM MODEL 72

These criteria prevent readers from observing uncommitted versions (i.e., those pro-
duced by a transaction that has not committed or aborted), aborted versions (i.e., those
produced by a transaction that has aborted), or intermediate versions (i.e., those produced
by a transaction but were later overwritten by writes to the same items by the same trans-
action).

We can finally define Read Atomic isolation:

Definition 48 (Read Atomic). A system provides Read Atomic isolation (RA) if it pre-
vents fractured reads phenomena and also prevents transactions from reading uncommitted,
aborted, or intermediate versions (i.e., Adya’s G0, G1a, G1b, G1c).

Thus, RA informally provides transactions with a “snapshot” view of the database that
respects transaction boundaries (see Sections 5.3.3 and 5.3.4 for more details, including
a discussion of transitivity). RA is simply a restriction on read visibility—if the ACID
“Atomicity” property requires that all or none of a transaction’s updates are performed,
RA requires that all or none of a transaction’s updates are visible to other transactions.

Importantly, RA is invariant confluent: if two read/write histories each independently
do not have fractured reads, composing them will not change the values returned by any
read operations. This means that there is at least one coordination-free implementation of
RA, which we will develop in Section 5.4.

5.3.2 RA Implications and Limitations

As outlined in Section 5.2, RA isolation matches several common use cases. However,
RA is not sufficient for all applications. RA does not prevent concurrent updates or provide
serial access to data items; that is, under RA, two transactions are never prevented from
both producing different versions of the same data items. For example, RA is an incorrect
choice for an application that wishes to maintain positive bank account balances in the event
of withdrawals. RA is a better fit for our “friend” operation because the operation is write-
only and correct execution (i.e., inserting both records) is not conditional on concurrent
updates.

From a programmer’s perspective, we have found RA isolation to be most easily under-
standable (at least initially) with read-only and write-only transactions; after all, because
RA allows concurrent writes, any values that are read might be changed at any time. How-
ever, read-write transactions are indeed well defined under RA.

To handle conflicting operations, RA isolation benefits from the use of commutative and
associative merge functions. The default behavior we present here is a “last write wins”
policy, with ties broken according to version. However, more sophisticated datatypes such

5.3. SEMANTICS AND SYSTEM MODEL 73

as commutative replicated sets, counters, and maps [205] are also useful, especially for data
structures such as index entries.

To illustrate these points, in Section 5.3.3, we describe RA’s relation to other formally
defined isolation levels, and, in Section 5.3.4, we discuss when RA provides serializable
outcomes.

5.3.3 RA Compared to Other Isolation Models

In this section, we illustrate RA’s relationship to alternative weak isolation models by
both example and reference to particular isolation phenomena drawn from [9] and [32].
Formal definitions of the models below can be found in in Section 4.4

RA is stronger than Read Committed as Read Committed does not prevent fractured
reads. History 5.1 does not respect RA isolation. After T1 commits, both T2 and T3 could
both commit but, to prevent fractured reads, T4 and T5 must abort. History 5.1 respects RC
isolation and all transactions can safely commit.

T1 w(x1);w(y1) (5.1)

T2 r(x⊥); r(y⊥)

T3 r(x1); r(y1)

T4 r(x⊥); r(y1)

T5 r(x1); r(y⊥)

Lost Updates. Lost Updates phenomena informally occur when two transactions simulta-
neously attempt to make conditional modifications to the same data item(s).

RA does not prevent Lost Updates phenomena. History 5.2 exhibits the Lost Updates
phenomenon but is valid under RA. That is, T1 and T2 can both commit under RA isolation.

T1 r(x⊥);w(x1) (5.2)

T2 r(x⊥);w(x2)

History 5.2 is invalid under a stronger isolation model that prevents Lost Updates phe-
nomena, such as Snapshot Isolation or Cursor Isolation. Under either of these models, the
system would abort T1, T2, or both. However, Cursor Stability does not prevent fractured

5.3. SEMANTICS AND SYSTEM MODEL 74

reads phenomena, so RA and Cursor Stability are incomparable.

Write Skew. RA does not prevent Write Skew phenomena. History 5.3 exhibits the Write
Skew phenomenon (Adya’s G2) but is valid under RA. That is, T1 and T2 can both commit
under RA isolation.

T1 r(y⊥);w(x1) (5.3)

T2 r(x⊥);w(y2)

History 5.3 is invalid under a stronger isolation model that prevents Write Skew phe-
nomena. One stronger model is Repeatable Read. Under Repeatable Read isolation, the
system would abort either T1, T2, or both. (Importantly, Adya’s formulation of Repeatable
Read is considerably stronger than the ANSI SQL standard specification; RA is stronger
than the Cut Isolation we consider in Chapter 4.)

Missing dependencies. Notably, RA does not—on its own—prevent missing dependencies—
in effect, missing transitive updates. We again reproduce Adya’s definitions below:

Definition 49 (Missing Transaction Updates). A transaction Tj misses the effects of a trans-
action Ti if Ti writes xi and commits and another transaction Tj reads another version xk
such that k < i; i.e., Tj reads a version of x that is older than the version that was committed
by Ti.

Adya subsequently defines a criteria that prohibits missing transaction updates across
all types of dependency edges:

Definition 50 (No-Depend-Misses). If transaction Tj depends on transaction Ti, Tj does not
miss the effects of Ti.

History 5.4 does not exhibit the No-Depend-Misses phenomenon but is still valid under
RA. That is, T1, T2, and T3 can all commit under RA isolation. Thus, fractured reads
prevention is similar to No-Depend-Misses but only applies to immediate read dependencies
(rather than all transitive dependencies).

T1 w(x1);w(y1) (5.4)

T2 r(y1);w(z2)

T3 r(x⊥); r(z2)

5.3. SEMANTICS AND SYSTEM MODEL 75

History 5.4 is invalid under a stronger isolation model that prevents missing dependen-
cies phenomena, such as standard semantics for Snapshot Isolation (notably, not Parallel
Snapshot Isolation [210]) and Repeatable Read isolation. Under one of these models, the
system would abort either T3 or all of T1, T2, and T3.

This behavior is particularly important to the use cases that we discuss in Sections 5.3.2
and 5.3.4: writes that should be read together should be written together.

We further discuss the benefits and enforcements of transitivity in Section 5.6.3.

OTV and Many-Preceders. As noted in Section ??, the Fractured Reads phenomenon sub-
sumes the Observed Transaction Vanishes and Many-Preceders phenomena from Chapter 4.
To illustrate:

If Tj exhibits the OTV phenomenon reads xa produced by Ti in the definition of Frac-
tured Reads above then there is a read-dependency edge by x from Tj to Ti in USG(H);
however, if Tj also reads yc and c < b, then Ti must anti-depend on Tj, resulting in OTV.
Thus, every fractured read is an instance of OTV. However, not every fractured read is an
instance of OTV. That is, in our example, if Tj reads yb and then reads yc, fractured reads
have occurred, but OTV has not (due to the clause that “Tj’s read from y precedes its read
from x” in Definition 31).

Fractured reads also subsumes the many-preceders phenomenon (in the item-specific
case, Definition 27). If Ti exhibits the IMP phenomenon, it directly item-depends by x on
more than one transaction—say, Tj and Tk—then Ti read versions xi and xk produced by
each of Ti and Tk. However, by definition, i < k or k < i, and thus Tj also has fractured
reads. Again, not every fractured read is an instance of IMP. Consider the following history:

T1 w(x1);w(y1) (5.5)

T2 r(x⊥); r(y1)

T2 exhibits fractured reads but does not exhibit IMP.

Predicates. Thus far, we have not extensively discussed the use of predicate-based reads.
As Adya notes [9] and we describe above, predicate-based isolation guarantees can be cast
as an extension of item-based isolation guarantees (see also Adya’s PL-2L, which closely
resembles RA). RA isolation is no exception to this rule. We can extend each RA definition
to include predicates using Adya’s predicate-based formalism.

Relating to Additional Guarantees. RA isolation subsumes several other useful guarantees.
RA prohibits Item-Many-Preceders and Observed Transaction Vanishes phenomena; RA
also guarantees Item Cut Isolation, and with predicate support, RA subsumes Predicate

5.3. SEMANTICS AND SYSTEM MODEL 76

RU

RC

CS

I-CI

MAV
P-CI

RA

SIRR

S

Figure 5.1: Comparison of RA with isolation levels from [9, 32]. RU: Read Uncommit-
ted, RC: Read Committed, CS: Cursor Stability, MAV: Monotonic Atomic View, ICI: Item
Cut Isolation, PCI: Predicate Cut Isolation, RA: Read Atomic, SI: Snapshot Isolation, RR:
Repeatable Read (Adya PL-2.99), S: Serializable.

Cut Isolation Thus, it is a combination of Monotonic Atomic View and Item Cut Isolation
(Section 4.4). Summary. Figure 5.1 relates RA isolation to several existing models. RA

is stronger than Read Committed, Monotonic Atomic View, and Cut Isolation, weaker
than Snapshot Isolation, Repeatable Read, and Serializability, and incomparable to Cursor
Stability.

5.3.4 RA and Serializability

When we began this work, we started by examining the use cases outlined in Sec-
tion 6.4.1 and deriving a weak isolation guarantee that would be sufficient to ensure their
correct execution. For general-purpose read-write transactions, RA isolation may indeed
lead to non-serializable (and possibly incorrect) database states and transaction outcomes.
Yet, as Section 5.3.2 hints, there appears to be a broader “natural” pattern for which RA
isolation appears to provide an intuitive (even “correct”) semantics. In this section, we
show that for transactions with a particular property of their item read and item write sets,
RA is, in fact, serializable. We define this property, called the read-subset-items-written
(RSIW) property, prove that transactions obeying the RSIW property lead to serializable
outcomes, and discuss the implications of the RSIW property for the applications outlined
in Section 6.4.1.

Because our system model operates on multiple versions, we must make a small refine-
ment to our use of the term “serializability”—namely, we draw a distinction between serial
and one-copy serializable schedules, per Bernstein et al. [53]. First, we say that two histo-
ries H1 and H2 are view equivalent if they contain the same set of committed transactions
and have the same operations and DSG(H1) and DSG(H2) have the same direct read de-

5.3. SEMANTICS AND SYSTEM MODEL 77

pendencies. For consistency with prior work, we say that Ti reads from Tj if Ti directly
read-depends on Tj. We say that a transaction is read-only if it does not contain write op-
erations and that a transaction is write-only if it does not contain read operations. In this
section, we concern ourselves with one-copy serializability [53], which we define using the
previous definition of view equivalence.

Definition 51 (One-Copy Serializability). A history is one-copy serializable if it is view
equivalent to a serial execution of the transactions over a single logical copy of the database.

The basic intuition behind the RSIW property is straightforward: under RA isolation, if
application developers use a transaction to bundle a set of writes that should be observed
together, any transactions that read from the items that were written will, in fact, behave
“properly”—or one-copy serializably. That is, for read-only and write-only transactions, if
each reading transaction only reads a subset of the items that another write-only transaction
wrote, then RA isolation is equivalent to one-copy serializable isolation. Before proving that
this behavior is one-copy serializable, we can more precisely characterize this condition as
follows:

Definition 52 (Read-Subset-Items-Written). A read-only transaction Tr exhibits the Read-
Subset-Items-Written property if, whenever Tr reads a version produced by a write-only
transaction Tw, Tr only reads items written to by Tw.

For example, consider the following History 5.6:

T1 w(x1);w(y1) (5.6)

T2 r(x1);w(y1)

T3 r(x1); r(z⊥)

Under History 5.6, T2 exhibits the RSIW property because it reads a version produced by
transaction T1 and its item read set ({x,y}) is a subset of T1’s item write set ({x,y}). However,
T3 does not exhibit the RSIW property because i.) T3 reads from T1 but T3’s read set ({x, z})
is not a subset of T1’s write set ({x,y}) and ii.), perhaps more subtly, T3 reads from both T1

and T⊥.

We say that a history H containing read-only and write-only transactions exhibits the
RSIW property (or has RSIW) if every read-only transaction in H exhibits the RSIW prop-
erty.

This brings us to our main result in this section:

Theorem 2. If a history H containing read-only and write-only transactions has RSIW and
is valid under RA isolation, then H is one-copy serializable.

5.3. SEMANTICS AND SYSTEM MODEL 78

The proof of Theorem 2 is by construction: given a history H has RSIW and is valid
under RA isolation, we describe how to derive an equivalent one-copy serial execution of
the transactions in H. We begin with the construction procedure, provide examples of how
to apply the procedure, then prove that the procedure converts RSIW histories to their
one-copy serial equivalents. We provide the proof in Section 5.7

Utility. Theorem 2 is helpful because it provides a simple syntactic condition for under-
standing when RA will provide one-copy serializable access. For example, we can apply
this theorem to our use cases from Section 6.4.1. In the case of multi-entity update and
read, if clients issue read-only and write-only transactions that obey the RSIW property,
their result sets will be one-copy serializable. The RSIW property holds for equality-based
lookup of single records from an index (e.g., fetch from the index and subsequently fetch
the corresponding base tuple, each of which was written in the same transaction (e.g., was
auto-generated upon insertion of the tuple into the base relation). However, the RSIW prop-
erty does not in the event of multi-tuple reads, leading to less intuitive behavior. Specifically,
if two different clients trigger two separate updates to an index entry, some clients may ob-
serve one update but not the other, and other clients may observe the opposite behavior. In
this case, the RAMP protocols still provide a snapshot view of the database according to
the index(es)—that is, clients will never observe base data that is inconsistent with the index
entries—but nevertheless surface non-serializable database states. Finally, for more general
materialized view accesses, point queries and bulk insertions have RSIW.

As discussed in Section 6.4.1, in the case of indexes and views, it is helpful to view each
physical data structure (e.g., a CRDT [205] used to represent an index entry) as a collection
of versions. In this case, the RSIW property applies only if clients make modifications to
the entire collection at once (e.g., as in a DELETE CASCADE operation).

Coupled with an appropriate algorithm ensuring RA isolation, we can ensure one-copy
serializable isolation. This addresses a long-standing concern with our work: why is RA
somehow “natural” for these use cases (but not necessarily all use cases)? We have encoun-
tered applications that do not require one-copy serializable access—such as the mailbox
unread message maintenance from Section 6.4.1 and, in some cases, index maintenance for
non-read-modify-write workloads—and therefore may safely violate RSIW. However, we
believe the RSIW property is a handy principle (or, at the least, rule of thumb) for reasoning
about applications of RA isolation and the RAMP protocols.

Finally, the RSIW property is only a sufficient condition for one-copy serializable be-
havior under RA isolation. It is not necessary—for example, there are several alternative
sufficient conditions to consider. As a natural extension, while RSIW only pertains to pairs
of read-only and write-only transactions, one might consider allowing readers to observe

5.3. SEMANTICS AND SYSTEM MODEL 79

multiple write transactions. For example, consider the following history:

T1 w(x1);w(y1) (5.7)

T2 w(u2);w(z2)

T3 r(x1); r(z2)

History 5.7 is valid under RA and is also one-copy serializable but does not have RSIW: T3

reads from two transactions’ write sets. However, consider the following history:

T1 : w(x1);w(y1) (5.8)

T2 : w(u2);w(z2)

T3 : r(x1); r(z⊥)

T4 : r(x⊥); r(z2)

History 5.8 is valid under RA, consists only of read-only and write-only transactions, yet
is no longer one-copy serializable. T3 observes, in effect, a one-copy serializable prefix
beginning with T⊥; T1 while T4 observes a prefix beginning with T⊥; T2. Neither T3 nor T4

observes the prefixes T⊥; T1; T2 or T⊥; T2; T1.

Thus, while there may indeed be useful criteria beyond the RSIW property that we might
consider as a basis for one-copy serializable execution under RA, we have observed RSIW
to be the most intuitive and useful thus far. One clear criteria is to search for schedules or
restrictions under RA with an acyclic Directed Serialization Graph (from Appendix 5.7).
The reason why RSIW is so simple for read-only and write-only transactions is that each
read-only transaction only reads from one other transaction and does not induce any ad-
ditional anti-dependencies. Combining reads and writes complicates reasoning about the
acyclicity of the graph.

This exercise touches upon an important lesson in the design and use of weakly iso-
lated systems: by restricting the set of operations accessible to a user (e.g., RSIW read-only
and write-only transactions), one can often achieve more scalable implementations (e.g.,
using weaker semantics) without necessarily violating existing abstractions (e.g., one-copy
serializable isolation). While prior work often focuses on restricting only operations (e.g.,
to read-only or write-only transactions [11, 168], or stored procedures [141, 142, 217],
or single-site transactions [45]) or only semantics (e.g., weak isolation guarantees [32, 35,
168]), we see considerable promise in better understanding the intersection between and
combinations of the two. This is often subtle and almost always challenging, but the
results—as we found here—may be surprising.

5.3. SEMANTICS AND SYSTEM MODEL 80

5.3.5 System Model and Scalability

We consider databases that are partitioned, with the set of items in the database spread
over multiple servers. Each item has a single logical copy, stored on a server—called the
item’s partition—whose identity can be calculated using the item. Clients forward opera-
tions on each item to the item’s partition, where they are executed. In our examples, all
data items have the null value (⊥) at database initialization. In this section, we do not
model replication of data items within a partition; this can happen at a lower level of the
system than our discussion (see Section 5.4.5) as long as operations on each item are lin-
earizable [28].

Scalability criteria. As we discussed in Section 5.1, large-scale deployments often eschew
transactional functionality on the premise that it would be too expensive or unstable in the
presence of failure and degraded operating modes [57, 65, 74, 83, 95, 133, 138, 192, 227].
Our goal in this paper is to provide robust and scalable transactional functionality, and, so
we first define criteria for “scalability”:

Per Section 2.3, Coordination-free execution ensures that one client’s transactions cannot
cause another client’s to block and that, if a client can contact the partition responsible
for each item in its transaction, the transaction will eventually commit (or abort of its
own volition). This prevents one transaction from causing another to abort—which is
particularly important in the presence of partial failures—and guarantees that each client is
able to make useful progress. Note that “strong” isolation models like serializability and
Snapshot Isolation require coordination and thus limit scalability. Locking is an example of
a non-coordination-free implementation mechanism.

Many applications can limit their data accesses to a single partition via explicit data
modeling [45, 90, 133, 192] or planning [89, 187]. However, this is not always possible.
In the case of secondary indexing, there is a cost associated with requiring single-partition
updates (scatter-gather reads), while, in social networks like Facebook and large-scale hier-
archical access patterns as in Rainbird [227], perfect partitioning of data accesses is near-
impossible. Accordingly:

Partition independence ensures that, in order to execute a transaction, a client only contacts
partitions for data items that its transaction directly accesses. Thus, a partition failure only
affects transactions that access items contained on the partition. This also reduces load
on servers not directly involved in a transaction’s execution. In the literature, partition
independence for replicated data is also called replica availability [32] or genuine partial
replication [201]. Using a centralized validator or scheduler for transactions is an example
of a non-partition-independent implementation mechanism.

5.4. RAMP TRANSACTION ALGORITHMS 81

In addition to the above requirements, we limit the metadata overhead of algorithms.
There are many potential solutions for providing atomic visibility that rely on storing pro-
hibitive amounts of state. We will attempt to minimize the metadata—that is, data that the
transaction did not itself write but which is required for correct execution. In our algo-
rithms, we will specifically provide constant-factor metadata overheads (RAMP-S, RAMP-H) or
else overhead linear in transaction size (but independent of data size; RAMP-F). As an exam-
ple of a solution using prohibitive amounts of metadata, each transaction could send copies
of all of its writes to every partition it accesses so that readers observe all of its writes by
reading a single item. This provides RA isolation but requires considerable storage. Other
solutions may require extra data storage proportional to the number of servers in the cluster
or, worse, the database size, which we discuss in Related Work (Chapter 7).

5.4 RAMP Transaction Algorithms

Given specifications for RA isolation and scalability, we present algorithms for achieving
both. For ease of understanding, we first focus on providing read-only and write-only
transactions with a “last writer wins” overwrite policy, then subsequently discuss how to
perform read/write transactions. Our focus in this section is on intuition and understanding;
we defer all correctness and scalability proofs to Section 5.8, providing salient details inline.

At a high level, RAMP transactions allow reads and writes to proceed concurrently.
This provides excellent performance but, in turn, introduces certain race conditions that
could cause undesirable anomalies: one transaction might only read a subset of another
transaction’s writes, violating RA (i.e., fractured reads might occur). Instead of preventing
this race (hampering scalability), RAMP readers autonomously detect the race (using meta-
data attached to each data item) and fetch any missing, in-flight writes from their respective
partitions. To make sure that readers never have to wait for writes to arrive at a partition,
writers use a two-phase (atomic commitment) protocol that ensures that once a write is
visible to readers on one partition, any other writes in the transaction are present on and, if
appropriately identified by version, readable from their respective partitions.

In this section, we present three algorithms that provide a trade-off between the amount
of metadata required and the expected number of extra reads to fetch missing writes. As
discussed in Section 6.4.1, while techniques like distributed locking couple mutual exclusion
with atomic visibility of writes, RAMP transactions correctly control visibility but allow
concurrent and scalable execution.

5.4. RAMP TRANSACTION ALGORITHMS 82

C1

PREPARE

PREPARE

lastCommit[x]= ∅
versions={x1}

x1, md={y}

y1, md={x}
lastCommit[y]= ∅

versions={y1}

COMMIT
tsc=1

COMMIT
tsc=1

GET
i=x, tsreq= ∅ GET

lastCommit[x]=1
versions={x1}

GET

x1, md={y}

y∅ , md={}

y1, md={x}

lastCommit[y]=1
versions={y1}

vlatest ←{x:1, y:1}

prepared

RESPONSE
prepared

i=y, tsreq= ∅

i=y, tsreq=1

lastCommit[x]= ∅
versions={}

lastCommit[y]= ∅
versions={}

BEGIN T1

committed
committed

BEGIN T2

COMMIT T1

COMMIT T2
resp={x1,y1}

RESPONSE

RESPONSE

RESPONSE

RESPONSE

RESPONSE
RESPONSE

C2 Px Py

[w(x1), w(y1)]

[r(x), r(y)]

Figure 5.2: Space-time diagram for RAMP-F execution for two transactions T1 and T2 per-
formed by clients C1 and C2 on partitions Px and Py. Lightly-shaded boxes represent cur-
rent partition state (lastCommit and versions), while the single darker box encapsulates
all messages exchanged during C2’s execution of transaction T2. Because T1 overlaps with
T2, T2 must perform a second round of reads to repair the fractured read between x and y.
T1’s writes are assigned timestamp 1. In our depiction, each item does not appear in its list
of writes (e.g., Px sees {y} only and not {x,y}.

5.4.1 RAMP-Fast

To begin, we present a RAMP algorithm that, in the race-free case, requires one RTT
for reads and two RTTs for writes, called RAMP-Fast (abbreviated RAMP-F; Algorithm 1).

5.4. RAMP TRANSACTION ALGORITHMS 83

RAMP-F stores metadata in the form of write sets (overhead linear in transaction size).

Overview. Each write in RAMP-F (lines 14–23) contains a timestamp (line 15) that uniquely
identifies the writing transaction as well as a set of items written in the transaction (line 16).
For now, combining a unique client ID and client-local sequence number is sufficient for
timestamp generation (see also Section 5.4.4).

RAMP-F write transactions proceed in two phases: a first round of communication places
each timestamped write on its respective partition. In this PREPARE phase, each parti-
tion adds the write to its local database (versions, lines 1, 17–20). A second round of
communication (lines 21–23) marks versions as committed. In this COMMIT phase, each
partition updates an index containing the highest-timestamped committed version of each
item (lastCommit, lines 2, 6–8).

RAMP-F read transactions begin by first fetching the last (highest-timestamped) commit-
ted version for each item from its respective partition (lines 25–33). Using the results from
this first round of reads, each reader can calculate whether it is “missing” any versions (that
is, versions that were prepared but not yet committed on their partitions). The reader calcu-
lates a mapping from each item i to the highest timestamped version of i that appears in the
metadata of any version (of i or of any other item) in the first-round read set (lines 29–32).
If the reader has read a version of an item that has a lower timestamp than indicated in
the mapping for that item, the reader issues a second read to fetch the missing version (by
timestamp) from its partition (lines 33–36). Once all missing versions are fetched (which
can be done in parallel), the client can return the resulting set of versions—the first-round
reads, with any missing versions replaced by the optional, second round of reads.

By example. Consider the RAMP-F execution depicted in Figure 5.2. T1 writes to both x
and y, performing the two-round write protocol on two partitions, Px and Py. However, T2

reads from x and y while T1 is concurrently writing. Specifically, T2 reads from Px after Px
has committed T1’s write to x, but T2 reads from Py before Py has committed T1’s write to
y. Therefore, T2’s first-round reads return x = x1 and y = ⊥, and returning this set of reads
would violate RA. Using the metadata attached to its first-round reads, T2 determines that
it is missing y1 (since vlatest[y] = 1 and 1 > ⊥) and so T2 subsequently issues a second read
from Py to fetch y1 by version. After completing its second-round read, T2 can safely return
its result set. T1’s progress is unaffected by T2, and T1 subsequently completes by committing
y1 on Py.

Why it works. RAMP-F writers use metadata as a record of intent: a reader can detect if it
has raced with an in-progress commit round and use the metadata stored by the writer to
fetch the missing data. Accordingly, RAMP-F readers only issue a second round of reads in the
event that they read from a partially-committed write transaction (where some but not all

5.4. RAMP TRANSACTION ALGORITHMS 84

partitions have committed a write). In this event, readers will fetch the appropriate writes
from the not-yet-committed partitions. Most importantly, RAMP-F readers never have to
stall waiting for a write that has not yet arrived at a partition: the two-round RAMP-F write
protocol guarantees that, if a partition commits a write, all of the corresponding writes
in the transaction are present on their respective partitions (though possibly not committed
locally). As long as a reader can identify the corresponding version by timestamp, the reader
can fetch the version from the respective partition’s set of pending writes without waiting.
To enable this, RAMP-F writes contain metadata linear in the size of the writing transaction’s
write set (plus a timestamp per write).

RAMP-F requires two RTTs for writes: one for PREPARE and one for COMMIT. For reads,
RAMP-F requires one RTT in the absence of concurrent writes and two RTTs otherwise.

RAMP timestamps are only used to identify specific versions and in ordering concurrent
writes to the same item; RAMP-F transactions do not require a “global” timestamp author-
ity. For example, if lastCommit[k] = 2, there is no requirement that a transaction with
timestamp 1 has committed or even that such a transaction exists.

5.4.2 RAMP-Small: Trading Metadata for RTTs

While RAMP-F requires metadata size linear in write set size but provides best-case one
RTT for reads, RAMP-Small (RAMP-S) uses constant metadata but always requires two RTT
for reads (Algorithm 2). RAMP-S and RAMP-F writes are identical, but, instead of attach-
ing the entire write set to each write, RAMP-S writers only store the transaction timestamp
(line 7). Unlike RAMP-F, RAMP-S readers issue a first round of reads to fetch the highest
committed timestamp for each item from its respective partition (lines 3, 9–12). Then the
readers send the entire set of timestamps they received to the partitions in a second round of
communication (lines 14–16). For each item in the read request, RAMP-S servers return the
highest-timestamped version of the item that also appears in the supplied set of timestamps
(lines 5–6). Readers subsequently return the results from the mandatory second round of
requests.

By example. In Figure 5.3, under RAMP-S, Px and Py respectively return the sets {1} and
{⊥} in response to T2’s first round of reads. T2 would subsequently send the set {1,⊥} to
both Px and Py, which would return x1 and y1. (Including ⊥ in the second-round request is
unnecessary, but we leave it in for ease of understanding.)

Why it works. In RAMP-S, if a transaction has committed on some but not all partitions, the
transaction timestamp will be returned in the first round of any concurrent read transaction
accessing the committed partitions’ items. In the (required) second round of read requests,

5.4. RAMP TRANSACTION ALGORITHMS 85

Server-side Data Structures
1: versions: set of versions 〈item, value, timestamp tsv, metadata md〉
2: lastCommit[i]: last committed timestamp for item i

Server-side Methods

3: procedure PREPARE(v : version)
4: versions.add(v)
5: return

6: procedure COMMIT(tsc : timestamp)
7: Its ← {w.item | w ∈ versions∧w.tsv = tsc}
8: ∀i ∈ Its, lastCommit[i]← max(lastCommit[i], tsc)

9: procedure GET(i : item, tsreq : timestamp)
10: if tsreq = ∅ then
11: return v ∈ versions : v.item = i∧ v.tsv = lastCommit[item]
12: else
13: return v ∈ versions : v.item = i∧ v.tsv = tsreq

Client-side Methods

14: procedure PUT_ALL(W : set of 〈item, value〉)
15: tstx ← generate new timestamp
16: Itx ← set of items in W
17: parfor 〈i, v〉 ∈W do
18: v← 〈item = i, value = v, tsv = tstx,md = (Itx − {i})〉
19: invoke PREPARE(v) on respective server (i.e., partition)
20:21: parfor server s : s contains an item in W do
22: invoke COMMIT(tstx) on s
23:
24: procedure GET_ALL(I : set of items)
25: ret← {}

26: parfor i ∈ I do
27: ret[i]← GET(i, ∅)
28:29: vlatest ← {} (default value: −1)
30: for response r ∈ ret do
31: for itx ∈ r.md do
32: vlatest[itx]← max(vlatest[itx], r.tsv)

33: parfor item i ∈ I do
34: if vlatest[i] > ret[i].tsv then
35: ret[i]← GET(i, vlatest[i])
36:37: return ret

Algorithm 1: RAMP-Fast

5.4. RAMP TRANSACTION ALGORITHMS 86

C1

PREPARE

PREPARE

lastCommit[x]= ∅
versions={x1}

x1, md= ∅

y1, md= ∅ lastCommit[y]= ∅
versions={y1}

COMMIT
tsc=1

COMMIT
tsc=1tsc=1

GET
i=x, tsset= ∅ GET

lastCommit[x]=1
versions={x1}

GET

{1}

{∅}

y1

lastCommit[y]=1
versions={y1}

prepared

RESPONSE
prepared

i=y, tsset= ∅

i=y, tsset={1}

lastCommit[x]= ∅
versions={}

lastCommit[y]= ∅
versions={}

BEGIN T1

committed
committed

BEGIN T2

COMMIT T1

COMMIT T2
resp={x1,y1}

RESPONSE

RESPONSE

RESPONSE

RESPONSE

RESPONSE
RESPONSE

C2 Px Py

[w(x1), w(y1)]

[r(x), r(y)]

tsset ←{1}

RESPONSE

GET
i=x, tsset= {1}

x1

Figure 5.3: Space-time diagram for RAMP-S execution for two transactions T1 and T2 per-
formed by clients C1 and C2 on partitions Px and Py. Lightly-shaded boxes represent cur-
rent partition state (lastCommit and versions), while the single darker box encapsulates
all messages exchanged during C2’s execution of transaction T2. T1 first fetches the high-
est committed timestamp from each partition, then fetches the corresponding version. In
this depiction, partitions only return timestamps instead of actual versions in response to
first-round reads.

any prepared-but-not-committed partitions will find the committed timestamp in the reader-
provided set and return the appropriate version. In contrast with RAMP-F, where readers
explicitly provide partitions with a specific version to return in the (optional) second round,

5.4. RAMP TRANSACTION ALGORITHMS 87

Server-side Data Structures
same as in RAMP-F (Algorithm 1)

Server-side Methods
PREPARE, COMMIT same as in RAMP-F

1: procedure GET(i : item, tsset : set of timestamps)
2: if tsset = ∅ then
3: return v ∈ versions : v.item = i∧ v.tsv = lastCommit[k]
4: else
5: tsmatch = {t | t ∈ tsset ∧ ∃v ∈ versions : v.item = i∧ v.tv = t}
6: return v ∈ versions : v.item = i∧ v.tsv = max(tsmatch)

Client-side Methods

7: procedure PUT_ALL(W : set of 〈item, value〉)
same as RAMP-F PUT_ALL but do not instantiate md on line 18

8: procedure GET_ALL(I : set of items)
9: tsset ← {}

10: parfor i ∈ I do
11: tsset.add(GET(i, ∅).tsv)
12:13: ret← {}

14: parfor item i ∈ I do
15: ret[i]← GET(i, tsset)
16:17: return ret

Algorithm 2: RAMP-Small

RAMP-S readers defer the decision of which version to return to the partition, which uses
the reader-provided set to decide. This saves metadata but increases RTTs, and the size of
the parameters of each second-round GET request is (worst-case) linear in the read set size.
Unlike RAMP-F, there is no requirement to return the value of the last committed version in
the first round (returning the version, lastCommit[k], suffices in line 3).

5.4.3 RAMP-Hybrid: An Intermediate Solution

RAMP-Hybrid (RAMP-H; Algorithm 3) strikes a compromise between RAMP-F and RAMP-S.
RAMP-H and RAMP-S write protocols are identical, but, instead of storing the entire write set
(as in RAMP-F), RAMP-H writers store a Bloom filter [59] representing the transaction write
set (line 1). RAMP-H readers proceed as in RAMP-F, with a first round of communication to
fetch the last-committed version of each item from its partition (lines 3–6). Given this set
of versions, RAMP-H readers subsequently compute a list of potentially higher-timestamped

5.4. RAMP TRANSACTION ALGORITHMS 88

writes for each item (lines 8–11). Any potentially missing versions are fetched in a second
round of reads (lines 14).

By example. In Figure 5.2, under RAMP-H, x1 would contain a Bloom filter with positives
for x and y and y⊥ would contain an empty Bloom filter. T2 would check for the presence
of y in x1’s Bloom filter (since x1’s version is 1 and 1 > ⊥) and, finding a match, conclude
that it is potentially missing a write (y1). T2 would subsequently fetch y1 from Py.

Why it works. RAMP-H is effectively a hybrid between RAMP-F and RAMP-S. If the Bloom filter
has no false positives, RAMP-H reads behave like RAMP-F reads. If the Bloom filter has all false
positives, RAMP-H reads behave like RAMP-S reads. Accordingly, the number of (unnecessary)
second-round reads (i.e., which would not be performed by RAMP-F) is controlled by the
Bloom filter false positive rate, which is in turn (in expectation) proportional to the size of
the Bloom filter. Any second-round GET requests are accompanied by a set of timestamps
that is also proportional in size to the false positive rate. Therefore, RAMP-H exposes a trade-
off between metadata size and expected performance. To understand why RAMP-H is safe,
we simply have to show that any false positives (second-round reads) will not compromise
the integrity of the result set; with unique timestamps, any reads due to false positives will
return null.

5.4.4 Summary and Additional Details

The RAMP algorithms allow readers to safely race writers without requiring either to
stall. The metadata attached to each write allows readers in all three algorithms to safely
handle concurrent and/or partial writes and in turn allows a trade-off between metadata
size and performance (Table 5.1): RAMP-F is optimized for fast reads, RAMP-S is optimized
for small metadata, and RAMP-H is, as the name suggests, a middle ground. RAMP-F requires
metadata linear in transaction size, while RAMP-S and RAMP-H require constant metadata.
However, RAMP-S and RAMP-H require more RTTs for reads compared to RAMP-F when there
is no race between readers and writers. When reads and writes race, in the worst case, all
algorithms require two RTTs for reads. Writes always require two RTTs to prevent readers
from stalling due to missing, unprepared writes.

RAMP algorithms are scalable because clients only contact partitions directly accessed
by their transactions (partition independence), and clients cannot stall one another (are
coordination-free). More specifically, readers do not interfere with other readers, writers do
not interfere with other writers, and readers and writers can proceed concurrently. When a
reader races a writer to the same items, the writer’s new versions will only become visible
to the reader (i.e., be committed) once it is guaranteed that the reader will be able to fetch

5.4. RAMP TRANSACTION ALGORITHMS 89

Server-side Data Structures
same as in RAMP-F (Algorithm 1)

Server-side Methods
PREPARE, COMMIT same as in RAMP-F
GET same as in RAMP-S

Client-side Methods

1: procedure PUT_ALL(W : set of 〈item, value〉)
same as RAMP-F PUT_ALL but instantiate md on line 18
with Bloom filter containing Itx

2: procedure GET_ALL(I : set of items)
3: ret← {}

4: parfor i ∈ I do
5: ret[i]← GET(i, ∅)
6:7: vfetch ← {}

8: for version v ∈ ret do
9: for version v ′ ∈ ret : v ′ 6= v do

10: if v.tsv > v ′.tsv ∧ v.md.lookup(v ′.item)→ True then
11: vfetch[v

′.item].add(v.tsv)

12: parfor item i ∈ vfetch do
13: ret[i]← GET(k, vfetch[i]) if GET(k, vfetch[i]) 6= ⊥
14:15: return ret

Algorithm 3: RAMP-Hybrid

all of them (possibly via a second round of communication). A reader will never have to
stall waiting for writes to arrive at a partition (for details, see Invariant 1 in the Appendix);
however, the reader may have to contact the servers twice in order to fetch any versions that
were missing from its first set of reads.

Below, we discuss relevant implementation details.

Multi-versioning and garbage collection. RAMP transactions rely on multi-versioning to
allow readers to access versions that have not yet committed and/or have been overwritten.
In our pseudocode, we have presented an implementation based on multi-versioned storage;
in practice, multi-versioning can be implemented by using a single-versioned storage engine
for retaining the last committed version of each item and using a “look-aside” store for
access to both prepared-but-not-yet-committed writes and (temporarily) any overwritten
versions. The look-aside store should make prepared versions durable but can—at the
risk of aborting transactions in the event of a server failure—simply store any overwritten
versions in memory. Thus, with some work, RAMP algorithms are portable to non-multi-

5.4. RAMP TRANSACTION ALGORITHMS 90

Algorithm
RTTs/transaction Metadata (+stamp)

W R (stable) R (O) Stored Per-Request
RAMP-F 2 1 2 txn items -
RAMP-S 2 2 2 - stamp/item
RAMP-H 2 1 + ε 2 Bloom filter stamp/item

Table 5.1: Comparison of basic algorithms: RTTs required for writes (W), reads (R) without
concurrent writes and in the worst case (O), stored metadata and metadata attached to read
requests (in addition to a timestamp for each).

versioned storage systems.

In both architectures, each partition’s data will grow without bound if old versions are
not removed. If a committed version of an item is not the highest-timestamped committed
version (i.e., a committed version v of item k where v < lastCommit[k]), it can be safely
discarded (i.e., garbage collected, or GCed) as long as no readers will attempt to access it in
the future (via second-round GET requests). It is easiest to simply limit the running time of
read transactions and GC overwritten versions after a fixed amount of real time has elapsed.
Any read transactions that take longer than this GC window can be restarted [167, 168].
Therefore, the maximum number of versions retained for each item is bounded by the item’s
update rate, and servers can reject any client GET requests for versions that have been GCed
(and the read transaction can be restarted). This violates availability under asynchronous
network behavior, so, as a fallback and a more principled solution, partitions can also
gossip the timestamps of items that have been overwritten and have not been returned in
the first round of any ongoing read transactions. Under RAMP-F, if a second-round read
request arrives a server and the server does not have that version due to garbage collection,
it can safely ignore the request or signal failure.

Read-write transactions. Until now, we have focused on read-only and write-only trans-
actions. However, we can extend our algorithms to provide read-write transactions. If
transactions pre-declare the data items they wish to read, then the client can execute a
GET_ALL transaction at the start of transaction execution to pre-fetch all items; subsequent
accesses to those items can be served from this pre-fetched set. Clients can buffer any writes
and, upon transaction commit, send all new versions to servers (in parallel) via a PUT_ALL

request. As in Section 5.3, this may result in anomalies due to concurrent update but does
not violate RA isolation. Given the benefits of pre-declared read/write sets [89, 187, 217]
and write buffering [85, 207], we believe this is a reasonable strategy. For secondary in-
dex lookups, clients can first look up secondary index entries then subsequently (within the
same transaction) read primary data (specifying versions from index entries as appropriate).

5.4. RAMP TRANSACTION ALGORITHMS 91

Timestamps. Timestamps should be unique across transactions, and, for “session” con-
sistency (Appendix), increase on a per-client basis. Given unique client IDs, a client ID
and sequence number form unique transaction timestamps without coordination. Without
unique client IDs, servers can assign unique timestamps with high probability using UUIDs
and by hashing transaction contents.

Overwrites. In our algorithms, versions are overwritten according to a highest-timestamp-
wins policy. In practice, and, for commutative updates, users may wish to employ a dif-
ferent policy upon COMMIT: for example, perform set union. In this case, lastCommit[k]
contains an abstract data type (e.g., set of versions) that can be updated with a merge
operation [95, 216] (instead of updateIfGreater) upon commit. This treats each com-
mitted record as a set of versions, requiring additional metadata (that can be GCed as in
Section 5.4.7).

5.4.5 Distribution and Fault Tolerance

RAMP transactions operate in a distributed setting, which poses challenges due to la-
tency, partial failure, and network partitions. Under coordination-free execution, failed
clients do not cause other clients to fail, while partition independence ensures that clients
only have to contact partitions for items in their transactions. This provides fault tolerance
and availability as long as clients can access relevant partitions. In this section, we address
incident concerns. First, replication can be used to increase the number of servers hosting
a partition, thus increasing availability. Second, we describe the RAMP protocol behavior
when clients are unable to contact servers.

Replication. RAMP protocols can benefit from a variety of mechanisms including tradi-
tional database master-slave replication with failover, quorum-based protocols, and state
machine replication, which increase the number of physical servers that host a given data
item [53]. To improve durability, RAMP clients can wait until the effects of their operations
(e.g., modifications to versions and lastCommit) are persisted to multiple physical servers
before returning from PUT_ALL calls (either via master-to-slave replication or via quorum
replication and by performing two-phase commit across multiple active servers). Notably,
because RAMP transactions can safely overlap in time, replicas can process different trans-
actions’ PREPARE and COMMIT requests in parallel. Availability can also benefit in many
protocols, such as quorum replication. We discuss more advanced replication techniques in
Section 5.6.1.

Stalled Operations. RAMP writes use a two-phase atomic commitment protocol that
ensures readers never block waiting for writes to arrive. As discussed in Section 6.4.1,

5.4. RAMP TRANSACTION ALGORITHMS 92

every ACP may block during failures [53]. However, under coordination-free execution,
a blocked transaction (due to failed clients, failed servers, or network partitions) cannot
cause other transactions to block. Stalled writes act only as “resource leaks” on partitions:
partitions will retain prepared versions indefinitely unless action is taken.

To “free” these leaks, RAMP servers can use the Cooperative Termination Protocol
(CTP) described in [53]. CTP can always complete the transaction except when every par-
tition has performed PREPARE but no partition has performed COMMIT. In CTP, if a server
Sp has performed PREPARE for transaction T but times out waiting for a COMMIT, Sp can
check the status of T on any other partitions for items in T ’s write set. If another server
Sc has received COMMIT for T , then Sp can COMMIT T . If Sa, a server responsible for an
item in T , has not received PREPARE for T , Sa and Sp can promise never to PREPARE or
COMMIT T in the future and Sp can safely discard its versions. Under CTP, if a client blocks
mid-COMMIT, the servers will ensure that the writes will eventually COMMIT and therefore
become visible on all partitions. A client recovering from a failure can read from the servers
to determine if they unblocked its write.

CTP only runs when writes block (or time-outs fire) and runs asynchronously with re-
spect to other operations. CTP requires that PREPARE messages contain a list of servers
involved in the transaction (a subset of RAMP-F metadata but a superset of RAMP-H and
RAMP-S) and that servers remember when they COMMIT and “abort” writes (e.g., in a log
file). Compared to alternatives (e.g., replicating clients [124]), we have found CTP to be
both lightweight and effective. We evaluate CTP in Section 5.5.3.

5.4.6 Additional Semantics

While our RAMP transactions provide RA isolation, they also provide a number of
additional useful guarantees. With linearizable servers, once a user’s operation completes,
all other users will observe its effects (regular register semantics, applied at the transac-
tion level); this provides a notion of real-time recency. This also ensures that each user’s
operations are visible in the order in which they are committed. Our RAMP implementa-
tions provide a variant of PRAM consistency, where, for each item, each user’s writes are
serialized [164] (i.e., “session” ordering [91]). For example, if a user updates her privacy
settings and subsequently posts a new photo, the photo cannot be read without the privacy
setting change [83]. However, PRAM does not respect the happens-before relation [157]
across users (or missing dependencies, as discussed in Section 5.3.3). If Sam reads Mary’s
comment and replies to it, other users may read Sam’s comment without Mary’s comment.
We further discuss this issue in Section 5.6.3.

5.5. EXPERIMENTAL EVALUATION 93

5.4.7 Further Optimizations

RAMP algorithms also allow several possible optimizations:

Faster commit detection. If a server returns a version in response to a GET request, then
the transaction that created the version must have issued a COMMIT on at least one server.
In this case, the server can safely mark the version as committed and update lastCommit.
This means that the transaction commit will be reflected in any subsequent GET requests
that read from lastCommit for this item—even though the COMMIT message from the
client may yet be delayed. The net effect is that the later GET requests may not have to
issue second-round reads to fetch the versions that otherwise would not have been marked
as committed. This scenario will occur when all partitions have performed PREPARE and
at least one server but not all partitions have performed COMMIT (as in CTP). This allows
faster updates to lastCommit (and therefore fewer expected RAMP-F and RAMP-H RTTs).

Metadata garbage collection. Once all of transaction T ’s writes are committed on each
respective partition (i.e., are reflected in lastCommit), readers are guaranteed to read T ’s
writes (or later writes). Therefore, non-timestamp metadata for T ’s writes stored in RAMP-F

and RAMP-H (write sets and Bloom filters) can be discarded. Detecting that all servers have
performed COMMIT can be performed asynchronously via a third round of communication
performed by either clients or servers.

One-phase writes. We have considered two-phase writes, but, if a user does not wish to
read her writes (thereby sacrificing session guarantees outlined in Section 5.4.6), the client
can return after issuing its PREPARE round (without sacrificing durability). The client can
subsequently execute the COMMIT phase asynchronously, or, similar to optimizations pre-
sented in Paxos Commit [124], the servers can exchange PREPARE acknowledgments with
one another and decide to COMMIT autonomously. This optimization is safe because multi-
ple PREPARE phases can safely overlap. We leverage a similar observation in Section 5.6.1.

5.5 Experimental Evaluation

We proceed to experimentally demonstrate RAMP transaction scalability as compared
to existing transactional and non-transactional mechanisms. RAMP-F, RAMP-H, and often
RAMP-S outperform existing solutions across a range of workload conditions while exhibit-
ing overheads typically within 8% and no more than 48% of peak throughput. As expected
from our theoretical analysis, the performance of our RAMP algorithms does not degrade
substantially under contention and scales linearly to over 7.1 million operations per second
on 100 servers. These outcomes validate our goal of coordination-free design.

5.5. EXPERIMENTAL EVALUATION 94

5.5.1 Experimental Setup

To demonstrate the effect of concurrency control on performance and scalability, we im-
plemented several concurrency control algorithms in a partitioned, multi-versioned, main-
memory database prototype. Our prototype is in Java and employs a custom RPC system
for serialization. Servers are arranged as a distributed hash table [211] with partition place-
ment determined by random hashing of keys to servers. As in stores like Dynamo [95],
clients can connect to any server to execute operations, which the server will perform on
their behalf (i.e., each server acts as a client in our RAMP pseudocode). We implemented
RAMP-F, RAMP-S, and RAMP-H and configure a wall-clock GC window of 5 seconds as de-
scribed in Section 5.4.4. RAMP-H uses a 256-bit Bloom filter based on an implementation of
MurmurHash2.0 [23], with four hashes per entry; to demonstrate the effects of filter satu-
ration, we do not modify these parameters in our experiments. Our prototype utilizes the
faster commit detection optimization from Section 5.4.4. We chose not to employ metadata
garbage collection and one-phase writes in order to preserve session guarantees and because
metadata overheads were generally minor.

Algorithms for comparison. As a baseline, we do not employ any concurrency control
(denoted NWNR, for no write and no read locks); reads and writes take one RTT and are
executed in parallel.

We also consider three lock-based mechanisms [125]: long write locks and long read
locks, providing Repeatable Read isolation (PL-2.99; denoted LWLR), long write locks with
short read locks, providing Read Committed isolation (PL-2L; denoted LWSR; does not pro-
vide RA), and long write locks with no read locks, providing Read Uncommitted isolation
(LWNR; also does not provide RA). While only LWLR provides RA, LWSR and LWNR provide
a useful basis for comparison, particularly in measuring concurrency-related locking over-
heads. To avoid deadlocks, the system lexicographically orders lock requests by item and
performs them sequentially. When locks are not used (as for reads in LWNR and reads and
writes for NWNR), the system parallelizes operations.

We also consider an algorithm where, for each transaction, designated “coordinator”
servers enforce RA isolation—effectively, the Eiger system’s 2PC-PCI mechanism [168] (de-
noted E-PCI; Chapter 7). Writes proceed via prepare and commit rounds, but any reads that
arrive at a partition and while a write transaction to the same item is pending must contact
a (randomly chosen, per-write-transaction) “coordinator” partition to determine whether
the coordinator’s prepared writes have been committed. Writes require two RTTs, while
reads require one RTT during quiescence and two RTTs in the presence of concurrent up-
dates (to a variable number of coordinator partitions—linear in the number of concurrent
writes to the item). Using a coordinator violates partition independence but—in this case—

5.5. EXPERIMENTAL EVALUATION 95

is still coordination-free. We optimize 2PC-PCI reads by having clients determine a read
timestamp for each transaction (eliminating an RTT) and do not include happens-before
metadata.

This range of lock-based strategies (LWNR, LWSR, LWNR), recent comparable approach
(E-PCI), and best-case (NWNR; no concurrency control) baseline provides a spectrum of strate-
gies for comparison.

Environment and benchmark. We evaluate each algorithm using the YCSB benchmark [84]
and deploy variably-sized sets of servers on public cloud infrastructure. We employ cr1.8xlarge

instances on Amazon EC2 and, by default, deploy five partitions on five servers. We group
sets of reads and sets of writes into read-only and write-only transactions (default size: 4
operations), and use the default YCSB workload (workloada, with Zipfian distributed item
accesses) but with a 95% read and 5% write proportion, reflecting read-heavy applications
(Section 6.4.1, [65,168,227]; e.g., Tao’s 500 to 1 reads-to-writes [65,168], Espresso’s 1000
to 1 Mailbox application [192], and Spanner’s 3396 to 1 advertising application [85]).

By default, use 5000 YCSB clients distributed across 5 separate EC2 instances. As in
stock YCSB, each client makes a sequence of synchronous requests to the database. When
we later vary the number of clients, we keep the number of servers hosting the clients fixed.
To fully expose our metadata overheads, use a value size of 1 byte per write. We found
that lock-based algorithms were highly inefficient for YCSB’s default 1000 item database,
so we increased the database size to one million items by default to decrease contention.
Each version contains a timestamp (64 bits), and, with YCSB keys (i.e., item IDs) of size 11
bytes and a transaction length L, RAMP-F requires 11L bytes of metadata per version, while
RAMP-H requires 32 bytes. We successively vary several parameters, including number of
clients, read proportion, transaction length, value size, database size, and number of servers
and report the average of three sixty-second trials.

5.5.2 Experimental Results: Comparison

Our first set of experiments focuses on two metrics: performance compared to baseline
and performance compared to existing techniques. The overhead of RAMP algorithms is
typically less than 8% compared to baseline (NWNR) throughput, is sometimes zero, and is
never greater than 50%. RAMP-F and RAMP-H always outperform the lock-based and E-PCI

techniques, while RAMP-S outperforms lock-based techniques and often outperforms E-PCI.
We proceed to demonstrate this behavior over a variety of conditions:

Number of clients. RAMP performance scales well with increased load and incurs little
overhead (Figure 6.1). With few concurrent clients, there are few concurrent updates and

5.5. EXPERIMENTAL EVALUATION 96

therefore few second-round reads; performance for RAMP-F and RAMP-H is close to or even
matches that of NWNR. At peak throughput with 10,000 clients, RAMP-F and RAMP-H pay a
throughput overhead of 4.2% compared to NWNR. RAMP-F and RAMP-H exhibit near-identical
performance; the RAMP-H Bloom filter triggers few false positives and therefore few extra
RTTs compared to RAMP-F. RAMP-S incurs greater overhead and peaks at almost 60% of
the throughput of NWNR. Its guaranteed two-round trip reads are expensive and it acts as
an effective lower bound on RAMP-F and RAMP-H performance. In all configurations, the
algorithms achieve low latency. RAMP-F, RAMP-H, NWNR less than 35 ms on average and less
than 10 ms at 5,000 clients; RAMP-S less than 53 ms, 14.3 ms at 5,000 clients.

In comparison, the remaining algorithms perform less favorably. In contrast with the
RAMP algorithms, E-PCI servers must check a coordinator server for each in-flight write
transaction to determine whether to reveal writes to clients. For modest load, the over-
head of these commit checks places E-PCI performance between that of RAMP-S and RAMP-H.
Under YCSB’s Zipfian workload, there is a high probability that the several “hot” keys
in the workload have a pending write, requiring a E-PCI commit check. The number of
in-flight writes further increases with load, increasing the number of E-PCI commit checks.
This in turn decreases throughput, and, with 10,000 concurrent clients, E-PCI performs so
many commit checks per read that it underperforms the LWNR lock-based scheme. Under
this configuration, more than 20% of reads trigger a commit check, and, on servers with
hot items, each commit check requires indirected coordinator checks for an average of 9.84
transactions. Meanwhile, multi-partition locking is expensive [187]: with 10,000 clients,
the most efficient algorithm, LWNR, attains only 28.6% of the throughput of NWNR, while the
least efficient, LWLR, attains only 1.6% and peaks at 3,412 transactions per second.

We subsequently varied several other workload parameters, which we discuss below and
plot in Figure 5.5:

Read proportion. Increased write activity leads to a greater number of races between
reads and writes and therefore additional second-round RTTs for RAMP-F and RAMP-H reads.
With all write transactions, all RAMP algorithms are equivalent (two RTT) and achieve
approximately 65% of the throughput of NWNR. With all reads, RAMP-F, RAMP-S, NWNR, and
E-PCI are identical, with a single RTT. Between these extremes, RAMP-F and RAMP-S scale
near-linearly with the write proportion. In contrast, lock-based protocols fare poorly as
contention increases, while E-PCI again incurs penalties due to commit checks.

Transaction length. Increased transaction lengths have variable impact on the relative per-
formance of RAMP algorithms. Coordination-free execution ensures long-running transac-
tions are not penalized, but, with longer transactions, metadata overheads increase. RAMP-F
relative throughput decreases due to additional metadata (linear in transaction length) and

5.5. EXPERIMENTAL EVALUATION 97

RAMP-F RAMP-S RAMP-H NWNR LWNR LWSR LWLR E-PCI

0 2000 4000 6000 8000 10000
0

30K

60K

90K

120K

150K

180K

Th
ro

ug
hp

ut
(tx

n/
s)

2000 4000 6000 8000 10000
Concurrent Clients

10−1

100

101

102

A
vg

.
La

te
nc

y
(m

s)

Figure 5.4: Throughput and latency under varying client load. We omit latencies for LWLR,
which peaked at over 1.5s.

RAMP-H relative performance also decreases as its Bloom filters saturate. (However, YCSB’s
Zipfian-distributed access patterns result in a non-linear relationship between length and
throughput.) As discussed above, we explicitly decided not to tune RAMP-H Bloom filter size,
but a logarithmic increase in filter size could improve RAMP-H performance for large trans-
action lengths (e.g., 1024 bit filters should lower the false positive rate for transactions of
length 256 from over 92% to slightly over 2%).

Value size. Value size similarly does not seriously impact relative throughput. At a value
size of 1B, RAMP-F is within 2.3% of NWNR. However, at a value size of 100KB, RAMP-F

performance nearly matches that of NWNR: the overhead due to metadata decreases, and write
request rates slow, decreasing concurrent writes (and subsequently second-round RTTs).
Nonetheless, absolute throughput drops by a factor of 24 as value sizes moves from 1B to
100KB.

Database size. RAMP algorithms are robust to high contention for a small set of items:
with only 1000 items in the database, RAMP-F achieves throughput within 3.1% of NWNR.
RAMP algorithms are largely agnostic to read/write contention, although, with fewer items
in the database, the probability of races between readers and in-progress writers increases,

5.5. EXPERIMENTAL EVALUATION 98

resulting in additional second-round reads for RAMP-F and RAMP-H. In contrast, lock-based
algorithms fare poorly under high contention, while E-PCI indirected commit checks again
incurred additional overhead. By relying on clients (rather than additional partitions) to
repair fractured writes, RAMP-F, RAMP-H, and RAMP-S performance is less affected by hot
items.

Overall, RAMP-F and RAMP-H exhibit performance close to that of no concurrency control
due to their independence properties and guaranteed worst-case performance. As the pro-
portion of writes increases, an increasing proportion of RAMP-F and RAMP-H operations take
two RTTs and performance trends towards that of RAMP-S, which provides a constant two
RTT overhead. In contrast, lock-based protocols perform poorly under contention while
E-PCI triggers more commit checks than RAMP-F and RAMP-H trigger second round reads
(but still performs well without contention and for particularly read-heavy workloads). The
ability to allow clients to independently verify read sets enables good performance despite
a range of (sometimes adverse) conditions (e.g., high contention).

5.5. EXPERIMENTAL EVALUATION 99

RAMP-F RAMP-S RAMP-H NWNR LWNR LWSR LWLR E-PCI

0 25 50 75 100
Percentage Reads)

0

30K

60K

90K

120K

150K

180K

Th
ro

ug
hp

ut
(tx

n/
s)

2 4 8 16 32 64 128
Transaction Size (operations)

0

30K

60K

90K

120K

150K

180K

Th
ro

ug
hp

ut
(tx

n/
s)

1 10 100 1000 10000 100000
Value Size (bytes)

0

30K

60K

90K

120K

150K

180K

Th
ro

ug
hp

ut
(tx

n/
s)

10 100 1000 10K 100K 1M 10M
Database Size (items)

0

30K

60K

90K

120K

150K

180K

Th
ro

ug
hp

ut
(tx

n/
s)

Figure 5.5: Algorithm performance across varying workload conditions. RAMP-F and RAMP-H
exhibit similar performance to NWNR baseline, while RAMP-S’s 2 RTT reads incur a greater
performance penalty across almost all configurations. RAMP transactions consistently out-
perform RA isolated alternatives.

5.5. EXPERIMENTAL EVALUATION 100

5.5.3 Experimental Results: CTP Overhead

We also evaluated the overhead of blocked writes in our implementation of the Coop-
erative Termination Protocol discussed in Section 5.4.5. To simulate blocked writes, we
artificially dropped a percentage of COMMIT commands in PUT_ALL calls such that clients
returned from writes early and partitions were forced to complete the commit via CTP.
This behavior is worse than expected because “blocked” clients continue to issue new op-
erations. The table below reports the throughput reduction as the proportion of blocked
writes increases (compared to no blocked writes) for a workload of 100% RAMP-F write
transactions:

Blocked % 0.01% 0.1% 25% 50%
Throughput No change 99.86% 77.53% 67.92%

As these results demonstrate, CTP can reduce throughput because each commit check con-
sumes resources (namely, network and CPU capacity). However, CTP only performs com-
mit checks in the event of blocked writes (or time-outs; set to 5s in our experiments), so a
modest failure rate of 1 in 1000 writes has a limited effect. The higher failure rates produce
a near-linear throughput reduction but, in practice, a blocking rate of even a few percent
is likely indicative of larger systemic failures. As Figure 5.5 hints, the effect of additional
metadata for the participant list in RAMP-H and RAMP-S is limited, and, for our default work-
load of 5% writes, we observe similar trends but with throughput degradation of 10% or
less across the above configurations. This validates our initial motivation behind the choice
of CTP: average-case overheads are small.

5.5.4 Experimental Results: Scalability

We finally validate our chosen scalability criteria by demonstrating linear scalability of
RAMP transactions to 100 servers. We deployed an increasing number of servers within the
us-west-2 EC2 region and, to mitigate the effects of hot items during scaling, configured
uniform random access to items. We were unable to include more than 20 instances in
an EC2 “placement group,” which guarantees 10 GbE connections between instances, so,
past 20 servers, servers communicated over a degraded network. At around 40 servers,
we exhausted the us-west-2b “availability zone” (datacenter) capacity and had to allocate
our instances across the remaining zones, further degrading network performance. To avoid
bottlenecks on the client, we deploy as many instances to host YCSB clients as we do to host
prototype servers.However, as shown in Figure 6.2, each RAMP algorithm scales linearly.
In expectation, at 100 servers, almost all transactions span multiple servers: all but one in
100M transactions is a multi-partition operation, highlighting the importance of partition

5.6. APPLYING AND MODIFYING THE RAMP PROTOCOLS 101

NWNR RAMP-F RAMP-H RAMP-S

0 25 50 75 100
0

2M

4M

6M

8M

Th
ro

ug
hp

ut
(o

ps
/s

)

0 25 50 75 100
Number of Servers

0
40K
80K

120K
160K
200K

op
er

at
io

ns
/s

/s
er

ve
r

Figure 5.6: RAMP transactions scale linearly to over 7 million operations/s with comparable
performance to NWNR baseline.

independence. With 100 servers, RAMP-F achieves slightly under 7.1 million operations per
second, or 1.79 million transactions per second on a set of 100 servers (71,635 operations
per partition per second). At all scales, RAMP-F throughput was always within 10% of NWNR.
With 100 servers, RAMP-F was within 2.6%, RAMP-S within 3.4%, and RAMP-S was within
45% of NWNR. In light of our scalability criteria, this behavior is unsurprising.

5.6 Applying and Modifying the RAMP Protocols

In this section, we discuss modifications to RAMP to enable multi-datacenter and ef-
ficient quorum replication as well as causally consistent operation. Our goals here are
two-fold. First, we believe this section will be beneficial to systems implementers inte-
grating RAMP protocols into databases such as Cassandra [153] that support wide-area
and quorum-replicated deployments. Indeed, its inclusion is a reflection on many helpful
reader comments asking for clarification on this topic. Second, we believe this material is a
useful inclusion for readers who are familiar with existing and recent work on both multi-
datacenter and causally consistent replication. Namely, RAMP is compatible with many of
these replication scenarios, and, in some cases, enables new optimizations.

5.6. APPLYING AND MODIFYING THE RAMP PROTOCOLS 102

5.6.1 Multi-Datacenter RAMP

The RAMP algorithms presented in this work have assumed linearizable server opera-
tion. Hence, if RAMP is used in a system where data items are replicated, then a linearizable
replication mechanism must be used, such as a primary-backup or other replicated state ma-
chine approach. While this has simplified our discussion and results in reasonable perfor-
mance in many environments, the cost of linearizability is often be expensive, particularly
in geo-replicated environments where latency is lower-bounded by the speed of light [8,32].
While the RAMP algorithms’ lack of coordination mitigates throughput penalties due to,
for example, stalls during contended multi-partition access, actually accessing the partitions
themselves may take time and increase the latency of individual operations. Moreover, in
the event of partial failures, it is often beneficial to provide greater availability guarantees.

In this section, we discuss strategies for lowering the latency and improving the avail-
ability of operations. Our primary target in this setting is a multi-datacenter, geo-replicated
context, where servers are located in separate clusters in possibly geographically remote re-
gions. This setting has received considerable attention in recent research and, increasingly,
in some of the largest production data management systems [85,167,168,210]. The actual
porting of concurrency control algorithms to this context is not terribly difficult, but any
inefficiencies due to synchronization and coordination are magnified in this setting, making
it an idea candidate for practical study. Thus, we couch our discussion in the context of
fully-replicated, geo-distributed clusters (i.e., groups of replicas of each partition).

The key challenge in achieving higher availability and lower latency in RAMP is ensuring
that partially committed writes can still be completed. In the standard RAMP algorithms,
this is accomplished by waiting to commit until after all partitions have prepared. Yet, in a
replicated context, this waiting is potentially expensive; over wide-area networks, this can
take hundreds of milliseconds. There are two straightforward ways to circumvent these
overheads: deferring the commit operation and maintaining stickiness.

Prepare-F HA RAMP. The first strategy is easier to understand but perhaps less practical. A
client specifies a minimum durability for its write operations, measured in terms of number
of failures it wishes to survive, F. When writing, the client issues a prepare request to all
clusters and waits until it receives a successful response from F + 1 servers. This ensures
that the client’s write is durable, and the client knows its intent has been logged on at least
F + 1 servers. The client transaction subsequently returns success (Figure 5.7a). Once all
servers have received the prepare request (which is detectable via either via server-server
communication as in the CTP protocol or via an asynchronous callback on the client), the
servers can begin to commit the client’s writes autonomously. This preserves RA isolation—
but at a cost. Namely, there is no guarantee of visibility of writes: a client is not guaranteed

5.6. APPLYING AND MODIFYING THE RAMP PROTOCOLS 103

X
prepare

Y
prepare

X
prepare

Y
prepare

C
lu

st
er

 A
C

lu
st

er
 B

X
commit

Y
commit

X
commit

Y
commit

(a) High availability multi-cluster RAMP

X Y

X
prepare

Y
prepare

C
lu

st
er

 A
C

lu
st

er
 B

X Y

X
commit

Y
commit

X
prepare

Y
prepare

X
commit

Y
commit

X
commit

Y
commit

X
commit

Y
commit

(b) Sticky multi-cluster RAMP

Figure 5.7: Control flow for operations under multi-datacenter RAMP strategies with client
in Cluster A writing to partitions X and Y. In the high availability RAMP strategy (Fig-
ure 5.7a), a write must be prepared on F + 1 servers (here, F = 3) before is committed. In
the sticky RAMP strategy, a write can be prepared and committed within a single datacenter
and asynchronously propagated to other datacenters, where it is subsequently prepared and
committed (Figure 5.7b). The sticky strategy requires that clients maintain affinity with a
single cluster in order to guarantee available and correctly isolated behavior.

to read its own writes. Moreover, if a single server is offline, the servers will not begin
the commit step, and clients will not observe the effects of the prepared transactions for
an indefinite period of time. By ensuring availability of writes (i.e., clients return early),
we have sacrificed visibility in the form of ensuring that writes are accessible to readers.
Thus, clients will not enjoy session guarantees [216] such as Read Your Writes. Given the
importance of these session guarantees for many of the industrial users we have encountered
(e.g., see Facebook’s TAO geo-replication [65]), we currently do not favor this approach.

Sticky HA RAMP. The second strategy is to ensure a degree of stickiness, or affinity, be-
tween clients and servers within a datacenter [32]. Each client is assigned its own datacenter.
Instead of having a client issue its writes to the entire database replica set, the client can in-
stead issue its prepare and commit operations to its assigned datacenter (or local replica
group) and subsequently forward the writes to be prepared and committed autonomously
in separate clusters (Figure 5.7b). That is, once a writer has performed the appropriate

5.6. APPLYING AND MODIFYING THE RAMP PROTOCOLS 104

RAMP protocol in its assigned datacenter, it can return. In an N-datacenter deployment,
each full write protocol is performed N separate times—once per datacenter. If the same
timestamp is assigned to each write, the end state of each datacenter will be equivalent. As
long as clients remain connected to the same datacenter (i.e., is “sticky” with respect to its
database connections), it will read its writes.

The total number of prepare and commit operations are the same as in the first strategy,
but the commit point is staggered—each cluster reaches a commit point independently, at
different times. Moreover, clusters operate independently, so throughput is not improved—
only latency—because each cluster must replay every other cluster’s writes [35]. This is the
basic strategy espoused by traditional log shipping approaches [151] as well as more recent
proposals such as the COPS [167] and Eiger [168] systems.

However, this stickiness has an often-neglected penalty: a client can no longer connect
to arbitrary servers and expect to read its own writes. If a server is down in a client’s local
datacenter, the client must—in the worst case—locate an entire other replica set to which
the client can connect. This negatively affects availability: the Prepare-F strategy can utilize
all servers at once, but the sticky strategy requires clients to maintain affinity for availability.
In cases when this “sticky availability” [32] is acceptable (e.g., each datacenter contains a
set of application servers that issue the RAMP protocols against another datacenter-local
set of storage servers), this may be a reasonable compromise.

5.6.2 Quorum-Replicated RAMP Operation

While RAMP Prepare-F and Sticky HA are best suited for multi-datacenter deployments,
in quorum-replicated systems such as Dynamo and Cassandra [95, 153], there are several
optimizations that can be used to further improve availability, even within a single datacen-
ter.

Our key observation here is that, to guarantee maximum of two-round trips for reads,
only PREPARE and second-round GET requests need to intersect on a given set of replicas.
Recall that second-round GET requests are issued in order to “repair” any fractured reads
from the first round of read results. In the event of these fractured reads, a reader must
have access to versions corresponding to fractured reads that have been prepared but were
not committed at the time of the first-round read. However, assembling the first round of
committed versions can run under partial (i.e., non-intersecting) quorum operation [172]
with respect to commit messages.

This means that COMMIT and first-round GET operations can proceed on effectively
any server in a set of replicas, enabling two key optimizations. In these optimizations, we
assume that readers issue second-round read requests and writers issue PREPARE operations

5.6. APPLYING AND MODIFYING THE RAMP PROTOCOLS 105

using a quorum system [180] of replicas (e.g., majority quorums).

First, first-round read requests can be served from any replica of a given item. Then,
if a client detects a race (in RAMP-F or RAMP-H), it can issue the optional second round of
requests to a quorum of servers. RAMP-S will always issue the second round of requests. This
optimization improves the latency of the first round of reads and also enables speculative
retry [94]. It also decreases the load on the servers and increases availability for first-round
read operations.

Second, commit operations can be performed on any replica of a given item. Similar
to the optimization proposed in Prepare-F RAMP, servers can propagate commit messages
between themselves asynchronously, possibly piggybacking on anti-entropy messages as in
systems like Cassandra and Dynamo. This optimization improves the latency of commit.
However, because all servers must commit the transaction eventually, it does not necessarily
decrease the load on servers.

To quantify the potential latency improvements achievable using these optimizations, we
draw on latency distributions from a recent study of Dynamo-style operation [44]. Accord-
ing to latency data from a Dynamo-style quorum-replicated database running on spinning
disks at LinkedIn, moving from waiting for two replicas of three to respond to waiting for
one replica of three to respond to a write request decreased latency from 21.0ms to 11.0ms
at the 99.9th percentile; 1.63ms to 0.66ms for reads. For a similar database at Yammer,
the gains for writes are 427ms to 10.8ms and the gains for reads are 32.6ms to 5.6ms—an
even more impressive gain. Over a wide-area network with latency of 75ms, the gains are
as much as 148ms. Thus, in practice, these simple optimizations may prove worthwhile.

5.6.3 RAMP, Transitive Dependencies, and Causal Consistency

In Section 5.3.3, we discussed how RA isolation does not enforce transitive read-write
dependencies across transactions. For example, if Ta read-depends on Tb (i.e., Ta reads a
version that Tb created), another transaction Tc might read-depend on Ta (i.e., Tc reads a
version that Ta created) but anti-depend on Tb (i.e., Tb overwrites a version that Ta read).
In this section, we discuss why we made this design decision as well as alternatives for
enforcing dependencies and their costs.

The primary challenges in enforcing transitive dependencies come in limiting metadata
while preserving availability and partition independence. In the extreme, if we limited
ourselves to serial access to database state, we could easily preserve information about
dependencies using a single scalar: any transactions would observe versions with lower
scalar values, similar to classic serializable multi-version concurrency control. However, if
we wish to preserve available and coordination-free operation (and therefore concurrent

5.6. APPLYING AND MODIFYING THE RAMP PROTOCOLS 106

creation of versions), then we must admit a partial ordering of versions. To avoid fractured
reads as in RA isolation while preserving dependency information, we either need to find a
way to capture this partial order or otherwise limit the degree of availability in the system.

Full causality tracking. The former approach—tracking “cuts” in a system with partially
ordered events—is well-studied. As a first approximation, we can consider the problem of
capturing RA with dependency tracking as an instance of capturing causality in a distributed
system, with each event corresponding to a transaction commit and dependencies due to
reads (i.e., a causal memory with atomically visible, multi-register reads). In line with this
approximation, we could replace each timestamp in the RAMP algorithms with a suitable
mechanism for tracking causality; for example, instead of storing a scalar timestamp, we
could store a vector clock, with one entry per client in the system. Subsequently, clients
could maintain a vector clock containing the highest-committed writes they had seen, and,
upon reading from servers, ensure that the server commits any writes that happen-before
the client’s current vector. Thus, we can use vector clocks to track dependencies across
transactions.

The problem with the above approach is in the size of the metadata required. Primarily,
with N concurrent clients, each vector will require O(N) space, which is potentially pro-
hibitive in practice. Moreover, the distributed systems literature strongly suggests that, with
N concurrent clients, O(N) space is required to capture full causal lineage as above [75].
Thus, while using vector clocks to enforce transitive dependencies is a correct approach, it
incurs considerable overheads that we do not wish to pay and have yet to be proven viable
at scale in practical settings [35].2

The latter approach—limiting availability—is also viable, at the cost of undercutting our
scalability goals from Section 5.3.5.

Bounding writer concurrency. One simple approach—as we hinted above—is to limit the
concurrency of writing clients: we can bound the overhead of vector clocks to an arbi-
trarily small amount by limiting the amount of concurrency in the system. For example,
if we allow five clients to perform writes at a given time, we only need a vector of size
five. This requires coordination between writers (but not readers). As Section 5.5.2 demon-
strated, RAMP transaction performance degrades gracefully under write contention; under
the decreased concurrency strategy, performance would effectively hit a cliff. Latency would
increase due to queuing delays and write contention, and, for a workload like YCSB with a
fixed proportion of read to write operations, throughput would be limited. Specifically, for
a workload with p writers (p = 0.05 in our default configuration), ifW writers were permit-

2Another alternative that uses additional metadata is the strawman from Section 5.3.5, in which clients
send all of the writes in their transaction to all of the partitions responsible for at least one write in the
transaction. This uses even more metadata than the vector-based approach.

5.6. APPLYING AND MODIFYING THE RAMP PROTOCOLS 107

ted at a given time, the effective number of active YCSB clients in the system would become
W
p

. Despite these limits, this is perhaps the most viable solution we have encountered and,
moreover, does not affect read performance under read-heavy workloads. However, this
solution has considerable coordination overheads, and managing which servers are able to
perform writes (e.g., using distributed leases) requires potentially heavyweight synchroniza-
tion protocols.

Sacrificing partition independence. Another approach to improving availability is to sac-
rifice partition independence. As we discuss and evaluate in Sections 5.5.1 and 5.5.2,
it is possible to preserve transaction dependencies by electing special coordinator servers
as points of rendezvous for concurrently executing transactions. If extended to a non-
partition-independent context, the RAMP protocols begin to more closely resemble tradi-
tional multi-version concurrency control solutions, in particular, Chan and Gray’s read-only
transactions [73]. More recently, the 2PC-PCI mechanism [168] we evaluated is an elegant
means of achieving this behavior if partition independence is unimportant. Nevertheless,
as our experimental evaluation shows, sacrificing this partition independence can be costly
under some workloads.

Sacrificing causality. A final approach to limiting the overhead of dependency tracking is to
limit the number of dependencies to track. Several prior systems have used limited forms of
causality, for example, application-supplied dependency information [39,151], as a basis for
dependency tracking. In this strategy, applications inform the system about what versions
should precede a given write; in [35] (see also Section ??), we show that, for many modern
web applications, these histories can be rather small (often one item, with a power-law
distribution over sizes). In this case, we could encode the causal history in its entirety along
with each write or exploit otherwise latent information within the data such as comment
reply-to fields to mine this data automatically. This strategy breaks the current RAMP
API. However, it is the only known strategy for circumventing the O(N) upper-bound on
dependency tracking in causally consistent storage systems ensuring availability of both
readers and writers.

Experiences with system operators. While causal consistency provides a number of useful
guarantees, in practice, we perceive a lack of interest in maintaining full causal consistency;
database operators and users are anecdotally often unwilling to pay the metadata and im-
plementation costs of full causality tracking. As we have seen in Section 6.4.1, many of
these real-world operators exhibit an aversion to synchronization at scale, so maintaining
availability is paramount to either their software offerings or business operation. In fact, we
have anecdotally found coordination-free execution and partition independence to be valu-
able selling points for the RAMP algorithms presented in this work. Instead, we have found

5.7. RSIW PROOF 108

many users instead favor guarantees such as Read Your Writes (provided by the RAMP
algorithms) rather than full dependency tracking, opting for variants of explicit causality
(e.g., via foreign key constraints or explicit dependencies) or restricted, per-item causality
tracking (e.g., version vectors [95]). Despite this mild pessimism, we view further reduction
of causality overhead to be an interesting area for future work—including a more conclusive
answer to the availability-metadata trade-off surfaced by [75].

5.7 RSIW Proof

To begin, we first show that there exists a well-defined total ordering of write-only
transactions in a history that is valid under RA isolation. This will be useful in ordering
write transactions in our one-copy equivalent execution.

Lemma 2 (Well-defined Total Order on Writes). Given a history H containing read-only
and write-only transactions that is valid under RA isolation, DSG(H) does not contain any
directed cycles consisting entirely of write-dependency edges.

Proof. H is valid under RA isolation and therefore does not exhibit phenomenon G1c.
Thus, H does not contain any directed cycles consisting entirely of dependency edges.
Therefore, H does not contain any directed cycles consisting entirely of write-dependency
edges.

We will also need to place read-only transactions in our history. To do so, we show that,
under RA isolation and the RSIW property (i.e., the preconditions of Theorem 2), each
read-only transaction will only read from one write-only transaction.

Lemma 3 (Single Read Dependency). Given a history H containing read-only and write-
only transactions that obeys the RSIW property and is valid under RA isolation, each node
in DSG(H) contains at most one direct read-dependency edge.

Proof. Consider a history H containing read-only and write-only transactions that has
RSIW and is valid under RA isolation. Write-only transactions have no reads, so they
have no read-dependency edges in DSG(H). However, suppose DSG(H) contained a node
corresponding to a read-only transaction containing more than one direct read-dependency
edge; call this read-only transaction Tr. For two read-dependency edges to exist, Tr must
have read versions produced by at least two different write-only transactions; pick any two
and call them Ti and Tj, corresponding to read versions xa and yd.

If x and y are the same item, then a < d or d < a. In either case, Tr exhibits the
fractured reads phenomenon and H is not valid under RA isolation, a contradiction.

5.7. RSIW PROOF 109

Therefore, x and y must be distinct items. Because H obeys the RSIW property, Tr
must also obey the RSIW property. By the definition of the RSIW property, Tr must have
only read items written to by Ti and items also written to by Tj; this implies that Ti and
Tj each wrote to items x and y. We can label Ti’s write to y as yb and Tj’s write to x as
xc. Per Lemma 2, Ti’s writes to x and y must either both come before or both follow Tj’s
corresponding writes to x and y in the version order for each of x and y; that is, either both
a < b and c < d or both b < a and d < c.

If a < b and c < d, then Tr exhibits the fractured reads phenomenon: Tr read xa and yd
but Tj, which wrote yd also wrote xb, and a < b. If b < a and d < c, then Tr again exhibits
the fractured reads phenomenon: Tr read xa and yd but Ti, which wrote xa, also wrote yc,
and d < c. In either case, H is not valid under RA isolation, a contradiction.

Therefore, each node in DSG(H) must not contain more than one read-dependency
edge.

We now use this ordering on reads and writes to construct a total ordering on transac-
tions in a history:

Procedure 1 (Transform). Given a history H containing read-only and write-only transac-
tions that has RSIW and is valid under RA isolation, construct a total ordering O of the
transactions in H as follows:

1. Perform a topological sorting in O of committed write-only transactions in H ordered
by the write-dependency edges in DSG(H). That is, for each pair of write-only trans-
actions (T1, T2) in H that performed at least one write to the same item, place the
transaction that wrote the higher-versioned item later in O. Lemma 2 ensures such a
total ordering exists.

2. For each committed read-only transaction Tr in H, place Tr in O after the write-
only transaction Tw whose writes Tr read (i.e., after the write-only transaction that
Tr directly read-depends on) but before the next write-only transaction Tw ′ in O (or,
if no such transaction exists, at the end of O). By Lemma 3, each committed read-
only transaction read-depends on only one write-only transaction, so this ordering is
similarly well defined.

Return O.

5.7. RSIW PROOF 110

As an example, consider the following history:

T1 w(x1);w(y1) (5.9)

T2 w(x2);w(y2)

T3 r(x1); r(y1)

T4 r(y2);

History 5.9 obeys the RSIW property and is also valid under RA isolation. Applying pro-
cedure TRANSFORM to History 5.9, in the first step, we first order our write-only trans-
actions T1 and T2. Both T1 and T2 write to x and y, but T2’s writes have a later version
number than T1’s, so, according to Step 1 of TRANSFORM, we have O = T1; T2. Now, in
Step 2 of TRANSFORM, we consider the read-only transactions T3 and T4. We place T3 after
the transaction that it read from (T1) and before the next write transaction in the sequence
(T2), yielding O = T1; T3; T2. We place T4 after the transaction that it read from (T2) and,
because there is no later write-only transaction following T2 in O, place T4 at the end of O,
yielding O = T1; T3; T2; T4. In this case, we observe that, as Theorem 2 suggests, it is possible
to TRANSFORM an RSIW and RA history into a one-copy serial equivalent and that O is in
fact a one-copy serializable execution.

Now we can prove Theorem 2. We demonstrate that executing the transactions of H
in the order resulting from applying TRANSFORM to H on a single-copy database yields
an equivalent history (i.e., read values and final database state) as H. Because O is a total
order, H must be one-copy serializable.

Theorem 2. Consider history H containing read-only and write-only transactions that has
RSIW and is valid under RA isolation. We begin by applying TRANSFORM to H to produce
an ordering O.

We create a new history Ho by considering an empty one-copy database and examining
each transaction Th in O in serial order as follows: if Th is a write-only transaction, execute
a new transaction Tow that writes each version produced by Th to the one-copy database
and commits. If Th is a read-only transaction, execute a new transaction Tor that reads from
the sam items as Th and commits. Ho is the result of a serial execution of transactions over
a single logical copy of the database, Ho is one-copy serializable.

We now show that H and Ho are equivalent. First, all committed transactions and
operations in H also appear in Ho because TRANSFORM operates on all transactions in H
and all transactions and their operations (with single-copy operations substituted for multi-
version operations) appear in the total order O used to produce Ho. Second, DSG(H) and
DSG(Ho) have the same direct read dependencies. This is a straightforward consequence of

5.8. RAMP CORRECTNESS AND INDEPENDENCE 111

Step 2 of TRANSFORM: in O, each read-only transaction Tr appears immediately following
the write-only transaction Tw upon which Tr read-depends. When the corresponding read
transaction is executed against the single-copy database in Ho, the serially preceding write-
only transaction will produce the same values that the read transaction read inH. Therefore,
H and Ho are equivalent.

Because Ho is one-copy serializable and Ho is equivalent to H, H must also be one-copy
serializable.

We have opted for the above proof technique because we believe the TRANSFORM pro-
cedure provides clarity into how executions satisfying both RA isolation and the RSIW
property relate to their serializable counterparts. An alternative and elegant proof approach
leverages the work on multi-version serializability theory [53], which we sketch here. Given
a history H that exhibits RA isolation and has RSIW, we show thatMVSG(H) is acyclic. By
an argument resembling Lemma 3, the in-degree for read-only transactions in SG(H) (i.e.,
Adya’s direct read dependencies) is one. By an argument resembling Lemma 2, the edges
between write-only transactions inMVSG(H) produced by the first condition of theMVSG
construction (xi � xj in the definition of the MVSG [53, p. 152]; i.e., Adya’s write depen-
dencies) are acyclic. Therefore, any cycles in the MVSG must include at least one of the
second kind of edges in the MVSG(H) (xj � xi; i.e., Adya’s direct anti-dependencies). But,
for such a cycle to exist, a read-only transaction Tr must anti-depend on a write-only trans-
action Twi that in turn write-depends on another write-only transaction Twj upon which Tr
read-depends. Under the RSIW property, Twi and Twj will have written to at least one of
the same items, and the presence of a write-dependency cycle will indicate a fractured reads
anomaly in Tr.

5.8 RAMP Correctness and Independence

RAMP-F Correctness. To prove RAMP-F provides RA isolation, we show that the two-
round read protocol returns a transactionally atomic set of versions. To do so, we formalize
criteria for atomic (read) sets of versions in the form of companion sets. We will call the set
of versions produced by a transaction sibling versions and say that x is a sibling item to a
write yj if there exists a version xk that was written in the same transaction as yj.

Given two versions xi and yj, we say that xi is a companion version to yj if xi is a
transactional sibling of yj or x is a sibling item of yj and i > j. We say that a set of versions
V is a companion set if, for every pair (xi,yj) of versions in V where x is a sibling item
of yj, xi is a companion to yj. In Figure 5.2, the versions returned by T2’s first round of
reads ({x1,y⊥}) do not comprise a companion set because y⊥ has a lower timestamp than

5.8. RAMP CORRECTNESS AND INDEPENDENCE 112

x1’s sibling version of y (that is, x1 has sibling version y1 and but ⊥ < 1 so y⊥ has too low
of a timestamp). Subsets of companion sets are also companion sets and companion sets
also have a useful property for RA isolation:

Claim 1 (Companion sets are atomic). In the absence of G1c phenomena, companion sets
do not contain fractured reads.

Claim 1 follows from the definitions of companion sets and fractured reads.

Proof. If V is a companion set, then every version xi ∈ V is a companion to every other
version yj ∈ V where vj contains x in its sibling items. If V contained fractured reads,
V would contain two versions xi,yj such that the transaction that wrote yj also wrote a
version xk, i < k. However, in this case, xi would not be a companion to yj, a contradiction.
Therefore, V cannot contain fractured reads.

To provide RA, RAMP-F clients assemble a companion set for the requested items (in
vlatest), which we prove below:

Claim 2. RAMP-F provides Read Atomic isolation.

Proof. Each write in RAMP-F contains information regarding its siblings, which can be iden-
tified by item and timestamp. Given a set of RAMP-F versions, recording the highest times-
tamped version of each item (as recorded either in the version itself or via sibling metadata)
yields a companion set of item-timestamp pairs: if a client reads two versions xi and yj such
that x is in yj’s sibling items but i < j, then vlatest[x] will contain j and not i. Accordingly,
given the versions returned by the first round of RAMP-F reads, clients calculate a companion
set containing versions of the requested items. Given this companion set, clients check the
first-round versions against this set by timestamp and issue a second round of reads to fetch
any companions that were not returned in the first round. The resulting set of versions will
be a subset of the computed companion set and will therefore also be a companion set.
This ensures that the returned results do not contain fractured reads. RAMP-F first-round
reads access lastCommit, so each transaction corresponding to a first-round version is
committed, and, therefore, any siblings requested in the (optional) second round of reads
are also committed. Accordingly, RAMP-F never reads aborted or non-final (intermediate)
writes. Moreover, RAMP-F timestamps are assigned on a per-transaction basis, preventing
write-dependency cycles and therefore G1c. This establishes that RAMP-F provides RA.

RAMP-F Scalability and Independence. RAMP-F also provides the independence guaran-
tees from Section 5.3.5. The following invariant over lastCommit is core to RAMP-F GET

request completion:

5.8. RAMP CORRECTNESS AND INDEPENDENCE 113

Invariant 1 (Companions present). If a version xi is referenced by lastCommit (that is,
lastCommit[x] = i), then each of xi’s sibling versions are present in versions on their
respective partitions.

Invariant 1 is maintained by RAMP-F’s two-phase write protocol. lastCommit is only
updated once a transaction’s writes have been placed into versions by a first round of
PREPARE messages. Siblings will be present in versions (but not necessarily lastCommit).

Claim 3. RAMP-F is coordination-free.

Recall from Section 5.3.5 that coordination-free execution ensures that one client’s
transactions cannot cause another client’s to block and that, if a client can contact the
partition responsible for each item in its transaction, the transaction will eventually commit
(or abort of its own volition).

Proof. Clients in RAMP-F do not communicate or coordinate with one another and only
contact servers. Accordingly, to show that RAMP-F provides coordination-free execution,
it suffices to show that server-side operations always terminate. PREPARE and COMMIT

methods only access data stored on the local partition and do not block due to external
coordination or other method invocations; therefore, they complete. GET requests issued in
the first round of reads have tsreq = ⊥ and therefore will return the version corresponding
to lastCommit[k], which was placed into versions in a previously completed PREPARE

round. GET requests issued in the second round of client reads have tsreq set to the client’s
calculated vlatest[k]. vlatest[k] is a sibling of a version returned from lastCommit in the
first round, so, due to Invariant 1, the requested version will be present in versions. There-
fore, GET invocations are guaranteed access to their requested version and can return with-
out waiting. The success of RAMP-F operations does not depend on the success or failure of
other clients’ RAMP-F operations.

Claim 4. RAMP-F provides partition independence.

Proof. RAMP-F transactions do not access partitions that are unrelated to each transaction’s
specified data items and servers do not contact other servers in order to provide a safe
response for operations.

RAMP-S Correctness. RAMP-S writes and first-round reads proceed identically to RAMP-F

writes, but the metadata written and returned is different. Therefore, the proof is similar to
RAMP-F, with a slight modification for the second round of reads.

Claim 5. RAMP-S provides Read Atomic isolation.

5.9. DISCUSSION 114

Proof. To show that RAMP-S provides RA, it suffices to show that RAMP-S second-round
reads (resp) are a companion set. Given two versions xi,yj ∈ resp such that x 6= y, if x
is a sibling item of yj, then xi must be a companion to yj. If xi were not a companion to
yj, then it would imply that x is not a sibling item of yj (so we are done) or that j > i. If
j > i, then, due to Invariant 1 (which also holds for RAMP-S writes due to identical write
protocols), yj’s sibling is present in versions on the partition for x and would have been
returned by the server (line 6), a contradiction. Each second-round GET request returns
only one version, so the final set of reads does not exhibit fractured reads.

RAMP-S Scalability and Independence. RAMP-S ensures coordination-free execution and
partition independence. The proofs closely resemble those of RAMP-F: Invariant 1 ensures
that incomplete commits do not stall readers, and all server-side operations are guaranteed
to complete.

RAMP-H Correctness. The probabilistic behavior of the RAMP-H Bloom filter admits false
positives. However, given unique transaction timestamps (Section 5.4.4), requesting false
siblings by timestamp and item does not affect correctness:

Claim 6. RAMP-H provides Read Atomic isolation.

Proof. To show that RAMP-H provides Read Atomic isolation, it suffices to show that any
versions requested by RAMP-H second-round reads that would not have been requested by
RAMP-F second-round reads (call this set vfalse) do not compromise the validity of RAMP-H’s
returned companion set. Any versions in vfalse do not exist: timestamps are unique, so, for
each version xi, there are no versions xj of non-sibling items with the same timestamp as xi
(i.e., where i = j). Therefore, requesting versions in vfalse do not change the set of results
collected in the second round.

RAMP-H Scalability and Independence. RAMP-H provides coordination-free execution and
partition independence. We omit full proofs, which closely resemble those of RAMP-F. The
only significant difference from RAMP-F is that second-round GET requests may return ⊥,
but, as we showed above, these empty responses correspond to false positives in the Bloom
filter and therefore do not affect correctness.

5.9 Discussion

Given our experiences designing and evaluating the RAMP transaction protocols, we
believe there are a number of interesting extensions that merit further examination.

5.10. SUMMARY 115

First, RAMP metadata effectively encodes a limited form of transaction intent: readers
and servers are only able to repair fractured reads because the metadata encodes the remain-
der of the work required to complete the transaction. We believe it would be interesting
to generalize this concept to arbitrary program logic: for example, in a model such as lazy
transactions [106] or eventual serializability [109], with transactions expressed as stored
procedures, multiple, otherwise conflicting/coordinating clients could instead cooperate in
order to complete one anothers’ transactions in the event of a failure—without resorting to
the use of a centralized master (e.g., for pre-scheduling or validating transaction execution).
This programming model is largely incompatible with traditional interactive transaction
execution but is nevertheless exciting to consider as an extension of these protocols.

Second, and more concretely, we see several opportunities to extend RAMP to more
specialized use cases. The RAMP protocol family is currently not well-suited to large scans
and, as we have discussed, does not enforce transitive dependencies across transactions. We
view restricting the concurrency of writers (but not readers) to be a useful step forward
in this area, with predictable impact on writer performance. This strikes a middle ground
between traditional MVCC and the current RAMP protocols.

Finally, as we noted in Section 5.3.4, efficient transaction processing often focuses on
weakening semantics (e.g., weak isolation) or changing the programming model (e.g., stored
procedures as above). As our investigation of the RSW property demonstrates, there may
exist compelling combinations of the two that yield more intuitive, high-performance, or
scalable results than examining semantics or programming models in isolation. Addressing
this question is especially salient for the many users of weak isolation models in practice
today [32], as it can help understand when applications require stronger semantics and
when, in fact, weak isolation is not simply fast but is also “correct.”

5.10 Summary

This chapter described how to achieve atomically visible multi-partition transactions
without incurring the performance and availability penalties of traditional algorithms. We
first identified a new isolation level—Read Atomic isolation—that provides atomic visibility
and matches the requirements of a large class of real-world applications. We subsequently
achieved RA isolation via scalable, contention-agnostic RAMP transactions. In contrast
with techniques that use inconsistent but fast updates, RAMP transactions provide cor-
rect semantics for applications requiring secondary indexing, foreign key constraints, and
materialized view maintenance while maintaining scalability and performance. By leverag-
ing multi-versioning with a variable but small (and, in two of three algorithms, constant)
amount of metadata per write, RAMP transactions allow clients to detect and assemble

5.10. SUMMARY 116

atomic sets of versions in one to two rounds of communication with servers (depending
on the RAMP implementation). The choice of coordination-free and partition independent
algorithms allowed us to achieve near-baseline performance across a variety of workload
configurations and scale linearly to 100 servers. While RAMP transactions are not appro-
priate for all applications, the many applications for which they are appropriate will benefit
significantly.

117

Chapter 6

Coordination Avoidance for Database
Constraints

Thus far, we have considered semantics expressed in terms of isolation models and appli-
cation programming patterns such as indexing. Both of these specifications were relatively
low-level. The first relied on admissible read-write interleavings of transactions. The latter
relied on a bespoke isolation level that we introduced to exactly capture the semantics of
several existing scenarios that arise in databases and applications. In this chapter, we raise
the level of abstraction further and consider the use of constraints, or arbitrary user-defined
predicates over database state. We focus on constraints found in contemporary SQL and
Ruby on Rails applications.

As we discuss, these constraints are found in many database-backed applications to-
day. The constraints are not necessarily a full specification of program correctness yet are
frequently found in modern applications (and are typically enforced by coordination). As
candidates for study, we draw upon popular constraints found in languages like SQL as
well as a range of constraints found in open source applications, which we subsequently
analyze for invariant confluence. As before, we find that many are invariant confluent and
provide coordination-avoiding implementations of each.

6.1 Invariant Confluence of SQL Constraints

We begin our study of practical constraints by considering several features of SQL, end-
ing with abstract data types. We will apply these results to full applications in Section 6.3.

In this section, we focus on providing intuition and informal explanations of our invari-
ant confluence analysis. Interested readers can find a more formal analysis in Section 6.2.

6.1. INVARIANT CONFLUENCE OF SQL CONSTRAINTS 118

Invariant Operation invariant confluent? Proof #
Attribute Equality Any Yes 1
Attribute Inequality Any Yes 2
Uniqueness Choose specific value No 3
Uniqueness Choose some value Yes 4
AUTO_INCREMENT Insert No 5
Foreign Key Insert Yes 6
Foreign Key Delete No 7
Foreign Key Cascading Delete Yes 8
Secondary Indexing Update Yes 9
Materialized Views Update Yes 10

> Increment [Counter] Yes 11
< Increment [Counter] No 12
> Decrement [Counter] No 13
< Decrement [Counter] Yes 14
[NOT] CONTAINS Any [Set, List, Map] Yes 15, 16
SIZE= Mutation [Set, List, Map] No 17

Table 6.1: Example SQL (top) and ADT invariant confluence along with references to
formal proofs in Section 6.2.

including discussion of invariants not presented here. For convenience, we reference specific
proofs from Section 6.2 inline.

6.1.1 Invariant Confluence for SQL Relations

We begin by considering several constraints found in SQL.

Equality. As a warm-up, what if an application wants to prevent a particular value from
appearing in a database? For example, our payroll application from Section 6.4.1 might
require that every user have a last name, marking the LNAME column with a NOT NULL con-
straint. While not particularly exciting, we can apply invariant confluence analysis to inser-
tions and updates of databases with (in-)equality constraints (Claims 1, 2 in Section 6.2).
Per-record inequality invariants are invariant confluent, which we can show by contradic-
tion: assume two database states S1 and S2 are each I-T -reachable under per-record in-
equality invariant Ie but that Ie(S1 t S2) is false. Then there must be a r ∈ S1 t S2 that
violates Ie (i.e., r has the forbidden value). r must appear in S1, S2, or both. But, that
would imply that one of S1 or S2 is not I-valid under Ie, a contradiction.

Uniqueness. We can also consider common uniqueness invariants (e.g., PRIMARY KEY

and UNIQUE constraints). For example, in our payroll example, we wanted user IDs to be

6.1. INVARIANT CONFLUENCE OF SQL CONSTRAINTS 119

unique. In fact, our earlier discussion in Section 6.4.1 already provided a counterexample
showing that arbitrary insertion of users is not invariant confluent under these invariants:
{Stan:5} and {Mary:5} are both I-T -reachable states (Section 3.1) that can be created by a
sequence of insertions (starting at S0 = {}), but their merge—{Stan:5, Mary:5}—is not I-
valid. Therefore, uniqueness is not invariant confluent for inserts of unique values (Claim
3). However, reads and deletions are both invariant confluent under uniqueness invariants:
reading and removing items cannot introduce duplicates.

Can the database safely choose unique values on behalf of users (e.g., assign a new user
an ID)? In this case, we can achieve uniqueness without coordination—as long as we have
a notion of replica membership (e.g., server or replica IDs). The difference is subtle (“grant
this record this specific, unique ID” versus “grant this record some unique ID”), but, in a
system model with membership (as is practical in many contexts), is powerful. If replicas
assign unique IDs within their respective portion of the ID namespace, then merging locally
valid states will also be globally valid (Claim 4).

Foreign Keys. We can consider more complex invariants, such as foreign key constraints.
In our payroll example, each employee belongs to a department, so the application could
specify a constraint via a schema declaration to capture this relationship (e.g., EMP.D_ID

FOREIGN KEY REFERENCES DEPT.ID).

Are foreign key constraints maintainable without coordination? Again, the answer de-
pends on the actions of transactions modifying the data governed by the invariant. Inser-
tions under foreign key constraints are invariant confluent (Claim 6). To show this, we again
attempt to find two I-T -reachable states that, when merged, result in invalid state. Under
foreign key constraints, an invalid state will contain a record with a “dangling pointer”—a
record missing a corresponding record on the opposite side of the association. If we assume
there exists some invalid state S1 t S2 containing a record r with an invalid foreign key to
record f, but S1 and S2 are both valid, then r must appear in S1, S2, or both. But, since
S1 and S2 are both valid, r must have a corresponding foreign key record (f) that “disap-
peared” during merge. Merge (in the current model) does not remove versions, so this is
impossible.

From the perspective of invariant confluence analysis, foreign key constraints concern
the visibility of related updates: if individual database states maintain referential integrity,
a non-destructive merge function such as set union cannot cause tuples to “disappear” and
compromise the constraint. This also explains why models such as read committed [9]
and read atomic [9] isolation as well as causal consistency [32] are also achievable without
coordination: simply restricting the visibility of updates in a given transaction’s read set
does not require coordination between concurrent operations.

6.1. INVARIANT CONFLUENCE OF SQL CONSTRAINTS 120

Deletions and modifications under foreign key constraints are more challenging. Arbi-
trary deletion of records is unsafe: a user might be added to a department that was con-
currently deleted (Claim 7). However, performing cascading deletions (e.g., SQL DELETE

CASCADE), where the deletion of a record also deletes all matching records on the opposite
end of the association, is invariant confluent under foreign key constraints (Claim 8). We
can generalize this discussion to updates (and cascading updates).

Materialized Views. Applications often pre-compute results to speed query performance
via a materialized view [215] (e.g., UNREAD_CNT as SELECT COUNT(*) FROM emails WHERE

read_date = NULL). We can consider a class of invariants that specify that materialized
views reflect primary data; when a transaction (or merge invocation) modifies data, any
relevant materialized views should be updated as well. This requires installing updates
at the same time as the changes to the primary data are installed (a problem related to
maintaining foreign key constraints). However, given that a view only reflects primary
data, there are no “conflicts.” Thus, materialized view maintenance updates are invariant
confluent (Claim 10).

6.1.2 Invariant Confluence for SQL Data Types

So far, we have considered databases that store growing sets of immutable versions. We
have used this model to analyze several useful constraints, but, in practice, databases do not
(often) provide these semantics, leading to a variety of interesting anomalies. For example,
if we implement a user’s account balance using a “last writer wins” merge policy [205],
then performing two concurrent withdrawal transactions might result in a database state
reflecting only one transaction (a classic example of the Lost Update anomaly) [9, 32]. To
avoid variants of these anomalies, many optimistic, coordination-free database designs have
proposed the use of abstract data types (ADTs), providing merge functions for a variety of
uses such as counters, sets, and maps [81, 170, 205, 226] that ensure that all updates are
reflected in final database state. For example, a database can represent a simple counter
ADT by recording the number of times each transaction performs an increment operation
on the counter [205].

Invariant confluence analysis is also applicable to these ADTs and their associated invari-
ants. For example, a row-level “greater-than” (>) threshold invariant is invariant confluent
for counter increment and assign (←) but not decrement (Claims 11, 13), while a row-
level “less-than” (<) threshold invariant is invariant confluent for counter decrement and
assign but not increment (Claims 12, 14). This means that, in our payroll example, we
can provide coordination-free support for concurrent salary increments but not concurrent
salary decrements. ADTs (including lists, sets, and maps) can be combined with standard re-

6.1. INVARIANT CONFLUENCE OF SQL CONSTRAINTS 121

lational constraints like materialized view maintenance (e.g., the “total salary” row should
contain the sum of employee salaries in the employee table). This analysis presumes user
program explicitly use ADTs, and, as with our generic set-union merge, invariant conflu-
ence ADT analysis requires a specification of the ADT merge behavior (Section 6.2 provides
several examples).

6.1.3 SQL Discussion and Limitations

We have analyzed a number of combinations of invariants and operations (shown in
Table 6.1). These results are by no means comprehensive, but they are expressive for many
applications (Section 6.3). In this section, we discuss lessons from this classification process.

Analysis mechanisms. We have manually analyzed particular invariant and constraint com-
binations, demonstrating each to be invariant confluent or not. To study actual SQL-based
applications, we can apply these labels via simple static analysis. Specifically, given invari-
ants (e.g., captured via SQL DDL) and transactions (e.g., expressed as stored procedures),
we can examine each invariant and each operation within each transaction and identify
pairs that we have labeled as invariant confluent or non-invariant confluent. Any pairs la-
beled as invariant confluent can be marked as safe, while, for soundness (but not complete-
ness), any unrecognized operations or invariants can be flagged as potentially non-invariant
confluent. Despite its simplicity (both conceptually and in terms of implementation), this
technique—coupled with the results of Table 6.1—is sufficiently powerful to automatically
characterize the I-confluence of the applications we consider in Section 6.3 when expressed
in SQL (with support for multi-row aggregates like Invariant 8 in Table 6.2).

By growing our recognized list of invariant confluent pairs on an as-needed basis (via
manual analysis of the pair), the above technique has proven useful—due in large part
to the common re-use of invariants like foreign key constraints. However, one could use
more complex forms of program analysis. For example, one might analyze the invariant
confluence of arbitrary invariants, leaving the task of proving or disproving invariant con-
fluence to an automated model checker or SMT solver. While invariant confluence—like
monotonicity and commutativity (Chapter 7)—is undecidable for arbitrary programs, oth-
ers have recently shown this alternative approach (e.g., in commutativity analysis [80,160]
and in invariant generation for view serializable transactions [198]) to be fruitful for re-
stricted languages. We view language design and more automated analysis as an interesting
area for future work (Section 8.3).

Recency and session support. Our proposed invariants are declarative, but a class of useful
semantics—recency, or real-time guarantees on reads and writes—describe properties of op-

6.2. MORE FORMAL INVARIANT CONFLUENCE ANALYSIS OF SQL
CONSTRAINTS 122

erations (i.e., they pertain to transaction execution rather than the state(s) of the database).
For example, users often wish to read data that is up-to-date as of a given point in time
(e.g., “read latest” [83] or linearizable [118] semantics). While traditional isolation models
do not directly address these recency guarantees [9], they are often important to program-
mers. Are these models invariant confluent? We can attempt to simulate recency guarantees
in invariant confluence analysis by logging the result of all reads and any writes with a
timestamp and requiring that all logged timestamps respect their recency guarantees (thus
treating recency guarantees as invariants over recorded read/write execution traces). How-
ever, this is a somewhat pointless exercise: it is well known (and we have already discussed)
that recency guarantees are unachievable with transactional availability [32,92,118]. Thus,
if application reads face these requirements, coordination is required. Indeed, when appli-
cation ”consistency” means “recency,” systems cannot circumvent speed-of-light delays.

If users wish to “read their writes” or desire stronger “session” guarantees [189] (e.g.,
maintaining recency on a per-user or per-session basis), they must maintain affinity or
“stickiness” [32] with a given (set of) replicas. These guarantees are also expressible in
the invariant confluence model and do not require coordination between different users’ or
sessions’ transactions.

6.2 More Formal Invariant Confluence Analysis of SQL Con-
straints

In this section, we more formally demonstrate the invariant confluence of invariants
and operations discussed in Section 6.1. Our goals in this section are two-fold. First, we
have found the experience of formally proving invariant confluence to be instructive in
understanding these combinations (beyond less formal arguments made in the body text for
brevity and intuition). Second, we have found invariant confluence proofs to take on two
general structure typically take one of two forms:

• To show a set of transactions are not invariant confluent with respect to an invariant I,
we use proof by counterexample: we present two I-T -reachable states with a common
ancestor that, when merged, are not I-valid.

• To show a set of transactions are invariant confluent with respect to an invariant I,
we use proof by contradiction: we show that, if a state S is not I-valid, merging two
I-T -reachable states S1 and S2 with a common ancestor state to produce S implies
either one or both of S1 or S2 must not be I-valid.

6.2. MORE FORMAL INVARIANT CONFLUENCE ANALYSIS OF SQL
CONSTRAINTS 123

These results are not exhaustive, and there are literally infinite combinations of invari-
ants and operations to consider. Rather, the seventeen examples below serve as a demon-
stration of what can be accomplished via invariant confluence analysis.

Notably, the negative results below use fairly simple histories consisting of a single trans-
action divergence. Nevertheless, we decided to preserve the more general formulation of
invariant confluence (accounting for arbitrary I-T -reachable states) to account for more
pathological (perhaps less realistic, or, if these results are any indication, less commonly
encountered) behaviors that only arise during more complex divergence patterns.

We introduce additional formalism as necessary. To start, unless otherwise specified, we
use the set union merge operator. We denote version i of item x as xi and a write of version
xi with value v as w(xi = v). For now, we assume each version has an integer value.

Claim 7 (Writes are invariant confluent with respect to per-item equality constraints). As-
sume writes are not invariant confluent with respect to some per-item equality constraint
i = c, where i is an item and c is a constant. By definition, there must exist two I-
T -reachable states S1 and S2 with common ancestor state such that I(S1) → true and
I(S2)→ true but I(S1 tS2)→ false; therefore, there exists a version in in S1tS2 such that
in 6= c, and, under set union, in ∈ S1, in ∈ S2, or both. However, this would imply that
I(S1)→ false or I(S2)→ false (or both), a contradiction.

Claim 8 (Writes are invariant confluent with respect to per-item inequality constraints). The
proof follows almost identically to the proof of Claim 7, but for an invariant of the form
i 6= c.

Claim 9 (Writing arbitrary values is not invariant confluent with respect to multi-item
uniqueness constraints). Consider the following transactions:

T1u := w(xa = v); commit

T2u := w(xb = v); commit

and uniqueness constraint on records:

Iu(D) = {values of versions in D are unique}

Now, an empty database trivially does not violate uniqueness constraints (Iu(Ds = {}) →
true), and adding individual versions to the separate empty databases is also valid:

T1u({}) = {xa = v}, Iu({xa = v})→ true

T2u({}) = {xb = v}, Iu({xb = v})→ true

6.2. MORE FORMAL INVARIANT CONFLUENCE ANALYSIS OF SQL
CONSTRAINTS 124

However, merging these states results in invalid state:

Iu({xa = v} t {xb = v} = {xa = v, xb = v})→ false

Therefore, {T1u, T2u} is not invariant confluent under Is.

For the next proof, we consider a model as suggested in Section 6.1 where replicas are
able to generate unique (but not arbitrary (!)) IDs (in the main text, we suggested the use
of a replica ID and sequence number). In the following proof, to account for this non-
deterministic choice of unique ID, we introduce a special nonce() function and require
that, nonce() return unique values for each replica; this can be achieved by assigning each
replica a unique ID and implementing nonce by returning the ID along with a local sequence
number. That is, t is not defined for replicas on which independent invocations of nonce()
return the same value.

Claim 10 (Assigning values by nonce() is invariant confluent with respect to multi-item
uniqueness constraints). Assume that assigning values by nonce() is not invariant confluent
with respect to some multi-item uniqueness invariant:

I(D) = ∀c ∈ dom(D), {|{x ∈ D | x = c}| 6 1}

By definition, there must exist two I-T -reachable states with a common ancestor reached by
executing nonce-generating transactions (of the form Ti = [w(xi = nonce())]), S1 and S2

such that I(S1)→ true and I(S2)→ true but I(S1 t S2)→ false.

Therefore, there exist two versions ia, ib in S1 t S2 such that ia and ib (both generated
by nonce()) are equal in value. Under set union, this means ia ∈ S1 and ib ∈ S2 (ia and ib
both cannot appear in S1 or S2 since it would violate those states’ I-validity). Because replica
states grow monotonically under set merge and S1 and S2 differ, they must be different
replicas. But nonce() cannot generate the same values on different replicas, a contradiction.

Claim 11 (Writing arbitrary values are not invariant confluent with respect to sequentiality
constraints). Consider the following transactions:

T1s := w(xa = 1); commit

T2s := w(xb = 3); commit

and the sequentiality constraint on records:

Is(D) = {max(r ∈ D) −min(r ∈ D) = |D|+ 1} ∨ {|D| = 0}

Now, Is holds over the empty database (Is({}) → true), while inserting sequential new

6.2. MORE FORMAL INVARIANT CONFLUENCE ANALYSIS OF SQL
CONSTRAINTS 125

records into independent, empty replicas is also valid:

T1s({}) = {xa = 1}, Iu({xa = 1})→ true

T2s({}) = {xb = 3}, Iu({xb = 3})→ true

However, merging these states results in invalid state:

Is({xa = 1} t {xb = 3} = {xa = 1, xb = 3})→ false

Therefore, {T1s, T2s} is not invariant confluent under Is.

To discuss foreign key constraints, we need some way to refer to other records within
the database. There are a number of ways of formalizing this. Here, refer to a field f within
a given version xi as xi.f. In the following discussion, recall that invariant confluence analy-
sis is performed on fully replicated sets of data. While there is considerable implementation
complexity involved in actually performing multi-partition foreign key constraint mainte-
nance (and indexing; as in RAMP) this is not germane to our model. As a simple strawman
solution, we can defer all calculation of tombstoned records until writes have quiesced,
guaranteeing convergence. As a slightly more advanced strawman, we can calculate tomb-
stoned records according to a global watermark of writes that is advanced via background
consensus.

Claim 12 (Insertion is invariant confluent with respect to foreign key constraints). Assume
that inserting new records is not invariant confluent with respect to some foreign key con-
straint I(D) = {∀rf ∈ D such that rf.g 6= null, ∃rt ∈ D such that rf.g = rt.h} (there
exists a foreign key reference between fields g and h). By definition, there must exist two
I-T -reachable states S1 and S2 with a common ancestor reachable by executing transactions
performing insertions such that I(S1) → true and I(S2) → true but I(S1 t S2) → false;
therefore, there exists some version r1 ∈ S1 t S2 such that r1.g 6= null but @r2 ∈ S1 t S2

such that r1.g = r2.h. Under set union, r1 must appear in either S1 or S2 (or both), and,
for each set of versions in which it appears, because S1 and S2 are both I-valid, they must
contain an r3 such that r1.f = r3.h. But, under set union, r3.h should also appear in S1 tS2,
a contradiction.

For simplicity, in the following proof, we assume that deleted elements remain deleted
under merge. In practice, this can be accomplished by tombstoning records and, if required,
using counters to record the number of deletions and additions [205]. We represent a
deleted version xd by ¬xb.

6.2. MORE FORMAL INVARIANT CONFLUENCE ANALYSIS OF SQL
CONSTRAINTS 126

Claim 13 (Concurrent deletion and insertion is not invariant confluent with respect to for-
eign key constraints). Consider the following transactions:

T1f := w(xa.g = 1); commit

T2f := delete(xb); commit

and the foreign key constraint:

If(D) = {∀rf ∈ D, rf.g 6= null, ∃rt ∈ D s.t. ¬rt /∈ D and rf.g = rt.h}

Foreign key constraints hold over the initial database Si = {xb.h = 1} (Iu(Si) → true) and
on independent execution of Ta and Tb:

T1f({xb.h = 1}) = {xa.g = 1, xb.h = 1}, If({xa = 1})→ true

T2f({xb.h = 1}) = {xb.h = 1,¬xb} If({xb.h = 1,¬xb})→ true

However, merging these states results in invalid state:

If({xa.g = 1} t {xb.h = 1,¬xb})→ false

Therefore, {T1f, T2f} is not invariant confluent under If.

We denote a cascading delete of all records that reference field f with value v (v a con-
stant) as cascade(f = v).

Claim 14 (Cascading deletion and insertion are invariant confluent with respect to foreign
key constraints). Assume that cascading deletion and insertion of new records are not in-
variant confluent with respect to some foreign key constraint I(D) = {∀rf ∈ D such that
rf.g 6= null, ∃rt ∈ D such that rf.g = rt.h if cascade(h = rf.g 6= v)} (there exists a for-
eign key reference between fields g and h and the corresponding value for field h has not
been deleted-by-cascade). By definition, there must exist two I-T -reachable states S1 and
S2 with common ancestor reachable by performing insertions such that I(S1) → true and
I(S2)→ true but I(S1 t S2)→ false; therefore, there exists some version r1 ∈ S1 t S2 such
that r1.f 6= null but @r2 ∈ S1 t S2 such that r1.g = r2.h. From the proof of Claim 12, we
know that insertion is invariant confluent, so the absence of r2 must be due to some cas-
cading deletion. Under set union, r1 must appear in exactly one of S1 or S2 (if r1 appeared
in both, there would be no deletion, a contradiction since we know insertion is invariant
confluent). For the state Sj in which r1 does not appear (either S1 or S2), Sj must include
cascade(h = r1.g). But, if cascade(h = r1.g) ∈ Sj, cascade(h = r1.g) must also be in
Si t Sj, a contradiction and so Si t Sj → true, a contradiction.

6.2. MORE FORMAL INVARIANT CONFLUENCE ANALYSIS OF SQL
CONSTRAINTS 127

We define a “consistent” secondary index invariant as requiring that, when a record is
visible, its secondary index entry should also be visible. This is similar to the guarantees
provided by Read Atomic isolation [37]. For simplicity, in the following proof, we only
consider updates to a single indexed attribute attr, but the proof is easily generalizable to
multiple index entries, insertions, and deletion via tombstones. We use last-writer wins for
index entries.

Claim 15 (Updates are invariant confluent with respect to consistent secondary indexing).
Assume that updates to records are not invariant confluent with respect a secondary index
constraint on attribute attr:

I(D) = {∀rf ∈ D such that rf.attr 6= null and f is the highest version of r ∈ D, ∃ridx ∈ D
such that rf ∈ ridx.entries (all entries with non-null attr are reflected in the secondary
index entry for attr).

Represent an update to record rx as {w(rx) and, if rx.attr 6= null, also ridx.entries.add(rx),
else ridx.entries.delete(rx)}.

By definition, there must exist two I-T -reachable states S1 and S2 with common ancestors
reachable by performing insertions S1 and S2 such that I(S1)→ true and I(S2)→ true but
I(S1tS2)→ false; therefore, there exists some version r1 ∈ S1tS2 such that r1.attr 6= null
but @ridx ∈ S1 t S2 or ∃ridx ∈ S1 t S2 but r1 /∈ ridx.entries. In the former case, ridx /∈ S1

or S2, but r1 ∈ S1 or r1 ∈ S2, a contradiction. The latter case also produces a contradiction:
if r1 ∈ S1 or r1 ∈ S2, it must appear in ridx, a contradiction.

In our formalism, we can treat materialized views as functions over database state
f(D)→ c.

Claim 16 (Updates are invariant confluent with respect to materialized view maintenance).
The proof is relatively straightforward if we treat the materialized view record(s) r as having
a foreign key relationship to any records in the domain of the function (as in the proof of
Claim 14 and recompute the function on update, cascading delete, and t.

For our proofs over counter ADTs, we represent increments of a counter c by inci(c),
where i is a distinct invocation, decrements of c by deci(c), and the value of c in database
D as val(c,D) = |{j | incj(c) ∈ D}|− |{k | deck(c) ∈ D}|.

Claim 17 (Counter ADT increments are invariant confluent with respect to greater-than
constraints). Assume increments are not invariant confluent with respect to some per-counter
greater-than constraint I(D) = val(c,D) < k, where k is a constant. By definition, there
must exist two I-T -reachable states S1 and S2 with common ancestor reachable by execut-
ing write transactions such that I(S1) → true and I(S2) → true but I(S1 t S2) → false;

6.2. MORE FORMAL INVARIANT CONFLUENCE ANALYSIS OF SQL
CONSTRAINTS 128

therefore, val(c,S1tS2) 6 k. However, this implies that val(c,S1) 6 k), val(c,S2, or both,
a contradiction.

Claim 18 (Counter ADT increments are not invariant confluent with respect to less-than
constraints). Consider the following transactions:

T1i := inc1(c); commit

T2i := inc2(c); commit

and the less-than inequality constraint:

Ii(D) = {val(c,D) < 2}

Ii holds over the empty database state (Ii({})→ true) and when Ta and Tb are independently
executed:

T1i({}) = {inc1(c) = 1}, Ii({inc1(c) = 1})→ true

T2i({}) = {inc2(c)}, Ii({inc2(c)})→ true

However, merging these states results in invalid state:

Iu({inc1(c)} t {inc2(c)})→ false

Therefore, {T1i, T2i} is not invariant confluent under Iu.

Claim 19 (Counter ADT decrements are not invariant confluent with respect to greater-than
constraints). The proof is similar to the proof of Claim 20; substitute dec for inc and choose
Ii(D) = {val(c,D) > −2}.

Claim 20 (Counter ADT decrements are invariant confluent with respect to less-than con-
straints). Unsurprisingly, the proof is almost identical to the proof of Claim 17, but with <
instead of > and dec instead of inc.

We provide proofs for ADT lists; the remainder are remarkably similar. Our implemen-
tation of ADT lists in these proofs uses a lexicographic sorting of values to determine list
order. Transactions add a version v to list l via add(v, l) and remove it via del(v, l) (where
an item is considered contained in the list if it has been added more times than it has been
deleted) and access the length of l in database D via size(l) = |{k | add(k, l) ∈ D}| − |{m |

del(m, l) ∈ D}| (note that size of a non-existent list is zero).

Claim 21 (Modifying a list ADT is invariant confluent with respect to containment con-
straints). Assume ADT list modifications are not invariant confluent with respect to some

6.2. MORE FORMAL INVARIANT CONFLUENCE ANALYSIS OF SQL
CONSTRAINTS 129

equality constraint I(D) = {add(k, l) ∈ D ∧ del(k, l) /∈ D} for some constant k. By defini-
tion, there must exist two I-T -reachable states S1 and S2 with common ancestor reachable
by list modifications such that I(S1) → true and I(S2) → true but I(S1 t S2) → false;
therefore, add(k, l) /∈ {S1 t S2} or del(k, l) ∈ {S1 t S2}. In the former case, neither S1 nor S2

contain add(k, l) a contradiction. In the latter case, if either of S1 or S2 contains del(k, l),
it will be invalid, a contradiction.

Claim 22 (Modifying a list ADT is invariant confluent with respect to non-containment
constraints). Assume ADT list modifications are not invariant confluent with respect to
some non-containment constraint I(D) = {add(k, l) /∈ D∧del(k, l) ∈ D} for some constant
k. By definition, there must exist two I-T -reachable states S1 and S2 with common ancestor
reachable via list modifications such that I(S1) → true and I(S2) → true but I(S1 t S2) →
false; therefore, add(k, l) ∈ {S1 t S2} and del(k, l) /∈ {S1 t S2}. But this would imply that
add(k, l) ∈ S1, add(k, l) ∈ S2, or both (while del(k, l) is in neither), a contradiction.

Claim 23 (Arbitrary modifications to a list ADT are not invariant confluent with respect to
equality constraints on the size of the list). Consider the following transactions:

T1l := del(xi, l); add(xa, l); commit

T2l := del(xi, l); add(xb, l); commit

and the list size invariant:
Il(D) = {size(l) = 1}

Now, the size invariant holds on a list of size one (Iu({add(xi, l)}) → true) and on inde-
pendent state modifications:

T1l({add(xi, l)}) = {add(xi, l), del(xi, l), add(xa, l)}

T2l({add(xi, l)}) = {add(xi, l), del(xi, l), add(xb, 1)}

However, merging these states result in an invalid state:

Il({add(xi, l), del(xi, l), add(xa, l)}

t {add(xi, l), del(xi, l), add(xb, l)})→ false

Therefore, {T1l, T2l} is not invariant confluent under Iu.

Note that, in our above list ADT, modifying the list is invariant confluent with respect
to constraints on the head and tail of the list but not intermediate elements of the list! That
is, the head (resp. tail) of the merged list will be the head (tail) of one of the un-merged
lists. However, the second element may come from either of the two lists.

6.3. EMPIRICAL IMPACT: SQL-BASED CONSTRAINTS 130

6.3 Empirical Impact: SQL-Based Constraints

When achievable, coordination-free execution enables scalability limited to that of avail-
able hardware. This is powerful: a invariant confluent application can scale out without
sacrificing correctness, latency, or availability. In Section 6.1, we saw combinations of in-
variants and transactions that were invariant confluent and others that were not. In this
section, we apply these combinations to the workloads of the OLTP-Bench suite [98], with
a focus on the TPC-C benchmark. Our focus is on the coordination required in order to
correctly execute each and the resulting, coordination-related performance costs.

6.3.1 TPC-C Invariants and Execution

The TPC-C benchmark is the gold standard for database concurrency control [98] both
in research and in industry [219], and in recent years has been used as a yardstick for
distributed database concurrency control performance [142,217,221]. How much coordi-
nation does TPC-C actually require a compliant execution?

The TPC-C workload is designed to be representative of a wholesale supplier’s transac-
tion processing requirements. The workload has a number of application-level correctness
criteria that represent basic business needs (e.g., order IDs must be unique) as formulated
by the TPC-C Council and which must be maintained in a compliant run. We can inter-
pret these well-defined “consistency criteria” as invariants and subsequently use invariant
confluence analysis to determine which transactions require coordination and which do not.

Table 6.2 summarizes the twelve invariants found in TPC-C as well as their invariant
confluence analysis results as determined by Table 6.1. We classify the invariants into three
broad categories: materialized view maintenance, foreign key constraint maintenance, and
unique ID assignment. As we discussed in Section 6.1, the first two categories are invariant
confluent (and therefore maintainable without coordination) because they only regulate the
visibility of updates to multiple records. Because these (10 of 12) invariants are invariant
confluent under the workload transactions, there exists some execution strategy that does
not use coordination. However, simply because these invariants are invariant confluent does
not mean that all execution strategies will scale well: for example, using locking would not
be coordination-free.

As one coordination-free execution strategy (which we implement in Section 6.3.2) that
respects the foreign key and materialized view invariants, we can use RAMP transactions
from Chapter 5, which provide atomically visible transactional updates across servers with-
out relying on coordination for correctness. As a reminder, RAMP transactions employ
limited multi-versioning and metadata to ensure that readers and writers can always pro-

6.3. EMPIRICAL IMPACT: SQL-BASED CONSTRAINTS 131

Informal Invariant Description Type Txns I-C
1 YTD wh sales = sum(YTD district sales) MV P Yes
2 Per-district order IDs are sequential SID+FK N, D No
3 New order IDs are sequentially assigned SID N, D No
4 Per-district, item order count = roll-up MV N Yes
5 Order carrier is set iff order is pending FK N, D Yes
6 Per-order item count = line item roll-up MV N Yes
7 Delivery date set iff carrier ID set FK D Yes
8 YTD wh = sum(historical wh) MV D Yes
9 YTD district = sum(historical district) MV P Yes
10 Customer balance matches expenditures MV P, D Yes
11 Orders reference New-Orders table FK N Yes
12 Per-customer balance = cust. expenditures MV P, D Yes

Table 6.2: TPC-C Declared “Consistency Conditions” (3.3.2.x) and invariant confluence
analysis results with respect to the workload transactions (Invariant type: MV: materialized
view, SID: sequential ID assignment, FK: foreign key; Transactions: N: New-Order, P:
Payment, D: Delivery).

ceed concurrently: any client whose reads overlap with another client’s writes to the same
item(s) can use metadata stored in the items to fetch any “missing” writes from the respec-
tive servers. A standard RAMP transaction over data items suffices to enforce foreign key
constraints, while a RAMP transaction over commutative counters as described in [37] is
sufficient to enforce the TPC-C materialized view constraints.

Two of TPC-C’s invariants are not invariant confluent with respect to the workload
transactions and therefore do require coordination. On a per-district basis, order IDs should
be assigned sequentially (both uniquely and sequentially, in the New-Order transaction)
and orders should be processed sequentially (in the Delivery transaction). If the database
is partitioned by warehouse (as is standard [142, 217, 221]), the former is a distributed
transaction (by default, 10% of New-Order transactions span multiple warehouses). The
benchmark specification allows the latter to be run asynchronously and in batch mode
on a per-warehouse (non-distributed) basis, so we, like others [217, 221], focus on New-
Order. Including additional transactions like the read-only Order-Status in the workload
mix would increase performance due to the transactions’ lack of distributed coordination
and (often considerably) smaller read/write footprints.

Avoiding New-Order Coordination. New-Order is not invariant confluent with respect
to the TPC-C invariants, so we can always fall back to using serializable isolation. How-
ever, the per-district ID assignment records (10 per warehouse) would become a point of
contention, limiting our throughput to effectively 100W

RTT
for a W-warehouse TPC-C bench-

6.3. EMPIRICAL IMPACT: SQL-BASED CONSTRAINTS 132

mark with the expected 10% distributed transactions. Others [221] (including us, in prior
work [32]) have suggested disregarding consistency criteria 3.3.2.3 and 3.3.2.4, instead opt-
ing for unique but non-sequential ID assignment: this allows inconsistency and violates the
benchmark compliance criteria.

During a compliant run, New-Order transactions must coordinate. However, as dis-
cussed above, only the ID assignment operation is non-invariant confluent; the remainder
of the operations in the transaction can execute coordination-free. With some effort, we
can avoid distributed coordination. A naïve implementation might grab a lock on the ap-
propriate district’s “next ID” record, perform (possibly remote) remaining reads and writes,
then release the lock at commit time. Instead, as a more efficient solution, New-Order can
defer ID assignment until commit time by introducing a layer of indirection. New-Order
transactions can generate a temporary, unique, but non-sequential ID (tmpID) and perform
updates using this ID using a RAMP transaction (which, in turn, handles the foreign key
constraints) [37]. Immediately prior to transaction commit, the New-Order transaction can
assign a “real” ID by atomically incrementing the current district’s local“next ID” record
(yielding realID) and recording the [tmpID, realID] mapping in a special ID lookup table.
Any read requests for the ID column of the Order, New-Order, or Order-Line tables can be
safely satisfied (transparently to the end user) by joining with the ID lookup table on tmpID.
In effect, the New-Order ID assignment can use a nested atomic transaction [170] upon
commit, and all coordination between any two transactions is confined to a single server.

6.3.2 Evaluating TPC-C New-Order

We subsequently implemented the above execution strategy in a distributed database
prototype to quantify the overheads associated with coordination in TPC-C New-Order.
Most notably, the coordination-avoiding query plan scales linearly to over 12.7M trans-
actions per second on 200 servers while substantially outperforming distributed two-phase
locking. Our goal here is to demonstrate—beyond the microbenchmarks of Section 6.4.1—
that safe but judicious use of coordination can have meaningful positive effect on perfor-
mance.

Implementation and Deployment. We employ a multi-versioned storage manager, with
RAMP-Fast transactions for snapshot reads and atomically visible writes/“merge” (provid-
ing a variant of regular register semantics, with writes visible to later transactions after
commit) [37] and implement the nested atomic transaction for ID assignment as a sub-
procedure inside RAMP-Fast’s server-side commit procedure (using spinlocks). We imple-
ment transactions as stored procedures and fulfill the TPC-C “Isolation Requirements” by
using read and write buffering as proposed in [32]. As is common [141, 142, 195, 217],

6.3. EMPIRICAL IMPACT: SQL-BASED CONSTRAINTS 133

Coordination-Avoiding Serializable (2PL)

1 4 16 64 256
Number of Clients

0

40K

80K

120K

160K

T
hr

ou
gh

pu
t (

tx
ns

/s
)

8 16 32 48 64
Number of Warehouses

40K

100K

600K

T
hr

ou
gh

pu
t (

tx
ns

/s
)

0 25 50 75 100
Proportion Distributed Transactions (%)

0

20

40

60

80

100

 N

or
m

al
iz

ed
T

hr
ou

gh
pu

t (
%

)

Figure 6.1: TPC-C New-Order throughput across eight servers.

6.3. EMPIRICAL IMPACT: SQL-BASED CONSTRAINTS 134

we disregard per-warehouse client limits and “think time” to increase load per warehouse.
In all, our base prototype architecture is similar to that of [37]: a JVM-based partitioned,
main-memory, mastered database.

For an apples-to-apples comparison with a coordination-intensive technique within the
same system, we also implemented textbook two-phase locking (2PL) [53], which provides
serializability but also requires distributed coordination. We totally order lock requests
across servers to avoid deadlock, batching lock requests to each server and piggybacking
read and write requests on lock request RPC. As a validation of our implementation, our
2PL prototype achieves per-warehouse (and sometimes aggregate) throughput similar to
(and often in excess of) several recent serializable database implementations (of both 2PL
and other approaches) [141,142,195,217].

By default, we deploy our prototype on eight EC2 cr1.8xlarge instances (32 cores
comprising 88 Amazon Elastic Compute units, each with 244GB RAM) in the Amazon
EC2 us-west-2 region with non-co-located clients and one warehouse per server (recall
there are 10 “hot” district ID records per warehouse) and report the average of three 120
second runs.

Basic behavior. Figure 6.1 shows performance across a variety of configurations, which
we detail below. Overall, the coordination-avoiding query plan far outperforms the serial-
izable execution. The coordination-avoiding query plan performs some coordination, but,
because coordination points are not distributed (unlike 2PL), physical resources (and not
coordination) are the bottleneck.

Varying load. As we increase the number of clients, the coordination-avoiding query
plan throughput increases linearly, while 2PL throughput increases to 40K transactions per
second, then levels off. As in our microbenchmarks in Section 2.2.2, the former utilizes
available hardware resources (bottlenecking on CPU cycles at 640K transactions per sec-
ond), while the latter bottlenecks on logical contention.

Physical resource consumption. To understand the overheads of each component in the
coordination-avoiding query plan, we used JVM profiling tools to sample thread execution
while running at peak throughput, attributing time spent in functions to relevant modules
within the database implementation (where possible):

6.3. EMPIRICAL IMPACT: SQL-BASED CONSTRAINTS 135

Code Path Cycles
Storage Manager (Insert, Update, Read) 45.3%
Stored Procedure Execution 14.4%
RPC and Networking 13.2%
Serialization 12.6%
ID Assignment Synchronization (spinlock contention) 0.19%
Other 14.3%

The coordination-avoiding prototype spends a large portion of execution in the stor-
age manager, performing B-tree modifications and lookups and result set creation, and in
RPC/serialization. In contrast to 2PL, the prototype spends less than 0.2% of time coordi-
nating, in the form of waiting for locks in the New-Order ID assignment; the (single-site)
assignment is fast (a linearizable integer increment and store, followed by a write and fence
instruction on the spinlock), so this should not be surprising. We observed large throughput
penalties due to garbage collection (GC) overheads (up to 40%)—an unfortunate cost of
our highly compact (several thousand lines of Scala), JVM-based implementation. However,
even in this current prototype, physical resources are the bottleneck—not coordination.

Varying contention. We subsequently varied the number of “hot,” or contended items
by increasing the number of warehouses on each server. Unsurprisingly, 2PL benefits from
a decreased contention, rising to over 87K transactions per second with 64 warehouses.
In contrast, our coordination-avoiding implementation is largely unaffected (and, at 64
warehouses, is even negatively impacted by increased GC pressure). The coordination-
avoiding query plan is effectively agnostic to read/write contention.

Varying distribution. We also varied the percentage of distributed transactions. The
coordination-avoiding query plan incurred a 29% overhead moving from no distributed
transactions to all distributed transactions due to increased serialization overheads and less
efficient batching of RPCs. However, the 2PL implementation decreased in throughput
by over 90% (in line with prior results [195, 217], albeit exaggerated here due to higher
contention) as more requests stalled due to coordination with remote servers.

Scaling out. Finally, we examined our prototype’s scalability, again deploying one ware-
house per server. As Figure 6.2 demonstrates, our prototype scales linearly, to over 12.74
million transactions per second on 200 servers (in light of our earlier results, and, for eco-
nomic reasons, we do not run 2PL at this scale). Per-server throughput is largely constant af-
ter 100 servers, at which point our deployment spanned all three us-west-2 datacenters and
experienced slightly degraded per-server performance. While we make use of application
semantics, we are unaware of any other compliant multi-server TPC-C implementation that
has achieved greater than 500K New-Order transactions per second [141,142,195,217].

6.3. EMPIRICAL IMPACT: SQL-BASED CONSTRAINTS 136

0 50 100 150 200

2M
4M
6M
8M

10M
12M
14M

T
ot

al
 T

hr
ou

gh
pu

t (
tx

n/
s)

0 50 100 150 200
Number of Servers

0

20K

40K

60K

80K

T
hr

ou
gh

pu
t (

tx
n/

s/
se

rv
er

)

Figure 6.2: Coordination-avoiding New-Order scalability.

Summary. We present these quantitative results as a proof of concept that executing
even challenging workloads like TPC-C that contain complex integrity constraints are not
necessarily at odds with scalability if implemented in a coordination-avoiding manner.
Distributed coordination need not be a bottleneck for all applications, even if conflict
serializable execution indicates otherwise. Coordination avoidance ensures that physical
resources—and not logical contention—are the system bottleneck whenever possible.

6.3.3 Analyzing Additional Applications

These results begin to quantify the effects of coordination-avoiding concurrency control.
If considering application-level invariants, databases only have to pay the price of coordi-
nation when necessary. We were surprised that the “current industry standard for evalu-
ating the performance of OLTP systems” [98] was so amenable to coordination-avoiding
execution—at least for compliant execution as defined by the official TPC-C specification.

For greater variety, we also studied the workloads of the recently assembled OLTP-Bench
suite [98], performing a similar analysis to that of Section 6.3.1. We found (and confirmed
with an author of [98]) that for nine of fourteen remaining (non-TPC-C) OLTP-Bench ap-
plications, the workload transactions did not involve integrity constraints (e.g., did not

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 137

modify primary key columns), one (CH-benCHmark) matched TPC-C, and two specifications
implied (but did not explicitly state) a requirement for unique ID assignment (AuctionMark’s
new-purchase order completion, SEATS’s NewReservation seat booking; achievable like
TPC-C order IDs). The remaining two benchmarks, sibench and smallbank were specifi-
cally designed as research benchmarks for serializable isolation. Finally, the three “consis-
tency conditions” required by the newer TPC-E benchmark are a proper subset of the twelve
conditions from TPC-C considered here (and are all materialized counters). It is possible
(even likely) that these benchmarks are underspecified, but according to official specifica-
tions, TPC-C contains the most coordination-intensive invariants among all but two of the
OLTP-Bench workloads.

Anecdotally, our conversations and experiences with real-world application program-
mers and database developers have not identified invariants that are radically different than
those we have studied here. A simple thought experiment identifying the invariants required
for a social networking site yields a number of invariants but none that are particularly
exotic (e.g., username uniqueness, foreign key constraints between updates, privacy set-
tings [37,83]). Nonetheless, we examine additional invariants from real-world applications
in the remainder of this chapter. The results presented in this section hint at what is possi-
ble with coordination-avoidance as well as the costs of coordination if applications are not
invariant confluent.

6.4 Constraints from Open Source Applications

In the remainder of this chapter, we examine constraints as found in modern, open
source web applications. The rise of “Web 2.0” Internet applications delivering dynamic,
highly interactive user experiences has been accompanied by a new generation of program-
ming frameworks [218]. These frameworks simplify common tasks such as content tem-
plating and presentation, request handling, and, notably, data storage, allowing developers
to focus on “agile” development of their applications. This trend embodies the most recent
realization of the larger vision of object-relational mapping (ORM) systems [70], albeit at
a unprecedented scale of deployment and programmer adoption.

As a lens for understanding issues of data integrity in modern ORM systems, we study
Ruby on Rails (or, simply, “Rails”) [117,199], a central player among modern frameworks
powering sites including (at one point) Twitter [82], Airbnb [15], GitHub [191], Hulu [72],
Shopify [101], Groupon [177], SoundCloud [69], Twitch [196], Goodreads [1], and Zen-
desk [229]. From the perspective of database systems research, Rails is interesting for at
least two reasons. First, it continues to be a popular means of developing responsive web
application front-end and business logic, with an active open source community and user

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 138

base. Rails recently celebrated its tenth anniversary and enjoys considerable commercial
interest, both in terms of deployment and the availability of hosted “cloud” environments
such as Heroku. Thus, Rails programmers represent a large class of consumers of database
technology. Second, and perhaps more importantly, Rails is “opinionated software” [102].
That is, Rails embodies the strong personal convictions of its developer community, and, in
particular, David Heinemeier Hansson (known as DHH), its creator. Rails is particularly
opinionated towards the database systems that it tasks with data storage. To quote DHH:

“I don’t want my database to be clever! . . . I consider stored procedures and
constraints vile and reckless destroyers of coherence. No, Mr. Database, you
can not have my business logic. Your procedural ambitions will bear no fruit
and you’ll have to pry that logic from my dead, cold object-oriented hands . . . I
want a single layer of cleverness: My domain model.” [130]

Thus, in several regards, this wildly successful software framework bears an actively an-
tagonistic relationship to database management systems, echoing a familiar refrain of the
“NoSQL” movement: get the database out of the way and let the application do the work.

In this paper, we examine the implications of this impedance mismatch between databases
and modern ORM frameworks in the context of application integrity. Rails largely ig-
nores decades of work on native database concurrency control solutions by providing a set
of primitives for handling application integrity that are enforced at the application tier—
building, from the underlying database system’s perspective, a feral concurrency control
system. Core to feral concurrency control mechanisms is the use of data invariants, as we
have studied in this chapter in the context of SQL. We examine the design and use of these
feral mechanisms and evaluate their effectiveness in practice by analyzing them and exper-
imentally quantifying data integrity violations in practice. Our goal is to understand how
this growing class of applications currently interacts with database systems and how we, as
a database systems community, can positively engage with these criticisms to better serve
the needs of these developers.

We begin by surveying the state of Rails’ application-tier concurrency control primi-
tives and examining their use in 67 open source applications representing a variety of use
cases from e-Commerce to Customer Relationship Management and social networking.
We find that, these applications overwhelmingly use Rails’ built-in support for declarative
invariants—validations and associations—to protect data integrity—instead of application-
defined transactions, which are used more than 37 times less frequently. Across the survey,
we find over 9950 uses of application-level validations designed to ensure correctness criteria
including referential integrity, uniqueness, and adherence to common data formats.

Given this corpus, we subsequently ask: are these feral invariants correctly enforced?
Do they work in practice? Rails may execute validation checks in parallel, so we study the

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 139

potential for data corruption due to races if validation and update activity does not run
within a serializable transaction in the database. This is a real concern, as many DBMS
platforms use non-serializable isolation by default and in many cases (despite labeling oth-
erwise) do not provide serializable isolation as an option at all. Accordingly, we apply
invariant confluence analysis and show that, in fact, up to 86.9% of Rails validation usage
by volume is actually invariant confluent and therefore safe under concurrent execution.
However, the remainder—which include uniqueness violations under insertion and foreign
key constraint violations under deletion—are not. Therefore, we quantify the impact of con-
currency on data corruption for Rails uniqueness and foreign key constraints under both
worst-case analysis and via actual Rails deployment. We demonstrate that, for pathological
workloads, validations reduce the severity of data corruption by orders of magnitude but
nevertheless still permit serious integrity violations.

Given these results, we return to our goal of improving the underlying data management
systems that power these applications and present recommendations for the database re-
search community. We expand our study to survey several additional web frameworks and
demonstrate that many also provide a notion of feral validations, suggesting an industry-
wide trend. While the success of Rails and its ilk—despite (or perhaps due to) their aversion
to database technology—are firm evidence of the continued impedance mismatch between
object-oriented programming and the relational model, we see considerable opportunity in
improving database systems to better serve these communities—via more programmer- and
ORM-friendly interfaces that ensure correctness while minimizing impacts on performance
and portability.

6.4.1 Background and Context

As a primary focus of our study, we investigate the operational model, database use, and
application primitives provided in Rails. In this section, we provide a overview of the Rails
programming model and describe standard Rails deployment architectures.

Rails Tenets and MVC

Rails was developed in order to maximize developer productivity. This focus is captured
by two core architectural principles [199]. First, Rails adopts a “Don’t Repeat Yourself”
(DRY) philosophy: “every piece of knowledge should be expressed in just one place” in the
code. Data modeling and schema descriptions are relegated to one portion of the system,
while presentation and business logic are relegated to two others. Rails attempts to min-
imize the amount of boilerplate code required to achieve this functionality. Second, Rails

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 140

adopts a philosophy of “Convention over Configuration,” aiming for sensible defaults and
allowing easy deployment without many—if any—modifications to configuration.

A natural corollary to the above principles is that Rails encourages an idiomatic style of
programming. The Rails framework authors claim that “somehow, [this style] just seems
right” for quickly building responsive web applications [199]. The framework’s success
hints that its idioms are, in fact, natural to web developers.

More concretely, Rails divides application code into a three-component architecture
called Model-View-Controller [114,147]:

• The Model acts as a basic ORM and is responsible for representing and storing busi-
ness objects, including schemas, querying, and persistence functionality. For example,
in a banking application, an account’s state could be represented by a model with a
numeric owner ID field and a numeric balance field.

• The View acts as a presentation layer for application objects, including rendering
into browser-ingestible HTML and/or other formats such as JSON. In our banking
application, the View would be responsible for rendering the page displaying a user’s
account balance.

• The Controller encapsulates the remainder of the application’s business logic, includ-
ing actual generation of queries and transformations on the Active Record models.
In our banking application, we would write logic for orchestrating withdrawal and
deposit operations within the Controller.

Actually building a Rails application is a matter of instantiating a collection of models
and writing appropriate controller and presentation logic for each.

As we are concerned with how Rails utilizes database back-ends, we largely focus on
how Rails applications interact with the Model layer. Rails natively supports a Model im-
plementation called Active Record. Rails’s Active Record module is an implementation
of the Active Record pattern originally proposed by Martin Fowler, a prominent software
design consultant [113]. Per Fowler, an Active Record is “an object that wraps a row in a
database or view, encapsulates the database access, and adds domain logic on that data”
(further references to Active Record will correspond to Rails’s implementation). The first
two tasks—persistence and database encapsulation—fit squarely in the realm of standard
ORM design, and Rails adopts Fowler’s recommendation of a one-to-one correlation be-
tween object fields and database columns (thus, each declared Active Record class is stored
in a separate table in the database). The third component, domain logic, is more compli-
cated. Each Rails model may contain a number of attributes (and must include a special

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 141

primary-key-backed id field) as well as associated logic including data validation, associ-
ations, and other constraints. Fowler suggests that “domain logic that isn’t too complex”
is well-suited for encapsulation in an Active Record class. We will discuss these in greater
depth in the next section.

Databases and Deployment

This otherwise benign separation of data and logic becomes interesting when we con-
sider how Rails servers process concurrent requests. In this section, we describe how, in
standard Rails deployments, application logic may be executed concurrently and without
synchronization within separate threads or processes.

In Rails, the database is—at least for basic usages—simply a place to store model state
and is otherwise divorced from the application logic. All application code is run within the
Ruby virtual machine (VM), and Active Record makes appropriate calls to the database
in order to materialize collections of models in the VM memory as needed (as well as to
persist model state). However, from the database’s perspective (and per DHH’s passionate
declaration in Section 6.4), logic remains in the application layer. Active Record natively
provides support for PostgreSQL, MySQL, and SQLite, with extensions for databases in-
cluding Oracle and is otherwise agnostic to database choice.

Rails deployments typically resemble traditional multi-tier web architectures [16] and
consist of an HTTP server such as Apache or Nginx that acts as a proxy for a pool of Ruby
VMs running the Rails application stack. Depending on the Ruby VM and Rails implemen-
tation, the Rails application may or may not be multi-threaded.1 Thus, when an end-user
makes a HTTP request on a Rails-powered web site, the request is first accepted by a web
server and passed to a Rails worker process (or thread within the process). Based on the
HTTP headers and destination, Rails subsequently determines the appropriate Controller
logic and runs it, including any database calls via Active Record, and renders a response via
the View, which is returned to the HTTP server.

Thus, in a Rails application, the only coordination between individual application re-
quests occurs within the database system. Controller execution—whether in separate threads
or across Ruby VMs (which may be active on different physical servers)—is entirely inde-

1Ruby was not traditionally designed for highly concurrent operations: its standard reference VM—Ruby
MRI—contains (like Python’s CPython) a “Global VM Lock” that prevents multiple OS threads from execut-
ing at a given time. While alternative VM implementations provide more concurrent behavior, until Rails 2.2
(released in November 2008), Rails embraced this behavior and was unable to process more than one request
at a time (due to state shared state including database connections and logging state) [184]. In practice today,
the choice of multi-process, multi-threaded, or multi-process and multi-threaded deployment depends on the
actual application server architecture. For example, three popular servers—Phusion Passenger, Puma, and
Unicorn —each provide a different configuration.

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 142

pendent, save for the rendezvous of queries and modifications within the database tier, as
triggered by Active Record operations.

The independent execution of concurrent business logic should give serious pause to
disciples of transaction processing systems. Is this execution strategy actually safe? Thus
far, we have yet to discuss any mechanisms for maintaining correct application data, such
as the use of transactions. In fact, as we will discuss in the next section, Rails has, over
its lifetime, introduced several mechanisms for maintaining consistency of application data.
In keeping with Rails’ focus on maintaining application logic within Rails (and not within
the database), this has led to several different proposals. In the remainder of this paper, we
examine their use and whether, in fact, they correctly maintain application data.

6.4.2 Feral Mechanisms in Rails

As we discussed in Section 6.4.1, Rails services user requests independently, with the
database acting as a point of rendezvous for concurrent operations. Given Rails’s design
goals of maintaining application logic at the user level, this appears—on its face—a some-
what cavalier proposition with respect to application integrity. In response, Rails has de-
veloped a range of concurrency control strategies, two of which operate external to the
database, at the application level, which we term feral concurrency control mechanisms.

In this section, we outline four major mechanisms for guarding against integrity viola-
tions under concurrent execution in Rails. We subsequently begin our study of 67 open
source applications to determine which of these mechanisms are used in practice. In the fol-
lowing section, we will determine which are sufficient to maintain correct data—and when
they are not.

Rails Concurrency Control Mechanisms

Rails contains four main mechanisms for concurrency control.

1. Rails provides support for transactions. By wrapping a sequence of operations within
a special transaction block, Rails operations will execute transactionally, backed by
an actual database transaction. The database transaction either runs at the database’s
configured default isolation level or, as of Rails 4.0.0, can be configured on a per-
transaction basis [158].

2. Rails provides support for both optimistic and pessimistic per-record locking. Appli-
cations invoke pessimistic locks on an Active Record object by calling its lock method,

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 143

which invokes a SELECT FOR UPDATE statement in the database. Optimistic lock-
ing is invoked by declaring a special lock_version field in an Active Record model.
When a Rails process performs an update to an optimistically locked model, Ac-
tive Record uses a transaction to atomically check whether the corresponding record’s
lock_version field has changed since the process last read the object. If the record has
not changed, Rails transactionally increments lock_version and updates the database
record; if the record has changed, the update fails.

3. Rails provides support for application-level validations. Each Active Record model
has a set of zero or more validations, or boolean-valued functions, and a model in-
stance many only be saved to the database if all of its declared validations return true.
These validations ensure, for example, that particular fields within a record are not
null or are unique within the database. Rails provides a number of built-in valida-
tions but also allows arbitrary user-defined validations (we discuss actual validations
further in subsequent sections). The framework runs each declared validation sequen-
tially and, if all succeed, the model state is updated in the database; this happens
within a database-backed transaction.2 The validations supported by Rails today in-
clude ones that are natively supported by many commercial databases today, as well
as others.

4. Rails provides support for application-level associations. As the name suggests, “an
association is a connection between two Active Record models,” effectively acting
like a foreign key in an RDBMS. Associations can be declared on one or both sides
of a one-to-one or one-to-many relationship, including transitive dependencies (via a
:through annotation). Declaring an association (e.g., :belongs_to dept) produces a
special field for the associated record ID within the model (e.g., dept_id). Coupling
an association with an appropriate validation (e.g., :presence) ensures that the asso-
ciation is indeed valid (and is, via the validation, backed by a database transaction).
Until the release of Rails 4.2 in December 2014, Rails did not provide native support
for database-backed foreign key constraints. In Rails 4.2, foreign keys are supported
via manual schema annotations declared separately from each model; declaring an
association does not declare a corresponding foreign key constraint and vice-versa.

Overall, these four mechanisms provide a range of options for developers. The first
is squarely in the realm of traditional concurrency control. The second is, in effect, a
coarse-grained user-level implementation of single-record transactions via database-level

2The practice of wrapping validations in a transaction dates to the earliest public Rails commit (albeit, in
2004, transactions were only supported via a per-Ruby VM global lock [129]). However, as late as 2010,
updates were only partially protected by transactions [208].

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 144

“compare-and-swap” primitives (implemented via SELECT FOR UPDATE). However, the latter
two—validations and associations—operate, in effect, at the application level. Although
some validations like uniqueness validations have analogs in an RDBMS, the semantics of
these validations are entirely contained within the Rails code. In effect, from the database’s
perspective, these validations exist external to the system and are feral concurrency control
mechanisms.

Rails’s feral mechanisms—validations and associations—are a prominent feature of the
Active Record model. In contrast, neither transactions nor locks are actually discussed
in the official “Rails Guides,” and, generally, are not promoted as a means of ensuring
data integrity. Instead, the Rails documentation [6] prefers validations as they are “are
database agnostic, cannot be bypassed by end users, and are convenient to test and main-
tain.” Moreover, the Rails documentation opines that “database constraints and/or stored
procedures make the validation mechanisms database-dependent and can make testing and
maintenance more difficult.” As we will show shortly, these feral mechanisms accordingly
dominate in terms of developer popularity in real applications.

Adoption in Practice

To understand exactly how users interact with these concurrency control mechanisms
and determine which deserved more study, we examined their usage in a portfolio of pub-
licly available open source applications. We find that validations and associations are over-
whelmingly the most popular forms of concurrency control.

Application corpus. We selected 67 open source applications built using Ruby on Rails
and Active Record, representing a variety of application domains, including eCommerce,
customer relationship management, retail point of sale, conference management, content
management, build management, project management, personal task tracking, community
management and forums, commenting, calendaring, file sharing, Git hosting, link aggrega-
tion, crowdfunding, social networking, and blogging. We sought projects with substantial
code-bases (average: 26,809 lines of Ruby) multiple contributors (average: 69.1), and rel-
ative popularity (measured according to GitHub stars) on the site. Table 6.3 provides a
detailed overview.

To determine the occurrences and number of models, transactions, locks, validations,
and associations in Rails, we wrote a set of analysis scripts that performed a very rudimen-
tary syntactic static analysis . We do not consider the analysis techniques here a contri-
bution; rather, our interest is in the output of the analysis. The syntactic approach proved
portable between the many versions of Rails against which each application is linked; other-
wise, porting between non-backwards-compatible Rails versions was difficult and, in fact,

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 145

unsupported by several of the Rails code analysis tools we considered using as alterna-
tives. The choice to use syntax as a means of distinguishing code constructs led to some
ambiguity. To compensate, we introduced custom logic to handle esoteric syntaxes that
arose in particular projects (e.g., some projects extend ActiveRecord::Base with a sepa-
rate, project-specific base class, while some validation usages vary between constructs like
:validates_presence and :validates_presence_of).

To determine code authorship, we used the output of git log and blame and did not
attempt any sophisticated entity resolution.

6
.4

.
C

O
N

ST
R

A
IN

T
S

F
R

O
M

O
P

E
N

SO
U

R
C

E
A

P
P

L
IC

A
T

IO
N

S
146

Name Description Authors LoC Ruby Commits M T PL OL V A Stars Githash Last commit

Canvas LMS Education 132 309,580 12,853 161 46 12 1 354 837 1,251 3fb8e69 10/16/14

OpenCongress Congress data 15 30,867 1,884 106 1 0 0 48 357 124 850b602 02/11/13

Fedena Education management 4 49,297 1,471 104 5 0 0 153 317 262 40cafe3 01/23/13

Discourse Community discussion 440 72,225 11,480 77 41 0 0 83 266 12,233 1cf4a0d 10/20/14

Spree eCommerce 677 47,268 14,096 72 6 0 0 92 252 5,582 aa34b3a 10/16/14

Sharetribe Content management 35 31,164 7,140 68 0 0 0 112 202 127 8e0d382 10/21/14

ROR Ecommerce eCommerce 19 16,808 1,604 63 2 3 0 219 207 857 c60a675 10/09/14

Diaspora Social network 388 31,726 14,640 63 2 0 0 66 128 9,571 1913397 10/03/14

Redmine Project management 10 81,536 11,042 62 11 0 1 131 157 2,264 e23d4d9 10/19/14

ChiliProject Project management 53 66,683 5,532 61 7 0 1 118 130 623 984c9ff 08/13/13

Spot.us Community reporting 46 94,705 9,280 58 0 0 0 96 165 343 61b65b6 12/02/13

Jobsworth Project management 46 24,731 7,890 55 10 0 0 86 225 478 3a1f8e1 09/12/14

OpenProject Project management 63 84,374 11,185 49 8 1 3 136 227 371 c1e66af 11/21/13

Danbooru Image board 25 27,857 3,738 47 9 0 0 71 114 238 c082ed1 10/17/14

Salor Retail Point of Sale 26 18,404 2,259 44 0 0 0 81 309 24 00e1839 10/07/14

Zena Content management 7 56,430 2,514 44 1 0 0 12 43 172 79576ac 08/18/14

Skyline CMS Content management 7 10,404 894 40 5 0 0 28 89 127 64b0932 12/09/13

Opal Project management 6 10,707 474 38 3 0 0 42 96 45 11edf34 01/09/13

OneBody Church portal 33 20,398 3,973 36 3 0 0 97 140 1,041 2dfbd4d 10/19/14

CommunityEngine Social networking 67 13,967 1,613 35 3 0 0 92 101 1,073 a4d3ea2 10/16/14

Publify Blogging 93 16,763 5,067 35 7 0 0 33 50 1,274 4acf86e 10/20/14

Comas Conference management 5 5,879 435 33 6 0 0 80 45 21 81c25a4 09/09/14

BrowserCMS Content management 56 21,259 2,503 32 4 0 0 47 77 1,183 d654557 09/30/14

RailsCollab Project management 25 8,849 865 29 6 0 0 40 122 262 9f6c8c1 02/16/12

OpenGovernment Government data 15 9,383 2,231 28 4 0 0 22 141 160 fa80204 11/21/13

Tracks Personal productivity 89 17,419 3,121 27 2 0 0 24 43 639 eb2650c 10/02/14

GitLab Code management 671 39,094 12,266 24 15 0 0 131 114 14,129 72abe9f 10/20/14

Brevidy Video sharing 2 7,608 6 24 1 0 0 74 56 167 d0ddb1a 01/18/14

Insoshi Social network 16 121,552 1,321 24 1 0 0 41 63 1,583 9976cfe 02/24/10

Alchemy Content management 34 19,329 4,222 23 2 0 0 37 40 240 91d9d08 10/20/14

Teambox Project management 48 32,844 3,155 22 2 0 0 56 116 1,864 62a8b02 09/20/11

Fat Free CRM Customer relationship 99 21,284 4,144 21 3 0 0 39 92 2,384 3dd2c62 10/17/14

linuxfr.org FLOSS community 29 8,123 2,271 20 1 0 0 50 50 86 5d4d6df 10/14/14

6
.4

.
C

O
N

ST
R

A
IN

T
S

F
R

O
M

O
P

E
N

SO
U

R
C

E
A

P
P

L
IC

A
T

IO
N

S
147

Squash Bug reporting 28 15,776 231 19 6 0 0 87 62 879 c217ac1 09/15/14

Shoppe eCommerce 14 3,172 349 19 1 0 0 58 34 208 19e60c8 10/18/14

nimbleShop eCommerce 12 8,041 1,805 19 0 0 0 47 34 47 4254806 02/18/13

Piggybak eCommerce 16 2,235 383 17 1 0 0 51 35 166 2bed094 09/10/14

wallgig Wallpaper sharing 6 5,543 350 17 1 0 0 42 45 18 4424d44 03/23/14

Rucksack Collaboration 7 5,346 445 17 3 0 0 18 79 169 59703d3 10/05/13

Calagator Online calendar 48 9,061 1,766 16 0 0 0 8 11 196 6e5df08 10/19/14

Amahi Platform Home media sharing 15 6,244 577 15 2 0 0 38 22 65 5101c8b 08/20/14

Sprint Project management 5 3,056 71 14 0 0 0 50 45 247 584d887 09/17/14

Citizenry Community directory 17 8,197 512 13 0 0 0 12 45 138 e314fe4 04/01/14

LovdByLess Social network 17 30,718 150 12 0 0 0 27 41 568 26e79a7 10/09/09

Table 6.3: Corpus of applications used in analysis (M: Models, T: Transactions, PL: Pessimistic Locking, OL: Optimistic
Locking, V: Validations, A: Associations). Stars record number of GitHub Stars as of October 2014.

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 148

0 20 40 60 80 100

Normalized Application History (% of Commits)

0

20

40

60

80

100
%

of
Fi

na
lO

cc
ur

re
nc

es

Models
Associations per Model
Validations per Model
Transactions per Model

Figure 6.3: Use of mechanisms over each project’s history. We plot the median value of
each metric across projects and, for each mechanism, omit projects that do not contain any
uses of the mechanism (e.g., if a project lacks transactions, the project is omitted from the
median calculation for transactions).

While several of these applications are projects undertaken by hobbyists, many are either
commercially supported (e.g., Canvas LMS, Discourse, Spree, GitLab) and/or have a large
open source community (e.g., Radiant, Comfortable Mexican Sofa, Diaspora). A larger-
scale commercial, closed-source Rails application such as Twitter, GitHub, or Airbnb might
exhibit different trends than those we observe here. However, in the open source domain,
we believe this set of applications contains a diverse selection of Rails use cases and is a
reasonably representative sample of popular open source Rails applications as hosted on
GitHub.

Mechanism usage. We performed a simple analysis of the applications to determine how
each of the concurrency control mechanisms were used.

Overwhelmingly, applications did not use transactions or locks (Figure 6.5 and Ta-
ble 6.3). On average, applications used 0.13 transactions, 0.01 locks, 1.80 validations,
and 3.19 associations per model (with an average of 29.1 models per application). While
46 (68.7%) of applications used transactions, all used some validations or associations.
Only six applications used locks. Use of pessimistic locks was over twice as common as the
use of optimistic locks.

Perhaps most notable among these general trends, we find that validations and associa-
tions are, respectively, 13.6 and 24.2 times more common than transactions and orders of

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 149

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

C
om

m
its

A
ut

ho
re

d
(C

D
F)

0.0 0.2 0.4 0.6 0.8 1.0

Proportion Authors

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

/A
ss

oc
A

ut
ho

re
d

(C
D

F)

Figure 6.4: CDFs of authorship of invariants (validations plus associations) and commits.
Bolded line shows the average CDF across projects, while faint lines show CDFs for indi-
vidual projects. The dotted line shows the 95th percentile CDF value.

magnitude more common than locking. These feral mechanisms are—in keeping with the
Rails philosophy—favored by these application developers. That is, rather than adopting
the use of traditional transactional programming primitives, Rails application writers chose
to instead specify correctness criteria and have the ORM system enforce the criteria on their
behalf. It is unclear and even unlikely that these declarative criteria are a complete speci-
fication of program correctness: undoubtedly, some of these programs contain errors and
omissions. However, given that these criteria are nevertheless being declared by application
writers and represent a departure from traditional, transaction-oriented programming, we
devote much of the remainder of this work to examining exactly what they are attempting
to preserve (and whether they are actually sufficient to do so).

Understanding specific applications. Over the course of our investigation, we found that
application use of mechanisms varied. While our focus is largely on aggregate behavior,

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 150

studying individual applications is also interesting. For example, consider Spree, a popular
eCommerce application:

Spree uses only six transactions, one for each of 1.) canceling an order, 2.) approving
an order (atomically setting the user ID and timestamp), 3.) transferring shipments between
fulfillment locations (e.g., warehouses), 4.) transferring items between shipments, 5.) trans-
ferring stock between fulfillment locations, and 6.) updating an order’s specific inventory
status. While this is a reasonable set of locations for transactions, in an eCommerce ap-
plication, one might expect a larger number of scenarios to require transactions, including
order placement and stock adjustment.

In the case of Spree stock adjustment, the inventory count for each item is a poten-
tial hotspot for concurrency issues. Manual adjustments of stock that is available (“ad-
just_count_on_hand”) is indeed protected via a pessimistic lock, but simply setting the
amount of stock that is available (“set_count_on_hand”) is not. It is unclear why one
operation necessitates a lock but the other does not, given that both are ostensibly sensitive
to concurrent accesses. Meanwhile, the stock level field is wrapped in a validation ensuring
non-negative balances, preventing negative balances but not necessarily classic Lost Update
anomalies [9].

At one point, Spree’s inventory count was protected by an optimistic lock; it was re-
moved due to optimistic lock failure during customer checkouts. On relevant GitHub issue
pertaining to this lock removal, a committer notes that “I think we should get rid of the
[optimistic lock] if there’s no documentation about why it’s there...I think we can look at
this issue again in a month’s time and see if there’s been any problems since you turned it
off” [88]. This removal has, to our knowledge, not been revisited, despite the potential
dangers of removing this point of synchronization.

The remainder of the application corpus contains a number of such fascinating exam-
ples, illustrating the often ad-hoc process of deciding upon a concurrency control mecha-
nism. Broadly, the use of each style of concurrency control varies across repositories, but
our results demonstrate a clear trend towards feral mechanisms within Rails rather than
traditional use of transactions.

Additional metrics. To better understand how programmers used each of these mecha-
nisms, we performed two additional analyses.

First, we analyzed the number of models, transactions, validations, and associations
over each project’s lifetime. Using each project’s Git history, we repeated the above analysis
at a fixed set of intervals through the project’s lifespan (measured by commits). Figure 6.3
plots the median number of occurrences across all projects. The results show that concur-
rency control mechanisms (of all forms) tend to be introduced after models are introduced.

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 151

0
30
60
90

120
150
180

M
od

el
s

0

2

4

6

8

Tr
an

sa
ct

io
ns

/M
od

el

0

2

4

6

8

Va
lid

at
io

ns
/M

od
el

0 10 20 30 40 50 60

Project Number

0

2

4

6

8

A
ss

oc
ia

tio
ns

/M
od

el

Figure 6.5: Use of concurrency control mechanisms in Rails applications. We maintain the
same ordering of applications for each plot (i.e., same x-axis values; identical to Table 6.3)
and show the average for each plot using the dotted line.

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 152

That is, additions to the data model precede (often by a considerable amount) additional
uses of transactions, validations, and associations. It is unclear whether the bulk of con-
currency control usage additions are intended to correct concurrency issues or are instead
due to natural growth in Controller code and business logic. However, the gap between
models and concurrency control usage shrinks over time; thus, the data model appears to
stabilize faster than the controller logic, but both eventually stabilize. We view additional
longitudinal analysis along these lines as worthwhile future work.

Second, we analyze the distribution of authors to commits compared to the distribu-
tion of authors to validations and associations authored.3 As Figure 6.4 (see Appendix,
page 149) demonstrates, 95% of all commits are authored by 42.4% of authors. However,
95% of invariants (validations plus associations) are authored by only 20.3% of authors.
This is reminiscent of database schema authorship, where, traditionally, a smaller number
of authors (e.g., DBAs) modify the schema than contribute to the actual application code.

Summary and Discussion

Returning to the Rails design philosophy, the applications we have encountered do in-
deed express their logic at the application layer. There is little actual communication of
correctness criteria to the database layer. Part of this is due to limitations within Rails. As
we have mentioned, there is no way to actually declare a foreign key constraint in Rails
without importing additional third-party modules. Insofar as Rails is an “opinionated”
framework encouraging an idiomatic programming style, if our application corpus is any
indication, DHH and his co-authors advocating application-level data management appear
to have succeeded en masse.

Having observed the relative popularity of these mechanisms, we turn our attention to
the question of their correctness. Specifically, do these application-level criteria actually
enforce the constraints that they claim to enforce? We restrict ourself to studying declared
validations and associations for three reasons. First, as we have seen, these constructs are
more widely used in the codebases we have studied. Second, these constructs represent a
deviation from standard concurrency control techniques and are therefore perhaps more
likely to contain errors. Third, while analyzing latent constraints (e.g., those that might
be determined via more sophisticated techniques such as pre- and post-condition invariant
mining [160,198] and/or by interviewing each developer on each project) would be instruc-
tive, this is difficult to scale. We view these forms of analysis as highly promising avenues
for future research.

3We chose to analyze commits authored rather than lines of code written because git tracks large-scale
code refactoring commits as an often large set of deletions and insertions. Nevertheless, we observed a close
correlation between lines of code and commits authored.

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 153

6.4.3 Rails Invariant Confluence Analysis

We now turn our attention to understanding which of Rails’ feral validations and asso-
ciations are actually correct under concurrent execution as described in Section 6.4.1 and
which require stronger forms of isolation or synchronization for correct enforcement.

Understanding Validation Behavior

To begin, recall that each sequence of validations (and model update as well, if val-
idations pass) is wrapped within a database-backed transaction, the validation’s intended
integrity will be preserved provided the database is using serializable isolation. However, re-
lational database engines often default to non-serializable isolation [32]; notably for Rails,
PostgreSQL and MySQL actually default to, respectively, the weaker Read Committed and
Repeatable Read isolation levels.

We did not encounter evidence that applications changed the isolation level. Rails does
not configure the database isolation level for validations, and none of the application code
or configurations we encountered change the default isolation level, either (or mention do-
ing so in documentation). Thus, although we cannot prove that this is indeed the case, this
data suggests that validations are likely to run at default database isolation in production
environments.

Validations with weak isolation. Given that validations are not likely to be perfectly
isolated, does this lack of serializable isolation actually affect these invariants? Just because
validations effectively run concurrently does not mean that they are necessarily incorrect.
To determine exactly which of these invariants are correct under concurrent execution, we
employ invariant confluence analysis. In the case of Rails, we wish to determine whether, in
the event of concurrent validations and model saves, the result of concurrent model saves
will not violate the validation for either model. In the event that two concurrent controllers
save objects that are backed by the same database record, only one will be persisted (a some-
write-wins “merge”). In the event that two concurrent controllers save different models
(i.e., backed by different database records), both will be persisted (a set-based “merge”). In
both cases, we must ensure that validations hold after merge.

Per above, our invariant confluence analysis currently relies on a combination of manual
proofs and simple static analysis: given a set of invariant and operation pairs classified
as providing the invariant confluence property, we can iterate through all operations and
declared invariants and check whether or not they appear in the set of invariant confluent
pairs. If so, we label the pair as invariant confluent. If not, we can either conservatively
label the pair as unsafe under concurrent execution or prove the pair as invariant confluent

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 154

or not. (To prove a pair is invariant confluent, we must show that the set of database states
reachable by executing operations preserves the invariant under merge, as described above.)

Returning to our task of classifying Rails validations and associations as safe or not, we
applied this invariant confluence analysis to the invariants4 in the corpus. In our analysis,
we found that only 60 out of 3505 validations were expressed as user-defined functions.
The remainder were drawn from the standard set of validations supported by Rails core.5

Accordingly, we begin by considering built-in validations, then examine each of the custom
validations.

Built-In Validations

We now discuss common, built-in validations and their invariant confluence. Many are
invariant confluent and are therefore safe to execute concurrently.

Table 6.4 presents the ten most common built-in validations by usage and their occur-
rences in our application corpus. The exact coordination requirements depended on their
usage.

The most popular invariant, presence, serves multiple purposes. Its basic behavior is
to simply check for empty values in a model before saving. This is invariant confluent as,
in our model, concurrent model saves cannot result in non-null values suddenly becoming
null. However, presence can also be used to enforce that the opposite end of an association
is, in fact, present in the database (i.e., referential integrity). Under insertions, foreign key
constraints are invariant confluent [34], but, under deletions, they are not.

The second most popular invariant, concerning record uniqueness, is not invariant con-
fluent [34]. That is, if two users concurrently insert or modify records, they can introduce
duplicates.

Eight of the next nine invariants are largely concerned with data formatting and are
invariant confluent. For example, numericality ensures that the field contains a number
rather than an alphanumeric string. These invariants are indeed invariant confluent under
concurrent update.

Finally, the safety of associated (like presence) is contingent on whether or not the
current updates are both insertions (invariant confluent) or mixed insertions and deletions
(not invariant confluent). Thus, correctness depends on the operation.

4We focus on validations here as, while associations do represent an invariant, it is only when they are
coupled with validations that they are enforced.

5It is unclear exactly why this is the case. It is possible that, because these invariants are standardized, they
are more accessible to users. It is also possible that Rails developers have simply done a good job of codifying
common patterns that programmers tend to use.

6.4. CONSTRAINTS FROM OPEN SOURCE APPLICATIONS 155

Name Occurrences I-Confluent?
validates_presence_of 1762 Depends
validates_uniqueness_of 440 No
validates_length_of 438 Yes
validates_inclusion_of 201 Yes
validates_numericality_of 133 Yes
validates_associated 39 Depends
validates_email 34 Yes
validates_attachment_content_type 29 Yes
validates_attachment_size 29 Yes
validates_confirmation_of 19 Yes
Other 321 Mixed

Table 6.4: Use of and invariant confluence of built-in validations.

Overall, a large number of built-in validations are safe under concurrent operation.
Under insertions, 86.9% of built-in validation occurrences as invariant confluent. Under
deletions, only 36.6% of occurrences are invariant confluent. However, associations and
multi-record uniqueness are—depending on the workload—not invariant confluent and are
therefore likely to cause problems. In the next section, we examine these validations in
greater detail.

Custom Validations

We also manually inspected the coordination requirements of the 60 (1.71%) valida-
tions (from 17 projects) that were declared as UDFs. 52 of these custom validations were
declared inline via Rails’s validates_each syntax, while 8 were custom classes that imple-
mented Rails’s validation interface. 42 of 60 validations were invariant confluent, while the
remaining 18 were not. Due to space constraints, we omit a discussion of each validation
but discuss several trends and notable examples of custom validations below.

Among the custom validations that were invariant confluent, many consisted of simple
format checks or other domain-specific validations, including credit card formatting and
static username blacklisting.

The validations that were not invariant confluent took on a range of forms. Three val-
idations performed the equivalent of foreign key checking, which, as we have discussed, is
unsafe under deletion. Three validations checked database-backed configuration options in-
cluding the maximum allowed file upload size and default tax rate; while configuration up-
dates are ostensibly rare, the outcome of each validation could be affected under a configu-
ration change. Two validations were especially interesting. Spree’s AvailabilityValidator

6.5. QUANTIFYING INTEGRITY VIOLATIONS IN RAILS 156

checks whether an eCommerce inventory has sufficient stock available to fulfill an order;
concurrent order placement might result in negative stock. Discourse’s PostValidator

checks whether a user has been spamming the forum; while not necessarily critical, a spam-
mer could technically foil this validation by attempting to simultaneously author many
posts.

In summary, again, a large proportion of validations appear safe. Nevertheless, the few
non-invariant confluent validations should be cause for concern under concurrent execu-
tion.

6.5 Quantifying Integrity Violations in Rails

While many of the validations we encountered were invariant confluent, not all were.
In this section, we specifically investigate the effect of concurrent execution on two of the
most popular non-invariant confluent validations: uniqueness and foreign key validations.

Uniqueness Constraints and Isolation

To begin, we consider Rails’s uniqueness validations: 12.7% of the built-in validation
uses we encountered. In this section, we discuss how Rails implements uniqueness and
show that this is—at least theoretically—unsafe.

When a model field is declared with a :validates_uniqueness annotation, any instance
of that model is compared against all other corresponding records in the database to ensure
that the field is indeed unique. ActiveRecord accomplishes this by issuing a “SELECT” query
in SQL and, if no such record is found, Rails updates the instance state in the database
(Appendix 6.8.1).

While this user-level uniqueness validation runs within a transaction, the isolation level
of the transaction affects its correctness. For correct execution, the SELECT query must ef-
fectively attain a predicate lock on the validated column for the duration of the transaction.
This behavior is supported under serializable isolation. However, under Read Committed
or Repeatable Read isolation, no such mutual exclusion will be performed, leading to po-
tential inconsistency.6 Moreover, validation under Snapshot Isolation may similarly result in
inconsistencies.7 Thus, unless the database is configured for serializable isolation, integrity

6Using SELECT FOR UPDATE under these weaker models would be safe, but Rails does not implement its
predicate-based lookups as such (i.e., it instead opts for a simple SELECT statement).

7The first reference to the potential integrity violations resulting from this implementation in the Rails code
that we are aware of dates to December 2007, in Rails v.2.0.0 [146]. In September 2008, another user added
additional discussion within the code comments, noting that “this could even happen if you use transactions

6.5. QUANTIFYING INTEGRITY VIOLATIONS IN RAILS 157

violations may result.

As we have discussed, MySQL and PostgreSQL each support serializable isolation but
default to weaker isolation. Moreover, in our investigation, we discovered a bug in Post-
greSQL’s implementation of Serializable Snapshot Isolation that allowed duplicate records
to be created under serializable isolation when running a set of transactions derived from
the Rails primary key validator. We have confirmed this anomalous behavior with the
core PostgreSQL developers8 and, as of March 2015, the behavior persists. Thus, any
discussion of weak isolation levels aside, PostgreSQL’s implementation of serializability is
non-serializable and is insufficient to provide correct behavior for Rails’ uniqueness valida-
tions. So-called “serializable” databases such as Oracle 12c that actually provide Snapshot
Isolation will similarly fall prey to duplicate validations.

The Rails documentation warns that uniqueness validations may fail and admit dupli-
cate records [6]. Yet, despite the availability of patches that remedy this behavior by the
use of an in-database constraint and/or index, Rails provides this incorrect behavior by
default. (One patch was rejected; a developer reports “[t]he reasons for it not being incor-
porated...are lost in the mists of time but I suspect it’s to do with backwards compatibility,
cross database compatibility and applications varying on how they want/need to handle
these kind of errors.” [66]).

In another bug report complaining of duplicates due to concurrent uniqueness valida-
tion, a commenter asserts “this is not a bug but documented and inherent behavior of
validates_uniqueness_of” [197]. A Rails committer follows up, noting that “the only way
to handle [uniqueness] properly is at the database layer with a unique constraint on the
column,” and subsequently closes the issue. The original bug reporter protests that “the
problem extends beyond unique constraints and into validations that are unique to a Rails
application that can’t [sic?!] be enforced on the DB level”; the Rails committer responds that
“with the possible exception of [associations,] all of the other validations are constrained
by the attribute values currently in memory, so aren’t susceptible to similar flaws.” This
final statement is correct for many of the built-in validations but is not correct for arbitrary
user-defined validations. We discuss the user-defined validation issue further in Section 6.7.

Understanding validation behavior. Given that entirely feral mechanisms can introduce
duplicates, how many duplicates can be introduced? Once a record is written, any later
validations will observe it via SELECT calls. However, while a record is being validated,

with the ’serializable’ isolation level” [152]. The use of “’serializable”’ suggests familiarity with the common,
erroneous labeling of Snapshot Isolation as “serializable” (as in Oracle 12c documentation and PostgreSQL
documentation prior to the introduction of SSI in version 9.1.1 in September 2011).

8“BUG #11732: Non-serializable outcomes under serializable isolation” at http://www.postgresql.org/
message-id/20141021071458.2678.9080@wrigleys.postgresql.org

http://www.postgresql.org/message-id/20141021071458.2678.9080@wrigleys.postgresql.org
http://www.postgresql.org/message-id/20141021071458.2678.9080@wrigleys.postgresql.org

6.5. QUANTIFYING INTEGRITY VIOLATIONS IN RAILS 158

any number of concurrent validations can unsafely proceed. In practice, the number of
concurrent validations is dependent on the Rails environment. In a Rails deployment per-
mitting P concurrent validations (e.g., a single-threaded, multi-process environment with P
processes), each value in the domain of the model field/database column can be inserted no
more than P times. Thus, validations—at least theoretically—bound the worst-case number
of duplicate records for each unique value in the database table.

Quantifying Uniqueness Anomalies

Given that feral uniqueness validations are acknowledged to be unsafe under non-
serializable isolation yet are widely used, we sought to understand exactly how often unique-
ness anomalies occur in an experimental deployment. In this section, we demonstrate that
uniqueness validations in Rails are indeed unsafe under non-serializable isolation. While
they prevent some data integrity errors, we observe—depending on the workload—many
duplicate records.

Experimental setup. We developed a Rails 4.1.5 application that performed insertions
to a non-indexed string column and compared the incidence of violations both with and
without a uniqueness validator (see also Appendix 6.8.3).9 We deployed this application on
two Amazon EC2 m2.4xlarge instances, offering 68.4 GB RAM, 8 CPU cores, and 1680GB
local storage, running Ubuntu 14.04 LTS. On one instance, we deployed our application,
using Nginx 1.6.2 as a web frontend proxied to a set of Unicorn 4.8.3 (Ruby VM pool)
workers. Nginx acts as a HTTP frontend and forwards incoming requests to a variably
sized pool of Rails VMs (managed by Unicorn, in a multi-process, single-threaded server)
that epoll on a shared Linux file descriptor. On the other EC2 instance, we deployed
PostgreSQL 9.3.5 and configured it to run on the instance local storage. We used a third
EC2 instance to direct traffic to the front-end instance and drive load. We plot the average
and standard deviation of three runs per experiment.

Stress test. We began our study by issuing a simple stress test that executed a number of
concurrent insertion requests against a variable number of Unicorn workers. We repeatedly
issued a set of 64 concurrent model creation (SQL insertion) requests, each with the same
validated key (e.g., all with field key set to value 1) against the Rails application. Across an
increasing number of Unicorn workers, we repeated this set of requests 100 times (block-
ing in-between rounds to ensure that each round is, in fact, a concurrent set of requests),

9In our experimental evaluation, we use the custom applications described in Section 6.8 for two reasons.
First, these test cases allow us to isolate ActiveRecord behavior to the relevant set of validations as they are
deployed by default, independent of any specialized controller logic. Second, this reduces the complexity of
automated testing. Many of the applications in our corpus indeed use the same code paths within ActiveRe-
cord, but evaluating these custom applications simplifies programmatic triggering of validation logic.

6.5. QUANTIFYING INTEGRITY VIOLATIONS IN RAILS 159

1 2 4 8 16 32 64

Number of Rails Processes

0
100

101

102

103

104
N

um
be

ro
fD

up
lic

at
e

R
ec

or
ds

Without validation
With validation

Figure 6.6: Uniqueness stress test integrity violations.

changing the validated key each round (Appendix 6.8.4).

Figure 6.6 shows the results. With no validation, all concurrent requests succeed, re-
sulting in 6300 duplicate records (100 rounds of 64-1 duplicate keys). With validations en-
abled, the number of violations depends on the degree of concurrency allowed by Unicorn.
With only one process, Unicorn performs the validations serially, creating no duplicates.
However, with two processes, Unicorn processes race, resulting in 70 duplicate records
spread across 70 keys. With three processes, Unicorn produces 249 duplicate records across
all 100 keys. The number of duplicates increases with the number of processes, peaking at
16 workers. With additional workers, duplicate counts decrease slightly, which we attribute
to thrashing between workers and within PostgreSQL (recall that each instance has only 8
cores). Nevertheless, using validations, the microbenchmark duplicate count remains be-
low 700—nearly an order-of-magnitude fewer duplicates than without using validations.
Therefore, even though these validations are incorrectly implemented, they still result in
fewer anomalies. However, when we added in in-database unique index on the key col-
umn10 and repeated the experiment, we observed no duplicates, as expected.

Actual workloads. The preceding experiment stressed a particularly high-contention
workload—in effect, a worst case workload for uniqueness validations. In practice, such
a workload is likely rare.11 Accordingly, we set up another workload meant to capture a

10In this case, we added a unique index to the model using Active Record’s database migration, or manual
schema change functionality. Migrations are written separately from the Active Record model declarations.
Adding the index was not difficult, but, nevertheless, the index addition logic is separate from the domain
model. Without using third-party models, we are unaware of a way to enforce uniqueness within Rails
without first declaring an index that is also annotated with a special unique: true attribute.

11In fact, it was in the above workload that we encountered the non-serializable PostgreSQL behavior

6.5. QUANTIFYING INTEGRITY VIOLATIONS IN RAILS 160

less pathological access pattern. We ran another insert-only workload, with key choice dis-
tributed among a fixed set of keys. By varying the distribution and number of keys, we were
able to both capture more realistic workloads and also control the amount of contention
in the workload. As a basis for comparison, we ran four different distributions. First, we
considered uniform key access. Second, we used YCSB’s Zipfian-distributed accesses from
workloada [84]. Third and fourth, we used the item distribution access from Facebook’s
LinkBench workload, which captures MySQL record access when serving Facebook’s so-
cial graph [25]. Specifically, we used—separately—the insert and update traffic from this
benchmark.

For each trial in this workload, we used 64 concurrent clients independently issuing
a set of 100 requests each, with a fixed number of 64 Unicorn workers per process (Ap-
pendix 6.8.5).

Figure 6.7 illustrates the number of duplicate records observed under each of these work-
loads. As we increase the number of possible keys, there are two opposing effects. With
more keys, the probability of any two operations colliding decreases. However, recall that,
once a key is written, all subsequent validators can read it. While the uniform workload
observes an average of 2.33 duplicate records with only one possible key, it observes an
average of 26 duplicate keys with 1000 possible keys. Nevertheless, with 1 million possible
keys, we do not observe any duplicate records.

The actual “production” workloads exhibit different trends. In general, YCSB is an
extremely high contention workload, with a Zipfian constant of 0.99, resulting in one
very hot key. This decreases the beneficial effect of increasing the number of keys in the
database. However, LinkBench has less contention and anomalies decrease more rapidly
with increased numbers of keys.

Association Validations and Isolation

Having investigated uniqueness constraints, we turn our attention to association valida-
tions. We first, again, discuss how Rails enforces these validations and describe how—at
least theoretically—validations might result in integrity errors.

When a model field is declared with an association (e.g., it :belongs_to another model)
and a :validates_presence validation, Rails will attempt to ensure that the declared vali-
dation is valid before saving the model. Rails accomplishes this by issuing a “SELECT WHERE”
query in SQL to find an associated record (e.g., to ensure the “one” end of a one-to-many
relationship exists) and, if a matching association is found, Rails updates the instance state

under serializable isolation. Under serializable isolation, the number of anomalies is reduced compared to the
number under Read Committed isolation (as we report here), but we still detected duplicate records.

6.5. QUANTIFYING INTEGRITY VIOLATIONS IN RAILS 161

N
um

be
ro

fD
up

lic
at

e
R

ec
or

ds

0
100

101

102

103

104
Uniform

Without validation
With validation

0
100

101

102

103

104
YCSB

0
100

101

102

103

104
LinkBench-Insert

1 10 100 1K 10K 100K 1M

Number of Possible Keys

0
100

101

102

103

104
LinkBench-Update

Figure 6.7: Uniqueness workload integrity violations.

6.5. QUANTIFYING INTEGRITY VIOLATIONS IN RAILS 162

in the database (Appendix 6.8.2). On deletion, any models with associations marked with
:dependent => destroy (or :dependent => delete) will have any associated models de-
stroyed (i.e., removed by instantiating in Rails and calling destroy on the model) or deleted
(i.e., removed by simply calling the database’s DELETE method).

This feral association validation runs within a transaction, but, again the exact isolation
level of the transaction affects its correctness. For correct execution, the SELECT query must
also attain a predicate lock on the specific value of the validated column for the duration
of the transaction. Similar to the uniqueness validator, concurrent deletions and insertions
are unsafe under Read Committed, Repeatable Read, and Snapshot Isolation. Thus, unless
the database is configured for serializable isolation, inconsistency may result and the feral
validation will fail to prevent data corruption.

Unlike uniqueness validations, there is no discussion of associations and concurrency
anomalies in the Rails documentation. Moreover, in Rails 4.1, there is no way to na-
tively declare a foreign key constraint;12 it must be done via a third-party library such as
foreigner [136] or schema_plus [7]. Only two applications (canvaslms and diaspora)
used foreigner, and only one application (juvia) used schema_plus. One application
(jobsworth) used a custom schema annotation and constraint generator.

Understanding association behavior. Given that entirely feral mechanisms can introduce
broken associations, how many dangling records can be introduced? Once a record is
deleted, any later validations will observe it via SELECT calls. However, in the worst case,
the feral cascading deletion on the one side of a one-to-many relation can stall indefinitely,
allowing an unlimited number of concurrent insertions to the many side of the relation.
Thus, validations—at least theoretically—only reduce the worst-case number of dangling
records that were inserted prior to deletion; any number of concurrent insertions may occur
during validation, leading to unbounded numbers of dangling records.

Quantifying Association Anomalies

Given this potential for errors, we again set out to quantify integrity errors. We demon-
strate that weak isolation can indeed lead to data integrity errors in Rails’ implementation
of associations.

We performed another set of experiments to test association validation behavior under
concurrent insertions and deletions. Using the same Unicorn and PostgreSQL deployment
as above, we configured another application to test whether or not Rails validations would
correctly enforce association-based integrity constraints. We consider an application with

12Rails 4.2 added support for foreign keys via migration annotation (separate from models; similarly to
adding a unique index) in December 2014.

6.5. QUANTIFYING INTEGRITY VIOLATIONS IN RAILS 163

two models: Users and Departments. We configure a one-to-many relationship: each user
belongs_to a department, and each department has_many user (Appendix 6.8.6).

As a basic stress test, we initialize the database by creating 100 departments with no
users. Subsequently, for each department in the database, we issue a single request to delete
the department along with 64 concurrent requests to insert users in that department. To cor-
rectly preserve the one-to-many relationship, the database should either reject the deletion
operation or perform a cascading deletion of the department and any users (while rejecting
any future user creation requests for that department). We can quantify the degree of incon-
sistency by counting the number of users left in the database who have no corresponding
department (Appendix 6.8.7).

With associations declared in Rails, the Rails process performing the deletion will at-
tempt a cascading delete of users upon department deletion. However, this cascade is per-
formed, again, ferally—at the application level. Thus, under non-serializable isolation, any
user creation events that are processed while the search for Users to delete is underway will
result in Users without departments.

Figure 6.8 shows the number of “orphaned” Users (i.e., Users without a matching De-
partment) as a function of Rails worker processes. With no constraints declared to Rails
or to the database, all User creations succeed, resulting in 6400 dangling Users. With
constraints declared in Rails (via a mix of validation and association), the degree of incon-
sistency depends on the degree of parallelism. Under the worst case, with 64 concurrent
processes, the validations are almost worthless in preventing integrity errors. In contrast,
when we declare a foreign key constraint within the database13 and run the workload again,
we observe no inconsistency.

The above stress test shows that inconsistency due to feral concurrency control occurs
only during times of contention—parallel deletions and insertions. We subsequently varied
the degree of contention within the workload. We configured the same application and per-
formed a set of insertions and deletions, but spread across a greater number of keys and at
random. A set of 64 processes concurrently each issued 100 User creation and Department
deletion requests (at a ratio of 10 to 1) to a set of randomly-selected keys (again at a ratio of
10 Users to each Department). By varying the number of Users and Departments, we were
able to control the amount of contention within the workload. Under this workload, in-
consistency resulted only when a Department deletion proceeded concurrently with a User
creation event and the feral cascading deletion “missed” the User creation (Appendix 6.8.8).

Figure 6.9 shows the results. As the number of Departments increases, we observe two
trends. First, with only one Department, there is again less chance of inconsistency: all oper-

13In this case, we introduced the constraint via SQL using a direct connection to the database. This change
was straightforward but—like the unique index addition—was not reflected in the base Active Record models.

6.5. QUANTIFYING INTEGRITY VIOLATIONS IN RAILS 164

1 2 4 8 16 32 64

Number of Rails Workers

0
100

101

102

103

104
N

um
be

ro
fO

rp
ha

ne
d

U
se

rs

Without validation
With validation

Figure 6.8: Foreign key stress association anomalies.

1 10 100 1000 10000

Number of Departments

0
100

101

102

103

104

N
um

be
ro

fO
rp

ha
ne

d
U

se
rs

Without validation
With validation

Figure 6.9: Foreign key workload association anomalies.

ations contend on the same data item, so the total number of inconsistent, orphaned users
is limited by the number of potentially racing. However, as the number of Departments
increases, the chance of concurrent deletions and insertions drops.

Takeaways and Discussion

The preceding experiments demonstrate that, indeed, Active Record is unsafe as de-
ployed by default. Validations are susceptible to data corruption due to sensitivity to weak
isolation anomalies.

This raises the question: why declare validations at all? As we observe, validations
protect against some data corruption. First, they correctly guard against non-concurrency-

6.6. OTHER FRAMEWORKS 165

related anomalies such as data entry or input errors. For example, if a user attempts to
reserve a username that was previously chosen, a validation would succeed. This basic
functionality is reasonably left to the ORM engine for implementation. The failures we
observe here are solely due to concurrent execution. Without concurrent execution, valida-
tions are correct. Second, validations do reduce the incidence of inconsistency. Empirically,
even under worst-case workloads, these validations result in order-of-magnitude reductions
in inconsistency. Under less pathological workloads, they may eliminate it with high prob-
ability. It is possible that, in fact, the degree of concurrency and data contention within
Rails-backed applications simply does not lead to these concurrency races—that, in some
sense, validations are “good enough” for many applications.

Nevertheless, in both cases, Rails’s feral mechanisms are a poor substitute for their re-
spective database counterparts—at least in terms of integrity. We re-examine the Rails
community’s reluctance to embrace these mechanisms in Section 6.7.

6.6 Other Frameworks

While our primary focus in this paper is Rails, we investigated support for uniqueness,
foreign key, and custom validations in several other ORM frameworks. We find widespread
support for validations and varying susceptibility to integrity errors.

Java Persistence API (JPA; version EE 7) [2] is a standard Java Object persistence interface
and supports both uniqueness and primary key constraints in the database via specialized
object annotations. Thus, when JPA is used to create a table, it will use the database
to enforce these constraints. In 2009, JPA introduced support for UDF validations via
a JavaBean interface [51]. Interestingly, both the original (and current) Bean validation
specifications specifically address the use of uniqueness validations in their notes:

“Question: should we add @Unique that would map to @Column(unique=true)?
@Unique cannot be tested at the Java level reliably but could generate a database
unique constraint generation. @Unique is not part of the [Bean Validation] spec
today.” [48]

An author of a portion of the code specification notes separately:

“The reason @Unique is not part of the built-in constraints is the fact that ac-
cessing the [database] during a valiation [sic] is opening yourself up for poten-
ital [sic] phantom reads. Think twice before you go for [an application-level]
approach.” [111]

6.6. OTHER FRAMEWORKS 166

By default, JPA Validations are run upon model save and run in a transaction at the default
isolation level, and therefore, as the developers above hint, are susceptible to the same kinds
of integrity violations we study here.

Hibernate (version 4.3.7) [135], a Java ORM based on JPA, does not automatically enforce
declared foreign key relationships: if a foreign key constraint is declared; a corresponding
column is added, but that column is not backed by a database foreign key. Instead, for both
uniqueness and foreign key constraints, Hibernate relies on JPA schema annotations for
correctness. Therefore, without appropriate schema annotations, Hibernate’s basic associa-
tions may contain dangling references. Hibernate also has an extensive user-level validation
framework implementing the JPA Validation Bean specification [112] and is sensitive to
weak isolation anomalies, similar to Rails validations.

CakePHP (version 2.5.5) [3], a PHP-based web framework, supports uniqueness, foreign
key, and UDF validations. CakePHP does not back any of its validation checking with a
database transaction and relies on the user to correctly specify any corresponding foreign
keys or uniqueness constraints within the database the schema. Thus, while users can
declare each of these validations, there is no guarantee that they are actually enforced by
the database. Thus, unless users are careful to specify constraints in both their schema and
in their validations, validations may lead to integrity violations.

Laravel (version 4.2) [5], another PHP-based web framework, supports the same set of
functionality as CakePHP, including application-level uniqueness, foreign key, and UDF
validations in the application. Any database-backed constraints must be specified manually
in the schema. Per one set of community documentation [104], “database-level valida-
tions can efficiently handle some things (such as uniqueness of a column in heavily-used
tables) that can be difficult to implement otherwise” but “testing and maintenance is more
difficult...[and] your validations would be database- and schema-specific, which makes mi-
grations or switching to another database backend more difficult in the future.” In contrast,
model-level validations are “the recommended way to ensure that only valid data is saved
into your database. They are database agnostic, cannot be bypassed by end users, and are
convenient to test and maintain.”

Django (version 1.7) [4], a popular Python-based framework, backs declared uniqueness
and foreign key constraints with database-level constraints. It also supports custom vali-
dations, but these validations are not wrapped in a transaction [30]. Thus, Django also
appears problematic, but only for custom validations.

Waterline (version 0.10) [47], the default ORM for Sails.js (a popular MVC framework for
Node.js [46]), provides support for in-DB foreign key and uniqueness constraints (when

6.7. IMPLICATIONS FOR DATABASES 167

supported by the database) as well as custom validations (that are not supported via trans-
actions; e.g., “TO-DO: This should all be wrapped in a transaction. That’s coming next but
for the meantime just hope we don’t get in a nasty state where the operation fails!” [213]).

Summary. In all, we observe common cross-framework support for feral validation/in-
variants, with inconsistent use of mechanisms for enforcing them, ranging from the use of
in-database constraints to transactions to no ostensible use of concurrency control in either
application or database.

6.7 Implications for Databases

In light of this empirical evidence of the continued mismatch between ORM applications
and databases, in this section, we reflect on the core database limitations for application
writers today and suggest a set of directions for alleviating them.

6.7.1 Summary: Database Shortcomings Today

The use of feral invariants is not well-supported by today’s databases. At a high level,
today’s databases effectively offer two primary options for ORM framework developers
and users:

1. Use ACID transactions. Serializable transactions are sufficient to correctly enforce ar-
bitrary application invariants, including transaction-backed feral validations. This is
core to the transaction concept: isolation is a means towards preserving integrity (i.e.,
“I” provides “C”). Unfortunately, in practice, for application developers, transactions
are problematic. Given serializability’s performance and availability overheads [64],
developers at scale have largely eschewed the use of serializable transactions (which
are anyway not required for correct enforcement of approximately 87% of the in-
variants we encountered in the Rails corpus). Moreover, many databases offering
“ACID” semantics do not provide serializability by default and often, even among
industry-standard enterprise offerings, do not offer it as an option at all [32] (to say
nothing of implementation difficulties, as in Footnote 8). Instead, developers using
these systems today must manually reason about a host of highly technical, often ob-
scure, and poorly understood weak isolation models expressed in terms of low-level
read/write anomalies such as Write Skew and Lost Update [9, 20]. We have observed
(e.g., Footnote 7) that ORM and expert application developers are familiar with the
prevalence of weak isolation, which may also help explain the relative unpopularity
of transactions within the web programming community.

6.7. IMPLICATIONS FOR DATABASES 168

2. Custom, feral enforcement. Building user-level concurrency control solutions on a
per-framework or, worse, per-application basis is an expensive, error-prone, and dif-
ficult process that neglects decades of contributions from the database community.
While this solution is sufficient to maintain correctness in the approximately 87%
(invariant confluent) invariants in our corpus, the remainder can—in many modern
ORM implementations—lead to data corruption on behalf of applications.

However, and perhaps most importantly, this feral approach preserves a key tenet of
the Rails philosophy: a recurring insistence on expressing domain logic in the appli-
cation. This also enables the declaration of invariants that are not among the few
natively supported by databases today (e.g., uniqueness constraints).

In summary, application writers today lack a solution that guarantees correctness while
maintaining high performance and programmability. Serializability is too expensive for
some applications, is not widely supported, and is not necessary for many application in-
variants. Feral concurrency control is often less expensive and is trivially portable but is not
sufficient for many other application invariants. In neither case does the database respect
and assist with application programmer desires for a clean, idiomatic means of expressing
correctness criteria in domain logic. We believe there is an opportunity and pressing need
to build systems that provide all three criteria: performance, correctness, and programma-
bility.

6.7.2 Domesticating Feral Mechanisms

Constructively, to properly provide database support and thereby “domesticate” these
feral mechanisms, we believe application users and framework authors need a new database
interface that will enable them to:

1. Express correctness criteria in the language of their domain model, with minimal fric-
tion, while permitting their automatic enforcement. Per Section 6.4.1, a core factor
behind the success of ORMs like Rails appears to be their promulgation of an id-
iomatic programming style that “seems right” for web programming. Rails’ disregard
for advanced database functionality is evidence of a continued impedance mismatch
between application domain logic and current database primitives: databases today
do not understand the semantics of feral validations.

We believe any solution to domestication must respect ORM application patterns and
programming style, including the ability to specify invariants in each framework’s na-
tive language. Ideally, database systems could enforce applications’ existing feral in-
variants without modification. This is already feasible for a subset of invariants—like

6.7. IMPLICATIONS FOR DATABASES 169

uniqueness and foreign key constraints—but not all. An ideal solution to domesti-
cation would provide universal support with no additional overhead for application
writers. ORM authors may be able to meet the database halfway by pushing con-
straints into the database when possible.

2. Only pay the price of coordination when necessary. Per Section 6.4.3, many invariants
can be safely executed without coordination, while others cannot. The many that do
not need coordination should not be unnecessarily penalized.

An ideal solution to domestication would enable applications to avoid coordination
whenever possible, thus maximizing both performance and operation availability. The
database should facilitate this avoidance, thus evading common complaints (especially
within the Internet community) about serializable transactions.

3. Easily deploy to multiple database backends. ORM frameworks today are deployed
across a range of database implementations, and, when deciding which database fea-
tures to exercise, framework authors often choose the least common denominator for
compatibility purposes.

An ideal solution to domestication would preserve this compatibility, possibly by pro-
viding a “bolt on” compatibility layer between ORM systems and databases lacking
advanced functionality (effectively, a “blessed” set of mechanisms beneath the appli-
cation/ORM that correctly enforce feral mechanisms). This “bolt on” layer would act
as a proxy for the ORM, implementing concurrency control on the ORM’s behalf.
We previously implemented such a compatibility layer for providing causal consis-
tency atop eventually consistent data stores [39] and believe similar techniques are
promising here.

Fulfilling these design requirements would enable high performance, correct execution, and
programmability. However, doing so represents a considerable challenge.

Promise in the literature. The actual vehicle for implementing this interface is an open ques-
tion, but the literature lends several clues. On the one hand, we do not believe the answer
lies in exposing additional read/write isolation or consistency guarantees like Read Commit-
ted; these fail our requirement for an abstraction operating the level of domain logic and,
as we have noted, are challenging for developers (and researchers) to reason about. On the
other hand, more recent proposals for invariant-based concurrency control [34,160] and a
litany of work from prior decades on rule-based [228] and, broadly, semantics-based con-
currency control [215] appear immediately applicable and worth (re-)considering. Recent
advances in program analysis for extracting invariants [198] and subroutines from imper-
ative code [77] may allow us to programmatically suggest new invariants, perform corre-

6.8. DETAILED VALIDATION BEHAVIOR, EXPERIMENTAL WORKLOAD 170

spondence checking for existing applications, and apply a range of automated optimizations
to legacy code [78, 209]. Finally, clean-slate language design and program analysis obviate
the need for explicit invariant declaration (thus alleviating concerns of specification com-
pleteness) [18,19,231]; while adoption within the ORM community is a challenge, we view
this exploration as worthwhile.

Summary. In all, the wide gap between research and current practice is both a pressing
concern and an exciting opportunity to revisit many decades of research on alternatives to
serializability with an eye towards current operating conditions, application demands, and
programmer practices. Our proposal here is demanding, but so are the framework and
application writers our databases serve. Given the correct primitives, database systems may
yet have a role to play in ensuring application integrity.

6.8 Detailed Validation Behavior, Experimental Workload

In this section, we provide more detail regarding how validations are executed in Rails
as well as our workloads from Section 6.5.

6.8.1 Uniqueness Validation Behavior

When a controller attempts to save an ActiveRecord model instance i of type M, if M
has a declared :validates_uniqueness annotation on attribute a, the following actions will
be performed:

1. Assuming that instances of M are stored in database table TM (with attribute a stored in
column Ca), Active Record will perform the equivalent of

SELECT 1 FROM TM where Ca = i.a LIMIT ONE;

(SELECT COUNT(*) would be sufficient here as well, but this is not how the query is actually
implemented).

2. If this result set is empty, the validation succeeds.

3. If this result set is not empty, the validation fails. If the validation was called during save, it re-
turns false. If the validation was called during save!, it raises an ActiveRecord::RecordInvalid

exception.

This is a classic example of the phantom problem. Changing this SELECT call to SELECT

FOR UPDATE would be sufficient. However, Rails is not implemented this way.

6.8. DETAILED VALIDATION BEHAVIOR, EXPERIMENTAL WORKLOAD 171

6.8.2 Association Validation Behavior

When a controller attempts to save an ActiveRecord model instance i of type M, if
M has a declared :belongs_to annotation on attribute a pointing to attribute b of model
N and M has a declared :validates_presence annotation on attribute a, the following
actions will be performed:

1. Assuming that instances of N are stored in database table TN (with attribute b stored in
column Cb), Active Record will perform the equivalent of

SELECT 1 FROM TN where Cb = i.a LIMIT ONE;

2. If this result set is not empty, the validation succeeds.

3. If this result set is empty, the validation fails. If the validation was called during save, it returns
false. If the validation was called during save!, it raises an ActiveRecord::RecordInvalid

exception.

6.8.3 Uniqueness Validation Schema

In our uniqueness stress test, we declare two models, each containing two attributes:
key, a string, and value, also a string. The generated schema for each of the models,
which we call SimpleKeyValue and ValidatedKeyValue, is the same. The schema for
SimpleKeyValue is as follows:

create_table "validated_key_values", force: true do |t|

t.string "key"

t.string "value"

t.datetime "created_at"

t.datetime "updated_at"

end

For the non-uniqueness-validated model, we simply require that the key and value fields
are not null via a presence: true annotation. For the ferally validated model, we add an
additional uniqueness: true validation to the key field in the Active Record model. The
remainder of the application consists of a simple View and Controller logic to allow us to
POST, GET, and DELETE each kind of model instance programatically via HTTP.

6.8. DETAILED VALIDATION BEHAVIOR, EXPERIMENTAL WORKLOAD 172

6.8.4 Uniqueness Stress Test

For the uniqueness stress test (Figure 6.6), we repeatedly attempt to create duplicate
records. We issue a set of 64 concurrent requests to create instances with the key field set
to an increasing sequence number (k, below) and repeat 100 times. At the end of the run,
we count the number of duplicate records in the table:

for model m ∈ {SimpleKeyValue, ValidatedKeyValue} do
for k← 1 to 100 do

parfor 1 to 64 do
via HTTP: create new m with key=k

dups←execute(SELECT key, COUNT(key)-1 FROM TM
GROUP BY key HAVING COUNT(key) > 1;)

Under correct validation, for each choice of k (i.e., for each key k), all but one of the
model creation requests should fail.

6.8.5 Uniqueness Workload Test

For the uniqueness workload test (Figure 6.7), a set of 64 workers sequentially issues a
set of 100 operations each. Each operation attempts to create a new model instance with
the key field set to a random item generated according to the distributions described in
Section 6.5:

for model m ∈ {SimpleKeyValue, ValidatedKeyValue} do
parfor 1 to 64 do

for 1 to 100 do
k← pick new key according to distribution
via HTTP: create new m with key=k

dups←execute(SELECT key, COUNT(key)-1 FROM TM
GROUP BY key HAVING COUNT(key) > 1;)

6.8.6 Association Validation Schema

In the association stress test, we declare two sets of models, each containing two models
each: a User model and a Departments model. Each User has a(n implicit) id (as generated
by Rails ActiveRecord) and an integer corresponding department_i. Each Department has

6.8. DETAILED VALIDATION BEHAVIOR, EXPERIMENTAL WORKLOAD 173

an id. Both models have a timestamp of the last updated and creation time, as is auto-
generated by Rails. Aside from the table names, both schemas are equivalent. Below is the
schema for the non-validated users and departments:

create_table "simple_users", force: true do |t|

t.integer "simple_department_id"

t.datetime "created_at"

t.datetime "updated_at"

end

create_table "simple_departments", force: true do |t|

t.datetime "created_at"

t.datetime "updated_at"

end

The two pairs of models vary in their validations. One pair of models has no validations
or associations. The other pair of models contain validations, including rules for cascading
deletions. Specifically, we place an association has_many :users, :dependent => :destroy

on the department, and, on the user, an association belongs_to :department and validation
validates :department, :presence => true (note that we only delete from Departments
in our workload, below). Thus, on deletion of a model of type ValidatedDepartment,
ActiveRecord will attempt to call destroy on each matching ValidatedUser.

6.8.7 Association Stress Test

For the association stress test (Figure 6.8), we repeatedly attempt to create orphan users.
We issue a set of 64 concurrent requests to create Users belonging to a particular depart-
ment, while simultaneously deleting that department and repeat 100 times. At the end of
the run, we count the number of users with a department that does not exist:

6.8. DETAILED VALIDATION BEHAVIOR, EXPERIMENTAL WORKLOAD 174

for model m ∈ {Simple, Validated} do
for i← 1 to 100 do

via HTTP: create mDepartment with id=i

for i← 1 to 100 do
parfor w ∈ 1 to 65 do

if w = 1 then
via HTTP: delete mDepartment with id=i

else
via HTTP: create new mUser department_id=i

orphaned←execute(“SELECT m_department_id,
COUNT(*) FROM m_users AS U
LEFT OUTER JOIN m_departments AS D
ON U.m_department_id = D.id
WHERE D.id IS NULL
GROUP BY m_department_id
HAVING COUNT(*) > 0;”)

6.8.8 Association Workload Test

For the association workload test (Figure 6.9), we begin by creating a variable number
of departments (Figure 6.9 x-axis; D). We next have 64 concurrent clients simultaneously
attempt to create users belonging to a random department and delete random departments
(in a 10:1 ratio of creations to deletions, for 100 operations each). We end by counting the
number of orphaned users, as above.

for model m ∈ {Simple, Validated} do
for d← 1 to D do

via HTTP: create mDepartment with id=i

parfor w ∈ 1 to 64 do
d← uniformRandomInt([1,D])
if uniformRandomDouble([0, 1]) < 1

11 then
via HTTP: delete mDepartment with id=d

else
via HTTP: create new mUser department_id=d

orphaned← as above, in stress test

6.9. SUMMARY 175

6.9 Summary

In the first part of this chapter, we demonstrated that, in fact, many—but not all—
common database invariants and integrity constraints are actually achievable without co-
ordination. By applying these results to a range of actual transactional workloads, we
demonstrated an opportunity to avoid coordination in many cases that traditional seri-
alizable mechanisms would otherwise coordinate. The order-of-magnitude performance
improvements we demonstrated via coordination-avoiding concurrency control strategies
provide compelling evidence that constraint-based coordination avoidance is a promising
approach to meaningfully scaling future data management systems.

In the second part of this chapter, we examined the use of concurrency control mecha-
nisms in a set of 67 open source Ruby on Rails applications and, to a less thorough extent,
concurrency control support in a range of other web-oriented ORM frameworks. We found
that, in contrast with traditional transaction processing, these applications overwhelmingly
prefer to leverage application-level feral support for data integrity, typically in the form of
declarative (sometimes user-defined) validation and association logic. Despite the popular-
ity of these invariants, we find limited use of in-database support to correctly implement
them, leading to a range of quantifiable inconsistencies for Rails’ built-in uniqueness and
association validations. While many validations are invariant confluent and therefore cor-
rect under concurrent execution given standard RDBMS weak isolation and concurrent
update semantics, we see considerable opportunity to better support these users and their
feral invariants in the future.

176

Chapter 7

Related Work

In this chapter, we provide a discussion of related work. We begin with a discussion of
work related to the general themes in this thesis, then examine specific areas in depth.

Database system designers have long sought to manage the trade-off between consis-
tency and coordination. As we have discussed, serializability and its many implementations
(including lock-based, optimistic, and pre-scheduling mechanisms) [53, 55, 105, 123, 142,
215,217,221] are sufficient for maintaining application correctness. However, serializabil-
ity is not always necessary: serializable databases do not allow certain executions that are
correct according to application semantics. This has led to a large class of application-
level—or semantic—concurrency control models and mechanisms that admit greater con-
currency. There are several surveys on this topic, such as [120, 215], and, in our solutions,
we integrate many concepts from this literature.

Commutativity. One of the most popular alternatives to serializability is to exploit commu-
tativity: if transaction return values (e.g., of reads) and/or final database states are equiva-
lent despite reordering, they can be executed simultaneously [80,159,226]. Commutativity
is often sufficient for correctness but is not necessary. For example, if an analyst at a whole-
saler creates a report on daily cash flows, any concurrent sale transactions will not commute
with the report (the results will change depending on whether the sale completes before or
after the analyst runs her queries). However, the report creation is invariant confluent with
respect to, say, the invariant that every sale in the report references a customer from the
customers table. [80,155] provide additional examples of safe non-commutativity.

The CALM Theorem, Monotonicity, and Confluence. Hellerstein’s CALM Theorem [21]
shows that program outcomes are confluent, or deterministic, under coordination-free ex-
ecution if and only if the program logic is monotone. CALM is a declarative result: it
captures the class of computations that can be implemented deterministically without coor-

177

dination. CALM can also be used as a program analysis technique: if a particular program
implementation uses only monotonic operations (where “program” could include a service
and its client code), then that program will be deterministic when executed without coordi-
nation; otherwise, coordination should be injected to “protect” non-monotonic operations
to ensure determinism. CALM program analysis is natural to apply in logic languages like
Bloom [19] where monotonicity can be assessed from syntax. It can also be applied to
dataflow systems like Storm [193] with the help of program annotations [18].

CALM’s notion of confluence differs from invariant confluence in several ways. First,
CALM assesses the confluence, or determinism, of program logic; invariant confluence as-
sesses whether a set of safety properties holds during and following the execution of a set
of transactions over replicated or multi-versioned data given a particular merge function.
Invariant confluence admits non-deterministic outcomes as long as the outcomes satisfy the
provided invariants. Second, CALM does not consider transactions, while invariant con-
fluence analyzes transactions that individually ensure invariant-preserving updates. Third,
invariant confluence considers replicated or multi-versioned state (via the use of the replica
abstraction). As discussed in Section 2.3, invariant confluent does not distinguish between
partially-replicated and fully-replicated systems; under invariant confluence, a transaction
is presented with an entire logical snapshot (replica) of the database upon which it can op-
erate. A partially replicated implementation of a set of invariant confluent operations may
need to communicate with partitions responsible for items that were not explicitly men-
tioned in the transaction operations but that are related to invariants over data modified by
the transaction. Again, and by Theorem 1, for invariant confluent semantics, this checking
can be performed in parallel by concurrently committing transactions over their respective
logical replicas. However, in contrast, CALM analysis is agnostic to replication, version-
ing, and partitioning, which, if desired, are implemented as part of program logic to be
analyzed.

CALM and invariant confluence use different mathematical foundations. CALM is
based on monotonicity analysis from logic programs. Invariant confluence generalizes clas-
sic partitioning arguments from distributed systems to the domain of user-supplied invari-
ants, transactions, and merge functions. For associative, commutative, and idempotent
merge functions, an invariant confluent execution effectively defines a join semi-lattice: in-
variants begin true in D0 and remain true as the execution progresses. Monotone programs
also compute over a join semi-lattice of relations and union. However, the analyses and
proof techniques of the two concepts are quite different.

Further understanding the relationship between invariant confluence and CALM is an
interesting area for exploration. For example, it is natural to ask if there is an extension
of CALM analysis that can, like invariant confluence, incorporate invariants over possibly

178

non-deterministic outputs. A possible direction here is to view invariants as boolean-valued
formulas whose results “start true” and monotonically remain true. In this direction, an in-
variant is a morphism mapping from potentially monotone relational inputs to a monotone
boolean output lattice [81]. Additionally, as CALM is non-transactional and our formu-
lation of invariant confluence is inherently transactional, it is interesting to consider what
“transactional CALM” would mean. In our formulation of invariant confluence, transac-
tions that violate invariants when committing to local replica state are aborted; it is unclear
how to model abort logic in CALM analysis.

Convergent Data Types. On a related subject, Commutative Replicated Data Type (CRDT)
objects [205] similarly ensure convergent outcomes that reflect all updates made to each ob-
ject. This convergence is a useful liveness property [202] (e.g., a converged CRDT OR-Set
reflects all concurrent additions and removals) but does not prevent users from observing
inconsistent data [160], or safety (e.g., the CRDT OR-Set does not—by itself—enforce in-
variants, such as ensuring that no employee belongs to two departments), and are therefore
not sufficient to guarantee correctness for all applications. Here, we use CRDTs to imple-
ment many of our merge functions, and we add safety to the intermediate states and final
outcomes. Thus, each replica state is, in effect, a CRDT, and our goal is to determine which
operations need coordination to ensure variants of safety properties are upheld.

Use of Invariants. A large number of database designs—including, in restricted forms,
many commercial databases today—use various forms of application-supplied invariants,
constraints, or other semantic descriptions of valid database states as a specification for
application correctness (e.g., [10, 52, 92, 107, 115, 120, 126, 127, 145, 159–161, 194, 198]).
We draw inspiration and, in particular, our use of invariants from this prior work. However,
we are not aware of related work that discusses when coordination is strictly required to
enforce a given set of invariants. That is, our formulation of coordination-free execution
of transactions on separate replicas, which is key to capturing scalability, low latency, and
availability properties, is not found in this related work; we, in effect, operate at the junction
between this prior work on semantics-based concurrency control from databases and classic
analyses from distributed computing [118].

To illustrate why replication is so important to our model, consider the work on relative
serializability [10]. In this work, the authors generalize prior efforts, including [107, 115,
145,170], and re-define conflicting actions within otherwise conflict serializable transaction
execution in order to allow greater concurrency. That is, instead of defining conflict as
“any two operations on the same item from different transactions, at least one of which is
a write” as in conflict serializability, relative serializability allows users to define an abstract
atomicity relation to determine conflicts—for example, two increment operations need not
necessarily conflict, even if they both update the same counter. Thus, the goal of this work

179

is to preserve equivalence a serial schedule, defined according to the abstract atomicity rela-
tion, and there is still a total order on operations. As a result, in relative serializability and
related models [194], the “union” (or combination) of two databases is undefined if two
items have different versions (e.g., {a1} ∪ {a2}), because such databases would correspond
to two separate total orders. In contrast, in our invariant confluence analysis, we explicitly
consider a partial order on operations, with divergent states reconciled with a merge op-
erator; instead of reasoning about conflicts, we allow arbitrary divergent states that i) are
guaranteed to satisfy a user-specified invariant over the data and ii) are reconciled using a
user-specified merge function.

Because data is replicated in our model, it is natural to reason about a “merge” func-
tion. Insofar as servers must explicitly integrate updates from others in order to guarantee
convergence (in contrast with conventional shared-memory systems, where hardware au-
tomatically chooses an ordering and conflict resolution policies for updates), merge allows
users to specify their own conflict resolution. As we have discussed, the merge operator is
itself drawn from the literature on optimistic replication [200] and is relatively popular to-
day in stores including Dynamo [95] and its descendants as well as systems like Git. Thus,
while the goals of work on semantics-based concurrency control (including relative serializ-
ability) are similar to ours (especially in terms of increasing concurrency), our use of merge
leads to a substantially different system and execution model. In effect, we can think of
invariant confluence as relative serializability with a special, system-induced compensating
action (“merge”) to deal with divergent paths in the semantic serializability serialization
graph (RSG), if the graph were extended to account for replication.

Thus, our invariant confluence analysis here is inspired by prior work on semantics-
based concurrency control and adapts the practice of using application (and database)
criteria as the basis of concurrency control to the replicated (and non-serializable, multi-
versioned) setting. Moreover, compared to this prior work, our practical focus here is
oriented towards invariants found in SQL and in modern applications.

In contrast with many of the conditions above (esp. commutativity and monotonic-
ity), we explicitly require more information from the application in the form of invariants
(Kung and Papadimitriou [149] suggest this is information is required for general-purpose
non-serializable yet safe execution.) In this work, we provide a necessary and sufficient con-
dition for safe, coordination-free execution over replicated and multi-version data. When
invariants are unavailable, many of these more conservative approaches may still be appli-
cable. Our use of analysis-as-design-tool is inspired by this literature—in particular, [80].

Coordination costs. In this work, we determine when transactions can run entirely con-
currently and without coordination. In contrast, a large number of alternative models
(e.g., [14, 27, 115, 127, 145, 161, 169]) assume serializable or linearizable (and therefore

180

coordinated) updates to shared state. These assumptions are standard (but not univer-
sal [68]) in the concurrent programming literature [27, 202]. (Additionally, unlike much
of this literature, we only consider a single set of invariants per database rather than per-
operation invariants.) For example, transaction chopping [206] and later application-aware
extensions [12,52] decompose transactions into a set of smaller transactions, providing in-
creased concurrency, but in turn require that individual transactions execute in a serializable
(or strict serializable) manner. This reliance on coordinated updates is at odds with our goal
of coordination-free execution. However, these alternative techniques are useful in reduc-
ing the duration and distribution of coordination once it is established that coordination is
required.

Term rewriting. In term rewriting systems, invariant confluence guarantees that arbi-
trary rule application will not violate a given invariant [100], generalizing Church-Rosser
confluence [144]. We adapt this concept and effectively treat transactions as rewrite rules,
database states as constraint states, and the database merge operator as a special join opera-
tor (in the term-rewriting sense) defined for all states. Rewriting system concepts—including
confluence [14]—have previously been integrated into active database systems [228] (e.g.,
in triggers, rule processing), but we are not familiar with a concept analogous to invariant
confluence in the existing database literature.

Coordination-free algorithms and semantics. Our work is influenced by the distributed
systems literature, where coordination-free execution across replicas of a given data item
has been captured as “availability” [38, 118]. A large class of systems provides avail-
ability via “optimistic replication” (i.e., perform operations locally, then replicate) [200].
We—like others [68]—adopt the use of the merge operator to reconcile divergent database
states [189] from this literature. Both traditional database systems [9] and more recent pro-
posals [159,160] allow the simultaneous use of “weak” and “strong” isolation; we seek to
understand when strong mechanisms are needed rather than an optimal implementation of
either. Unlike “tentative update” models [116], we do not require programmers to spec-
ify compensatory actions (beyond merge, which we expect to typically be generic and/or
system-supplied) and do not reverse transaction commit decisions. Compensatory actions
could be captured under invariant confluence as a specialized merge procedure.

The CAP Theorem [8, 118] recently popularized the tension between strong semantics
and coordination and pertains to a specific model (linearizability). In a recent retrospec-
tive, Brewer discusses the role of CAP in reasoning about and “repairing” more general
invariants, such as those we study here [64]. The relationship between serializability and
coordination requirements has also been well documented in the database literature [92].
Our research here addresses when particular database-backed applications require coordi-
nation, providing a new property, invariant confluence, for doing so.

181

Summary. The invariant confluence property is a necessary and sufficient condition for
safe, coordination-free execution. Sufficient conditions such as commutativity and mono-
tonicity are useful in reducing coordination overheads but are not always necessary. Here,
we explore the fundamental limits of coordination-free execution. To do so, we explicitly
consider a model without synchronous communication. This is key to scalability: if, by
default, operations must contact a centralized validation service, perform atomic updates
to shared state, or otherwise communicate, then scalability will be compromised. Finally,
we only consider a single set of invariants for the entire application, reducing programmer
overhead without affecting our invariant confluence results.

Isolation and RAMP Transactions

Replicated databases offer a broad spectrum of isolation guarantees at varying costs to
performance and availability [53]:

Serializability. At the strong end of the isolation spectrum is serializability, which provides
transactions with the equivalent of a serial execution (and therefore also provides RA).
A range of techniques can enforce serializability in distributed databases [11, 53], multi-
version concurrency control (e.g. [190]), locking (e.g. [166]), and optimistic concurrency
control [207]. These useful semantics come with costs in the form of decreased concur-
rency (e.g., contention and/or failed optimistic operations) and limited availability during
partial failure [32, 92]. Many designs [90, 142] exploit cheap serializability within a sin-
gle partition but face scalability challenges for distributed operations. Recent industrial
efforts like F1 [207] and Spanner [85] have improved performance via aggressive hardware
advances but, their reported throughput is still limited to 20 and 250 writes per item per
second. Multi-partition, multi-datacenter, and, generally, distributed serializable transac-
tions are expensive and, especially under adverse conditions, are likely to remain expen-
sive [89,141,187].

Weak isolation. The remainder of the isolation spectrum is more varied. Most real-
world databases offer (and often default to) non-serializable isolation models [32, 179].
These “weak isolation” levels allow greater concurrency and fewer system-induced aborts
compared to serializable execution but provide weaker semantic guarantees. For example,
the popular choice of Snapshot Isolation prevents Lost Update anomalies but not Write
Skew anomalies [9]; by preventing Lost Update, concurrency control mechanisms provid-
ing Snapshot Isolation require coordination [32]. In recent years, many “NoSQL” designs
have avoided cross-partition transactions entirely, effectively providing Read Uncommit-
ted isolation in many industrial databases such PNUTS [83], Dynamo [95], TAO [65],
Espresso [192], Rainbird [227], and BigTable [74]. These systems avoid penalties associ-

182

ated with stronger isolation but in turn sacrifice transactional guarantees (and therefore do
not offer RA).

RAMP and related mechanisms. There are several algorithms that are closely related to
our choice of RA and RAMP algorithm design.

COPS-GT’s two-round read-only transaction protocol [167] is similar to RAMP-F reads—
client read transactions identify causally inconsistent versions by timestamp and fetch them
from servers. While COPS-GT provides causal consistency (requiring additional metadata),
it does not support RA isolation for multi-item writes.

Eiger provides its write-only transactions [168] by electing a coordinator server for each
write. As discussed in Section 5.5 (E-PCI), the number of “commit checks” performed
during its read-only transactions is proportional to the number of concurrent writes. Us-
ing a coordinator violates partition independence but in turn provides causal consistency.
This coordinator election is analogous to G-Store’s dynamic key grouping [90] but with
weaker isolation guarantees; each coordinator effectively contains a partitioned completed
transaction list from [73]. Instead of relying on indirection, RAMP transaction clients
autonomously assemble reads and only require constant factor (or, for RAMP-F, linear in
transaction size) metadata size compared to Eiger’s PL-2L (worst-case linear in database
size).

We are not aware of another concurrency control mechanism for partitioned databases
that ensures coordination-free execution, partition independence, and at least RA isolation.

Constraints

There is a large body of related work related to our investigation of specific database and
ORM constraints that we consider in three categories: object relational mapping systems,
the quantification of isolation behavior, and empirical open source software analysis.

ORMs. Database systems and application programming frameworks have a long his-
tory [56, 71, 154]. The “impedance mismatch” between object-oriented programming and
the relational model is a perennial problem in data management systems. Ruby on Rails
is no exception, and the concurrency control issues we study here are endemic to this
mismatch—namely, the disuse of common concurrency control mechanisms like database-
backed constraints. Bridging this gap remains an active area of research [173].

The latest wave of web programming frameworks has inspired diverse research span-
ning databases, verification, and security. StatusQuo uses program analysis and synthesis
to transform imperative ORM code into SQL, leveraging the efficiency of database-backed
web applications written in the Spring framework [77]. Rails has been the subject of study

183

in the verification of cross-site scripting attacks [76], errors in data modeling of associa-
tions [183], and arbitrary, user-specified (non-validation) invariants [60]. Rails-style ORM
validations have been used to improve systems security via client-side execution [137,209].
Our focus here is on the concurrency control requirements and usages of applications writ-
ten in Rails.

Quantifying anomalies. A range of research similarly quantifies the effect of non-serializable
isolation in a variety of ways.

Perhaps closest to our examination of ORM integrity violations is a study by Fekete et
al., which quantitatively analyzed data inconsistencies arising from non-serializable sched-
ules [108]. This study used a hand-crafted benchmark for analysis but is nevertheless one
of the only studies of actual application inconsistencies. Here, we focus on open source
applications from the Rails community.

A larger body of work examines isolation anomalies at the read-write interface (that
is, measures deviations from properties such as serializability or linearizability but not the
end effect of these deviations on actual application behavior). Wada et al. evaluated the
staleness of Amazon’s SimpleDB using end-user request tracing [225], while Bermbach and
Tai evaluated Amazon S3 [50], each quantifying various forms of non-serializable behavior.
Golab et al. provide algorithms for verifying the linearizability of and sequential consistency
arbitrary data stores [121] and Zellag and Kemme provide algorithms for verifying their
serializability [236] and other cycle-based isolation anomalies [235]. As we have discussed,
Probabilistically Bounded Staleness provides time- and version-based staleness predictions
for eventually consistent data stores [42]. Our focus here is on anomalies as observed by
application logic rather than read-write anomalies observed under weak isolation.

Empirical software analysis. Empirical software analysis of open source software is a topic
of active interest in the software engineering research community [212]. In the parlance of
that community, in this work, we perform a mixed-methods analysis, combining quantita-
tive survey techniques with a confirmatory case study of Rails’s susceptibility to validation
errors [103]. In our survey, we attempt to minimize sampling bias towards validation-heavy
projects by focusing our attention on popular projects, as measured by GitHub stars. Our
use of quantitative data followed by supporting qualitative data from documentation and is-
sue tracking—as well as the chronology of methodologies we employed to attain the results
presented here—can be considered an instance of the sequential exploration strategy [87].
We specifically use these techniques in service of better understanding use of database con-
currency control.

184

Chapter 8

Conclusions

In this chapter, we conclude this dissertation by reflecting on general design patterns
for systems builders, limitations of our approach, and opportunities for future work in
coordination avoidance. We conclude with a final discussion on the results contained herein.

8.1 Design Patterns for Coordination Avoidance

During the development of the algorithms and systems described in this dissertation, we
encountered a set of recurring patterns that assisted in our design process, both in applying
invariant confluence and also deriving coordination-free implementations. Here, we outline
four in the hope that they act as helpful rules of thumb and guidelines for future system
architects:

Separate progress from visibility. In a coordination-free system, different operations must
be able to proceed independently. An inherent side-effect of this behavior is that the progress
of one operation may not be visible to other concurrent operations. Thus, a coordination-
free system guarantees progress of operations without guaranteeing visibility of their side
effects. The side effects can eventually become visible, but coordination-free applications
cannot depend on observing them. Put another way, a coordination-free system does not
arbitrate whether independent operations should proceed or not—it simply arbitrates when
their effects become visible.

Ensure composability of operations. The corollary to the above observation is that a
coordination-free application must ensure that its operations are composable. This is the
essence of the invariant confluence property, but it bears repeating: in a coordination-free
execution, operations will run concurrently, so whether or not their side effects can be rec-

8.2. LIMITATIONS 185

onciled is key to determining whether the execution is safe. We have captured this reconcil-
iation process via an explicit merge operator. In our analyses, merge is simple: typically just
set union or a natural extension of abstract data types. However, more complicated merge
operations are possible (e.g., to capture behavior such as compensating actions). The guid-
ing question here is: if transactions produce multiple effects independently, do the effects
make sense when combined?

Control visibility via multi-versioning. In our coordination-free implementations and sys-
tem designs, we have relied heavily on the use of multi-versioning. In some cases, this
appears a necessity: to avoid revealing intermediate data while allowing updates to existing
data, multiple versions are required (e.g., as in RAMP). The subtlety in each implementa-
tion is due to two related factors. First, when are new writes revealed? For example, Read
Atomic isolation and causal consistency each provide a different answer that affects the al-
gorithm design. Second, how is dependency information encoded in the database? Again,
as an example, RAMP and causally consistent algorithms take various different approaches.
For RAMP, we have provided three options that offer a trade-off between efficiency of reads
and compactness of metadata. For causal consistency, we have another set of options, from
vector clocks to dependency trees (Section 5.6.3). Nevertheless, the core concepts are the
same, and they are repeated in many of our algorithmic and systems contributions, from
Read Committed isolation to our invariant confluent implementation of TPC-C transac-
tions.

Limit the scope of coordination (when required). Our primary focus in this thesis is deter-
mining when coordination-free implementations of common semantics are achievable. As
we have seen, sometimes coordination is required. As a simple design axiom that is intuitive
but nevertheless useful, when coordination is unavoidable, it is desirable to limit its scope,
both in time and space. That is, first, it is best to coordinate over as few operations as
possible (e.g., in TPC-C, instead of coordinating for all operations, we only coordinate for
those that require it, allowing the rest to execute without coordination). Second, coordina-
tion within a single node is much cheaper than coordinating across nodes, so minimizing
the distribution of coordinating processes is also beneficial. We expand on this final theme
in the remainder of this chapter.

8.2 Limitations

While we believe that the techniques in this thesis are useful, they have several limita-
tions; in this section, we outline four of them. We discuss avenues for addressing them in
Section 8.3.

8.3. FUTURE WORK 186

Advance knowledge. In our invariant confluence analysis, we have effectively assumed
that all program text and constraints are known in advance. Of course, by restricting
program operations and constraints to only those constructs that we have shown to be
invariant confluent, we can construct safe “languages” from which one can dynamically
specify programs. However, without further consideration of the admissible logics and
complexity classes contained within the space of invariant confluent semantics, it is difficult
to precisely characterize the utility of this alternative.

Complete specifications. A related concern is that invariant confluence requires a complete
specification of correctness for a given task or program. If a particular invariant does not
appear in a specification, invariant confluence assumes that the invariant does not matter
for correctness. This leaves a considerable burden on the programmer. We have attempted
to mitigate this burden by considering existing, widely-used semantics in this dissertation.

Manual process. Our application of invariant confluence analysis and development of
coordination-free algorithms is primarily manual, relying on proofs, rudimentary static
analysis, and a set of design principles as outlined above. We have not found this pro-
cess to be exceedingly onerous in practice, but, nevertheless, for others to rigorously apply
these ideas may require considerable familiarity with the details in this work.

Replicated and partitioned model.

Mixed execution. Our primary goal has been to determine whether coordination-free
execution is possible and, when it is, how to realize coordination-free implementations of
this task. This leaves a question of how to combine coordination-free and coordinated
semantics within a given application. A trivial answer is to always coordinate in the event
that invariant confluence does not hold. However, in our experience, this empirically wastes
considerable opportunity for more efficient execution. Rather, fully realizing coordination
avoidance requires embracing mixed-mode execution within system runtimes.

8.3 Future Work

We see several promising directions for future work on coordination avoidance, which
we discuss here. A subset of the directions here address the limitations of our existing work
that we have discussed in Section 8.2, while others represent new questions arising from
this work.

8.3. FUTURE WORK 187

8.3.1 Automating Coordination Avoidance

In this dissertation, we have developed a foundation for determining when coordination-
free execution is possible; we have applied the invariant confluence principle to a range
of semantics found in applications today. However, this process is primarily manual and
requires human intervention at several stages of the process, from proving or disproving
the invariant confluence of a set of semantics to deriving a coordination-free algorithm for
implementing an invariant confluent set of semantics. This raises a natural question: which
aspects of this process can be automated? We see several avenues for progress:

Automatically proving invariant confluence. Given a set of operations, an invariant, and a
merge function, it would be desirable to automatically prove whether invariant confluence
holds for the combination. For arbitrary logic, this is undecidable via trivial application
of Rice’s Theorem. However, given the brevity of most of our proofs in this work, we
believe that, for practical programs, this is feasible. The key to achieving this possiblity is
to determine a sufficiently restricted set (or language) of operations and constraints that can
be efficiently checked.

Synthesizing coordination-free algorithms. As we have discussed, many of our algorithms
fit a common pattern—to what extent can we automatically synthesize coordination-free al-
gorithms from their specification (similar to synthesis of concurrent data structures [131])?
Could we build a synthesizer that could automatically output the RAMP protocols de-
scribed in this dissertation, using only the RA isolation specification? Could we do the
same for causal consistency? We believe the answer is yes to all: the base implementation
of each is relatively similar (a multi-versioned database), and each implementation is effec-
tively parametrized by a delivery policy and metadata. Thus, a synthesizer could efficiently
search the space of delivery policies and metadata to find an appropriate match for a given
set of semantics. For the semantics we have described here, the search space is relatively
constrained.

Mining constraints. The task of specifying a complete declarative set of invariants for
arbitrary applications is a considerable burden on developers. Is it possible to automate
this process? One promising possibility is to use recent program analysis techniques such
as the Homeostasis Protocol [198] to first generate a conservative set of invariants from ap-
plication code (e.g., using serializability as a correctness specification). Subsequently, given
this conservative specification, we can engage the programmer to increase its precision.
Specifically, given a cost model for each invariant (e.g., determined by applying invariant
confluence analysis and examining the distribution of data and which invariants require
single-node versus multi-partition coordination to enforce), we can present the user with a
list of “expensive” invariant-operation pairs ranked by cost. For each operation, we can

8.3. FUTURE WORK 188

present a set of cheaper alternatives to choose from that relax the specification. For ex-
ample, we might explain that, while assigning IDs sequentially is expensive, using a nonce
unique ID generator is considerably less expensive. Thus, even if program text indicates
the need for coordination, involving the programmer in the program rewriting phase may
allow more flexibility. By using cost models to guide the optimization, we can address the
most expensive components of the application first.

Bespoke coordination plans. Given a set of operations and constraints, how should a
system actually proceed to enforce them? Our current approach is relatively simple: each
constraint and operation pair has an associated implementation (e.g., foreign key insertions
use RAMP transactions). However, for more complex constraints and operations, this ap-
proach can quickly become onerous and even untenable. We see an opportunity for both
more principled study of distributed invariant enforcement (in the spirit of active database
systems, especially in a multi-partition, geo-replicated environment) as well as, in effect,
“query planning” for coordination. If coordination is required, what mechanisms should
be chosen? On what partitions should they be deployed? As an example, lock-based co-
ordination is typically partitioned by item (e.g., the lock for item x belongs on the server
for x). However, if we consider higher-order data types like publish-subscribe queues, we
have a number of options, including coordinating at the publisher(s), coordinating at the
subscriber(s), or neither. The Blazes system [18] chooses between totally ordered, partially
ordered, and unordered delivery in a stream processing engine in order to guarantee output
determinism; similar choices exist for invariant enforcement. Given that there are rarely
unilateral “best” strategies in concurrency control, runtime adaptivity may confer serious
advantages.

Maintaining constraints and operations. Applications change over time: new constraints
and operations will be added to applications. How should we incrementally maintain coor-
dination plans, and how can we incrementally check (and maintain) invariant confluence?
New constraints must be compatible with existing constraints, otherwise an unsatisfiable
set of constraints will result in operation unavailability and database “inconsistency.” One
simple strategy is to treat code modifications as a coordinated operation, much as schema
changes are rolled out across clusters today.

8.3.2 Comprehending Weak Isolation

As discussed in Section 4.1, few relational database engines today actually provide seri-
alizability by default or even as an option at all. This was a somewhat surprising result to
us, as much of the power and beauty of the transaction concept is predicated on serializable
isolation. As we have in Section 6.5, these weak isolation guarantees can corrupt applica-

8.3. FUTURE WORK 189

tion integrity if not correctly applied. This raises a set troubling questions for the database
community. Primarily, how is it that weak isolation is so prevalent and yet transaction
processing is successful in practice?

One possibility for this behavior is that, in practice, there is little concurrency. For many
high value applications such as point of sale systems, volumes on the order of hundreds
of transaction per second are impressive yet are easily handled by a single server runtime.
Without high concurrency, there are few conflicts. However, if this is the case, increasing
query and data volumes may lead to an increased incidence of consistency errors due to
weak isolation.

Another possibility is that programmers are simply compensating for weak application
in the application. This is possible via use of language constructs like SELECT FOR UPDATE,
which acquire exclusive access to a record, compensating actions, and a range of alternative
concurrency control strategies. Determining whether this is the case will require additional
investigation of programmer behavior.

In either of these cases, we see a number of opportunities for improving programmer
experiences, including:

Automated isolation analyses. In line with the automated invariant confluence analyses
above, one could check a given application to determine its susceptibility to inconsistencies
arising from weak isolation anomalies. This has been an active area of research for weak
memory models in multi-processor systems, and we see an analogous opportunity here.

Debugging weak isolation. When inconsistencies in data occur, from where did they come?
Leveraging provenance-style analyses to determine the origins of inconsistency may assist
programmers in understanding why errors occurred and how to avoid them in the future.

Automated isolation repair. Given an analysis as above, can we synthesize the use of
constructs like SELECT FOR UPDATE to correct for anomalies? Once an inconsistency oc-
curs, can a system automatically generate a compensating action that will repair it without
compromising correctness?

8.3.3 Emerging Application Patterns

Given the ascendancy of open source, there is unprecedented opportunity to empirically
and quantitatively study how our systems are and are not serving the needs of applica-
tion programmers. Lightweight program analysis has never been easier, and the corpus of
readily-accessible code—especially in an academic context—has never been larger.

The applications we study here are undoubtedly dwarfed by many other commercial and

8.3. FUTURE WORK 190

enterprise-grade codebases in terms of size, quality, and complexity. However, compared
to alternatives such as TPC-C, which today is almost 23 years old and is still the preferred
standard for transaction processing evaluation, open source corpuses are arguably better
proxies for modern applications. Recent efforts like the OLTPBenchmark suite [98] are
promising but are nevertheless (and perhaps necessarily) not a substitute for real applica-
tions. The opportunity to perform both quantitative surveys across a large set of appli-
cations as well as longitudinal studies over the history of each application repository (and
the behavior of a given programmer over time and across repositories) is particularly com-
pelling. While these studies are inherently imprecise (due to limitations of the corpuses), the
resulting quantitative trends are invaluable.

Thus, in this era of “Big Data” analytics, we see great promise in turning these analyses
inwards, towards an empirical understanding of the usage of data management systems
today, in service of better problem selection and a more quantitatively informed community
dialogue. Our previous discussion in Section 6.7 hints at what is possible when we re-
evaluate abstractions such as the transaction concept in light of developer trends.

8.3.4 Statistical Coordination Avoidance

In this work, we have largely concerned ourselves with the problem of deterministically
maintaining safety guarantees. These guarantees are true guarantees in that they will hold
in all scenarios: this is useful for application programmers as they do not have to reason
about exceptional behavior under which safety guarantees do not hold. However, many
emerging analytics tasks may not require such rigid guarantees. Instead, we might consider
more relaxed safety guarantees as in PBS, wherein safety is guaranteed only in expectation
or in a probabilistic sense. Numerical consistency guarantees and their enforcement have a
long history in the literature [148, 185, 232, 237] but have seen limited adoption for want
of a practical use case; we view these statistical analytics tasks as a new killer application.

Adapting the ideas we have discussed here to this statistical context provides a num-
ber of opportunities. A modified invariant confluence analysis might account for numerical
robustness by incorporating bounded drift between merge invocations or incorporating net-
work delay in analysis. In turn, coordination avoiding algorithms and variants of classic
techniques from as escrow transactions [186] and approximate replication [185] for rebal-
ancing could be used to increase the efficiency of statistical analysis tasks.

As an example, in the Alternating Direction Method of Multipliers (ADMM) [61], a
number of processes coordinate to perform a distributed convex optimization routine. A
core component of ADMM is a mathematical “consensus term” that prohibits individual
processes from diverging from the global solution. We can treat this term as, in effect, a

8.4. CLOSING THOUGHTS 191

quadratic penalty that is analogous to the numerical inequalities enforced by the escrow
transaction method. In ADMM, all processes typically communicate to update the consen-
sus term. However, in the escrow transaction method, processes can communicate pair-wise
to rebalance slack in the allocation of divergence to individual processes. Processes might
use a heuristic to borrow slack from the least-loaded process, thus reducing overall commu-
nication. Could escrow’s pair-wise rebalancing be employed in ADMM in order to reduce
communication costs without affecting convergence? We believe so.

Our initial experiences in this space have been promising. First, the Velox [86] system
provides scalable model predictions as a service by treating models as statistically robust
materialized views. In contrast with traditional materialized views, Velox defers the main-
tenance of models as new training data arrives and instead prioritizes model maintenance
according to robustness. Second, our experiences integrating asynchronous model training
into distributed dataflow engines [122] indicates that the degree of coordination required
for efficient convergence of convex optimization tasks is closely linked to model skew. Both
of these projects concretely highlight the potential of statistically-motivated coordination
avoidance.

In general, we see great promise in systematically exploiting numerical robustness of
statistical analytics routines. If a procedure is robust to numerical inaccuracy, an execu-
tion framework can systematically introduce inaccuracy to improve execution efficiency:
for example, by introducing asynchrony into processing, by batching messages, or by op-
erating over stale data. This is not a new idea by itself, but we see a wealth of unexplored
connections in the domain of data serving and transaction processing that, in our initial
investigations, have borne considerable fruit.

8.4 Closing Thoughts

ACID transactions and associated strong isolation and consistency levels dominated the
field of database concurrency control for decades, due in large part to their ease of use and
ability to automatically guarantee application correctness criteria. However, these powerful
abstractions come with a hefty cost: concurrent transactions must coordinate in order to
prevent read/write conflicts that could compromise equivalence to a serial execution. At
large scale and, increasingly, in geo-replicated system deployments, the coordination costs
necessarily associated with these implementations produce significant overheads in the form
of penalties to throughput, latency, and availability. Today, these overheads necessitate a
re-evaluation of concurrency control best practices.

In this dissertation, we developed a formal framework, called invariant confluence, in

8.4. CLOSING THOUGHTS 192

which application invariants are used as a basis for determining if and when coordina-
tion is strictly necessary to maintain correctness. With this framework, we demonstrated
that, in fact, many—but not all—common database semantics and integrity constraints
are actually achievable without coordination. By applying these results to a range of ac-
tual workloads, we demonstrated multiple opportunities to avoid coordination in many
cases that traditional serializable mechanisms would otherwise coordinate. The order-of-
magnitude performance improvements we demonstrated via novel coordination-avoiding
concurrency control implementations provide compelling evidence that coordination avoid-
ance is a promising approach to meaningfully scaling future data management systems.

As a final note, today, the database and distributed computing communities are some-
what separate. While these communities have considerable shared interests in replicated
data, their terminology and transfer of ideas are limited beyond the basics. This is un-
fortunate: the distributed computing literature has much to offer students of distributed
databases. As we have highlighted here, the distributed computing community’s emphasis
on formal specification enables very useful analyses, without which we might spend years
looking for algorithms that do not exist. Moreover, the distributed computing community’s
emphasis on modular abstractions, including atomic commitment, consensus objects, and
broadcast primitives will be familiar to systems builders. Conversely, while the distributed
computing readership of this thesis may be more limited, distributed databases also have
much to offer scholars of distributed computing, including but not limited to new transac-
tion models and safety properties. Perhaps most unfortunate is the reality that an increasing
number of systems designers and practitioners today are exposed to the complexities of dis-
tribution, and there is little principled and practical guidance as to when to employ each
of these mechanisms. Accordingly, this thesis is an attempt to merge these worlds and
use principled analyses of network behavior to improve the practical development of dis-
tributed database systems. By making judicious use of coordination, we can build systems
that guarantee application safety while maximizing their scalability.

193

Bibliography

[1] How a quiet developer built Goodreads.com into book community of 2.6+ million
members – with Otis Chandler, November 2009. http://mixergy.com/interviews/
goodreads-otis-chandler/.

[2] Java EE 7 API: Package javax.persistence, 2013. http://docs.oracle.com/javaee/

7/api/javax/persistence/package-summary.html.

[3] CakePHP, 2014. http://cakephp.org/ and http://book.cakephp.org/2.0/en/

index.html.

[4] Django: The Web framework for perfectionists with deadlines, 2014. https://www.
djangoproject.com/ and https://github.com/django/django.

[5] Laravel: The PHP Framework for Web Artisans, 2014. http://laravel.com/ and
https://github.com/laravel/laravel.

[6] RailsGuide: Active Record Validations, 2014. http://guides.rubyonrails.org/

active_record_validations.html.

[7] SchemaPlus, 2015. https://github.com/SchemaPlus/schema_plus.

[8] Daniel J. Abadi. Consistency tradeoffs in modern distributed database system design:
CAP is only part of the story. IEEE Computer, 45(2):37–42, 2012.

[9] A. Adya. Weak consistency: a generalized theory and optimistic implementations for
distributed transactions. PhD thesis, MIT, 1999.

[10] D. Agrawal, J. L. Bruno, A. El Abbadi, and V. Krishnaswamy. Relative serializabil-
ity (extended abstract): An approach for relaxing the atomicity of transactions. In
PODS, 1994.

[11] D. Agrawal and V. Krishnaswamy. Using multiversion data for non-interfering exe-
cution of write-only transactions. In SIGMOD, 1991.

http://mixergy.com/interviews/goodreads-otis-chandler/
http://mixergy.com/interviews/goodreads-otis-chandler/
http://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html
http://cakephp.org/
http://book.cakephp.org/2.0/en/index.html
http://book.cakephp.org/2.0/en/index.html
https://www.djangoproject.com/
https://www.djangoproject.com/
https://github.com/django/django
http://laravel.com/
https://github.com/laravel/laravel
http://guides.rubyonrails.org/active_record_validations.html
http://guides.rubyonrails.org/active_record_validations.html
https://github.com/SchemaPlus/schema_plus

BIBLIOGRAPHY 194

[12] Divyakant Agrawal et al. Consistency and orderability: semantics-based correctness
criteria for databases. ACM TODS, 18(3):460–486, September 1993.

[13] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and P.W. Hutto. Causal
memory: Definitions, implementation and programming. Dist. Comp., 9(1), 1995.

[14] Alexander Aiken, Jennifer Widom, and Joseph M Hellerstein. Behavior of database
production rules: Termination, confluence, and observable determinism. In SIG-
MOD, 1992.

[15] Ross Allen. Airbnb Engineering Blog: “Upgrading Airbnb from
Rails 2.3 to Rails 3.0”, October 2012. http://nerds.airbnb.com/

upgrading-airbnb-from-rails-23-to-rails-30/.

[16] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web services.
Springer, 2004.

[17] B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,
1985.

[18] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and David Maier. Blazes: Coor-
dination analysis for distributed programs. In ICDE, 2014.

[19] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. Con-
sistency analysis in Bloom: a CALM and collected approach. In CIDR, 2011.

[20] Peter Alvaro et al. Consistency without borders. In ACM SoCC, 2013.

[21] Tom J. Ameloot, Frank Neven, and Jan Van Den Bussche. Relational transducers for
declarative networking. J. ACM, 60(2):15:1–15:38, May 2013.

[22] ISO/IEC 9075-2:2011 Information technology – Database languages – SQL – Part
2: Foundation (SQL/Foundation), year=2011.

[23] Austin Appleby. Murmurhash 2.0, 2008. http://murmurhash.googlepages.com/.

[24] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A
view of cloud computing. Communications of the ACM, 53(4):50–58, 2010.

[25] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark Callaghan.
Linkbench: a database benchmark based on the Facebook social graph. In SIGMOD,
2013.

http://nerds.airbnb.com/upgrading-airbnb-from-rails-23-to-rails-30/
http://nerds.airbnb.com/upgrading-airbnb-from-rails-23-to-rails-30/
http://murmurhash.googlepages.com/

BIBLIOGRAPHY 195

[26] Rony Attar, Philip A. Bernstein, and Nathan Goodman. Site initialization, recovery,
and backup in a distributed database system. IEEE TSE, 10(6):645–650, November
1984.

[27] Hagit Attiya, Rachid Guerraoui, Danny Hendler, et al. Laws of order: Expensive
synchronization in concurrent algorithms cannot be eliminated. In POPL, 2011.

[28] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simula-
tions and Advanced Topics (2nd edition). John Wiley Interscience, March 2004.

[29] AWS. Summary of the Amazon EC2 and Amazon RDS Service Disruption in the US
East Region. http://tinyurl.com/6ab6el6, April 2011.

[30] James Aylett. django-database-constraints, 2013. https://github.com/jaylett/

django-database-constraints.

[31] Shivnath Babu and Herodotos Herodotou. Massively parallel databases and mapre-
duce systems. Foundations and Trends in Databases, 5(1):1–104, 2013.

[32] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and
Ion Stoica. Highly Available Transactions: Virtues and limitations. In VLDB, 2014.

[33] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. Feral Concurrency Control: An empirical investigation of modern
application integrity. In SIGMOD, 2015.

[34] Peter Bailis, Alan Fekete, Michael J. Franklin, Joseph M. Hellerstein, Ali Ghodsi, and
Ion Stoica. Coordination avoidance in database systems. In VLDB, 2015.

[35] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. The
potential dangers of causal consistency and an explicit solution. In ACM SoCC,
2012.

[36] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. HAT,
not CAP: Introducing Highly Available Transactions. In HotOS, 2013.

[37] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Scalable
atomic visibility with RAMP transactions. In SIGMOD, 2014.

[38] Peter Bailis and Ali Ghodsi. Eventual consistency today: Limitations, extensions, and
beyond. ACM Queue, 11(3), 2013.

[39] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Bolt-on causal con-
sistency. In SIGMOD, 2013.

http://tinyurl.com/6ab6el6
https://github.com/jaylett/django-database-constraints
https://github.com/jaylett/django-database-constraints

BIBLIOGRAPHY 196

[40] Peter Bailis and Kyle Kingsbury. The network is reliable: An informal survey of
real-world communications failures. ACM Queue, 12(7), July 2014. Also appears in
Communications of the ACM 57(9):48-55, September 2014.

[41] Peter Bailis and Kyle Kingsbury. The network is reliable: An informal survey of
real-world communications failures. ACM Queue, 12(7):20, 2014.

[42] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein,
and Ion Stoica. Probabilistically Bounded Staleness for practical partial quorums. In
VLDB, 2012.

[43] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein,
and Ion Stoica. PBS at work: Advancing data management with consistency metrics.
In SIGMOD, 2013. Demo.

[44] Peter Bailis, Shivaram Venkataraman, Michael J Franklin, Joseph M Hellerstein,
and Ion Stoica. Quantifying Eventual Consistency with PBS. The VLDB Journal,
23(2):279–302, 2014. “Best of VLDB 2012” Special Issue.

[45] J. Baker, C. Bond, J.C. Corbett, JJ Furman, A. Khorlin, J. Larson, J.M. Léon, Y. Li,
A. Lloyd, and V. Yushprakh. Megastore: Providing scalable, highly available storage
for interactive services. In CIDR, 2011.

[46] Balderdash. Sails.js: Realtime MVC Framework for Node.js, 2014. https://github.
com/balderdashy/sails.

[47] Balderdash. Waterline: An adapter-based ORM for Node.js with support for mysql,
mongo, postgres, redis, [sic] and more, 2014. https://github.com/balderdashy/

waterline.

[48] Bean Validation Expert Group. Jsr-000303 bean validation 1.0 final release spec-
ification, 2009. http://download.oracle.com/otndocs/jcp/bean_validation-1.

0-fr-oth-JSpec/.

[49] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of
ANSI SQL isolation levels. In SIGMOD, 1995.

[50] David Bermbach and Stefan Tai. Eventual consistency: How soon is eventual? An
evaluation of Amazon S3’s consistency behavior. In MW4SOC, 2011.

[51] Emmanuel Bernard. Java Specification Request 349: Bean Validation 1.1, 2013.
https://jcp.org/en/jsr/detail?id=349.

http://www.bailis.org/papers/pbs-vldbj2014.pdf
https://github.com/balderdashy/sails
https://github.com/balderdashy/sails
https://github.com/balderdashy/waterline
https://github.com/balderdashy/waterline
http://download.oracle.com/otndocs/jcp/bean_validation-1.0-fr-oth-JSpec/
http://download.oracle.com/otndocs/jcp/bean_validation-1.0-fr-oth-JSpec/
https://jcp.org/en/jsr/detail?id=349

BIBLIOGRAPHY 197

[52] Arthur J Bernstein and Philip M Lewis. Transaction decomposition using transaction
semantics. Distributed and Parallel Databases, 4(1):25–47, 1996.

[53] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery
in database systems, volume 370. Addison-wesley New York, 1987.

[54] Phil Bernstein and Sudiptdo Das. Rethinking eventual consistency. In SIGMOD,
2013.

[55] Philip A. Bernstein, David W. Shipman, and James B. Rothnie, Jr. Concurrency
control in a system for distributed databases (SDD-1). ACM TODS, 5(1):18–51,
March 1980.

[56] Phillip A Bernstein, Alon Y Halevy, and Rachel A Pottinger. A vision for management
of complex models. ACM Sigmod Record, 29(4):55–63, 2000.

[57] Ken Birman, Gregory Chockler, and Robbert van Renesse. Toward a cloud comput-
ing research agenda. SIGACT News, 40(2):68–80, June 2009.

[58] Jose A Blakeley, Per-Ake Larson, and Frank Wm Tompa. Efficiently updating mate-
rialized views. In SIGMOD, 1986.

[59] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. CACM,
13(7):422–426, 1970.

[60] Ivan Bocić and Tevfik Bultan. Inductive verification of data model invariants for web
applications. In ICSE, 2014.

[61] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Dis-
tributed optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

[62] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska. Building a database
on S3. In SIGMOD, 2008.

[63] Eric Brewer. Towards robust distributed systems. 2000. Keynote at PODC.

[64] Eric Brewer. CAP twelve years later: How the “rules” have changed. Computer,
45(2):23–29, 2012.

[65] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, et al.
TAO: Facebook’s distributed data store for the social graph. In USENIX ATC, 2013.

BIBLIOGRAPHY 198

[66] Jordan Brough. #645: Alternative to validates_uniqueness_of using db constraints,
2011. rails/rails at https://github.com/rails/rails/issues/645.

[67] J. Brzezinski, C. Sobaniec, and D. Wawrzyniak. From session causality to causal
consistency. In PDP, 2004.

[68] Sebastian Burckhardt, Daan Leijen, Manuel Fähndrich, and Mooly Sagiv. Eventually
consistent transactions. In ESOP, 2012.

[69] Phil Calcado. Building products at SoundCloud – Part I: Dealing with
the monolith, June 2014. https://developers.soundcloud.com/blog/

building-products-at-soundcloud-part-1-dealing-with-the-monolith.

[70] Michael J Carey and David J DeWitt. Of objects and databases: A decade of turmoil.
In VLDB, 1996.

[71] Michael J Carey et al. Shoring up persistent applications. In SIGMOD, 1994.

[72] Andrew Carter. Hulu Tech Blog: “At a glance: Hulu hits Rails Conf 2012”, May
2012. http://tech.hulu.com/blog/2012/05/14/347/.

[73] A. Chan and R. Gray. Implementing distributed read-only transactions. IEEE TSE,
11(2):205–212, 1985.

[74] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, et al. Bigtable: A distributed storage
system for structured data. In OSDI, 2006.

[75] Bernadette Charron-Bost. Concerning the size of logical clocks in distributed systems.
Inf. Process. Lett., 39(1):11–16, July 1991.

[76] Avik Chaudhuri and Jeffrey S Foster. Symbolic security analysis of Ruby-on-Rails
web applications. In CCS, 2010.

[77] Alvin Cheung, Owen Arden, Samuel Madden, Armando Solar-Lezama, and An-
drew C Myers. StatusQuo: Making familiar abstractions perform using program
analysis. In CIDR, 2013.

[78] Alvin Cheung, Samuel Madden, Owen Arden, and Andrew C Myers. Automatic
partitioning of database applications. In VLDB, 2012.

[79] Rada Chirkova and Jun Yang. Materialized views. Foundations and Trends in
Databases, 4(4):295–405, 2012.

https://github.com/rails/rails/issues/645
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-dealing-with-the-monolith
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-dealing-with-the-monolith
http://tech.hulu.com/blog/2012/05/14/347/

BIBLIOGRAPHY 199

[80] Austin T. Clements et al. The scalable commutativity rule: designing scalable soft-
ware for multicore processors. In SOSP, 2013.

[81] Neil Conway, William R Marczak, Peter Alvaro, Joseph M Hellerstein, and David
Maier. Logic and lattices for distributed programming. In ACM SoCC, 2012.

[82] Blaine Cook. Scaling Twitter, SDForum Silicon Valley Ruby Conference, 2007. http:
//www.slideshare.net/Blaine/scaling-twitter.

[83] B.F. Cooper et al. PNUTS: Yahoo!’s hosted data serving platform. In VLDB, 2008.

[84] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with YCSB. In ACM SoCC, 2010.

[85] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
J. J. Furman, et al. Spanner: Google’s globally-distributed database. In OSDI, 2012.

[86] Dan Crankshaw, Peter Bailis, Joseph E. Gonzalez, Haoyuan Li, Zhao Zhang,
Michael J. Franklin, Ali Ghodsi, and Michael I. Jordan. The Missing Piece in Com-
plex Analytics: Low Latency, Scalable Model Management and Serving with Velox.
In CIDR, 2015.

[87] John W Creswell. Research design: Qualitative, quantitative, and mixed methods
approaches. Sage, 2013.

[88] Kyle Crum. #3238: Activerecord::staleobjecterror in checkout, 2013. spree/spree at
https://github.com/spree/spree/issues/3238.

[89] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. Schism: a workload-
driven approach to database replication and partitioning. In VLDB, 2010.

[90] S. Das, D. Agrawal, and A. El Abbadi. G-store: a scalable data store for transactional
multi key access in the cloud. In ACM SoCC, 2010.

[91] K. Daudjee and K. Salem. Lazy database replication with ordering guarantees. In
ICDE, 2004.

[92] S.B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in partitioned net-
works. ACM CSUR, 17(3):341–370, 1985.

[93] Jeff Dean. Designs, lessons and advice from building large distributed systems.
Keynote at LADIS 2009.

http://www.slideshare.net/Blaine/scaling-twitter
http://www.slideshare.net/Blaine/scaling-twitter
https://github.com/spree/spree/issues/3238

BIBLIOGRAPHY 200

[94] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the
ACM, 56(2):74–80, 2013.

[95] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, et al. Dynamo: Amazon’s highly available key-value store. In
SOSP, 2007.

[96] Alan Demers et al. Epidemic algorithms for replicated database maintenance. In
PODC, 1987.

[97] Peter Deutsch. The eight fallacies of distributed computing. http://tinyurl.com/

c6vvtzg, 1994.

[98] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-Mauroux.
OLTP-Bench: An extensible testbed for benchmarking relational databases. In
VLDB, 2014.

[99] Romain Dillet. Update: Amazon Web Services down in North Virginia — Reddit,
Pinterest, Airbnb, Foursquare, Minecraft and others affected. TechCrunch http:

//tinyurl.com/9r43dwt, October 2012.

[100] GregoryJ. Duck, PeterJ. Stuckey, and Martin Sulzmann. Observable confluence for
constraint handling rules. In ICLP, 2007.

[101] John Duff. How Shopify scales Rails, Big Ruby 2013, April 2013. http://www.

slideshare.net/jduff/how-shopify-scales-rails-20443485.

[102] Edd Dumbill. O’Reilly: “Ruby on Rails: An interview with David Heinemeier
Hansson”, August 2005. http://www.oreillynet.com/pub/a/network/2005/08/

30/ruby-rails-david-heinemeier-hansson.html.

[103] Steve Easterbrook et al. Selecting empirical methods for software engineering re-
search. In Guide to advanced empirical software engineering, pages 285–311.
Springer, 2008.

[104] Max Ehsan. Input validation with Laravel, 2014. http://laravelbook.com/

laravel-input-validation/.

[105] K. P. Eswaran et al. The notions of consistency and predicate locks in a database
system. Communications of the ACM, 19(11):624–633, 1976.

[106] Jose Faleiro, Alexander Thomson, and Daniel J Abadi. Lazy evaluation of transac-
tions in database systems. In SIGMOD, 2014.

http://tinyurl.com/c6vvtzg
http://tinyurl.com/c6vvtzg
http://tinyurl.com/9r43dwt
http://tinyurl.com/9r43dwt
http://www.slideshare.net/jduff/how-shopify-scales-rails-20443485
http://www.slideshare.net/jduff/how-shopify-scales-rails-20443485
http://www.oreillynet.com/pub/a/network/2005/08/30/ruby-rails-david-heinemeier-hansson.html
http://www.oreillynet.com/pub/a/network/2005/08/30/ruby-rails-david-heinemeier-hansson.html
http://laravelbook.com/laravel-input-validation/
http://laravelbook.com/laravel-input-validation/

BIBLIOGRAPHY 201

[107] Abdel Aziz Farrag and M Tamer Özsu. Using semantic knowledge of transactions to
increase concurrency. ACM TODS, 14(4):503–525, 1989.

[108] Alan Fekete, Shirley N Goldrei, and Jorge Pérez Asenjo. Quantifying isolation
anomalies. In VLDB, 2009.

[109] Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch, and Alex Shvartsman.
Eventually-serializable data services. In PODC, 1996.

[110] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis
Shasha. Making snapshot isolation serializable. ACM TODS, 30(2):492–528, June
2005.

[111] Hardy Ferentschik. Accessing the Hibernate Session within a Con-
straintValidator, May 2010. https://developer.jboss.org/wiki/

AccessingtheHibernateSessionwithinaConstraintValidator.

[112] Hardy Ferentschik and Gunnar Morling. Hibernate validator JSR 349 reference
implementation 5.1.3.final, 2014. https://docs.jboss.org/hibernate/stable/

validator/reference/en-US/html/.

[113] Martin Fowler. Patterns of enterprise application architecture. Addison-Wesley
Longman Publishing Co., Inc., 2002.

[114] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.

[115] Hector Garcia-Molina. Using semantic knowledge for transaction processing in a
distributed database. ACM TODS, 8(2):186–213, June 1983.

[116] Hector Garcia-Molina and Kenneth Salem. Sagas. In SIGMOD, 1987.

[117] David Geer. Will software developers ride Ruby on Rails to success? Computer,
39(2):18–20, 2006.

[118] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[119] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network
failures in data centers: measurement, analysis, and implications. In SIGCOMM,
2011.

[120] Parke Godfrey et al. Logics for databases and information systems, chapter Integrity
constraints: Semantics and applications, pages 265–306. Springer, 1998.

https://developer.jboss.org/wiki/AccessingtheHibernateSessionwithinaConstraintValidator
https://developer.jboss.org/wiki/AccessingtheHibernateSessionwithinaConstraintValidator
https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/
https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/

BIBLIOGRAPHY 202

[121] Wojciech Golab, Xiaozhou Li, and Mehul A Shah. Analyzing consistency properties
for fun and profit. In PODC, 2011.

[122] Joseph E. Gonzalez, Peter Bailis, Michael J. Franklin, Joseph M. Hellerstein,
Michael I. Jordan, and Ion Stoica. Asynchronous complex analytics in a distributed
dataflow architecture.

[123] Jim Gray. The transaction concept: Virtues and limitations. In VLDB, 1981.

[124] Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM TODS,
31(1):133–160, March 2006.

[125] J.N. Gray, R.A. Lorie, G.R. Putzolu, and I.L. Traiger. Granularity of locks and
degrees of consistency in a shared data base. Technical report, IBM, 1976.

[126] Paul WPJ Grefen and Peter MG Apers. Integrity control in relational database
systems–an overview. Data & Knowledge Engineering, 10(2):187–223, 1993.

[127] Ashish Gupta and Jennifer Widom. Local verification of global integrity constraints
in distributed databases. In SIGMOD, 1993.

[128] James Hamilton. Stonebraker on CAP Theorem and Databases. http://tinyurl.

com/d3gtfq9, April 2010.

[129] David Heinemeier Hansson. active_record/transactions.rb, 2004. rails/rails githash
db045db at https://github.com/rails/rails/blob/db045dbb.

[130] David Heinemeier Hansson. Choose a single layer of cleverness, September 2005.
http://david.heinemeierhansson.com/arc/2005_09.html.

[131] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv. Con-
current data representation synthesis. In PLDI, 2012.

[132] P. Helland. Life beyond distributed transactions: an apostate’s opinion. In CIDR,
2007.

[133] Pat Helland. Life beyond distributed transactions: an apostate’s opinion. In CIDR,
2007.

[134] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. 2008.

[135] Hibernate Team and JBoss Visual Design Team. Hibernate reference documenta-
tion 4.3.7.final, 2014. http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/
html/.

http://tinyurl.com/d3gtfq9
http://tinyurl.com/d3gtfq9
https://github.com/rails/rails/blob/db045dbb
http://david.heinemeierhansson.com/arc/2005_09.html
http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/
http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/

BIBLIOGRAPHY 203

[136] Matthew Higgins. Foreigner. https://github.com/matthuhiggins/foreigner.

[137] Timothy Hinrichs et al. Caveat: Facilitating interactive and secure client-side valida-
tors for ruby on rails applications. In SECURWARE, 2013.

[138] Sean Hull. 20 obstacles to scalability. Communications of the ACM, 56(9):54–59,
2013.

[139] Nam Huyn. Maintaining global integrity constraints in distributed databases. Con-
straints, 2(3/4):377–399, January 1998.

[140] Ryan Johnson, Ippokratis Pandis, and Anastasia Ailamaki. Eliminating unscalable
communication in transaction processing. The VLDB Journal, pages 1–23, 2013.

[141] Evan P.C. Jones, Daniel J. Abadi, and Samuel Madden. Low overhead concurrency
control for partitioned main memory databases. In SIGMOD, 2010.

[142] Robert Kallman et al. H-store: a high-performance, distributed main memory trans-
action processing system. In VLDB, 2008.

[143] Bettina Kemme. Database replication for clusters of workstations. PhD thesis, EPFL,
2000.

[144] Jan Willem Klop. Term rewriting systems. Stichting Mathematisch Centrum Amster-
dam, 1990.

[145] Henry K Korth and Gregory Speegle. Formal model of correctness without serializ-
abilty. In SIGMOD, 1988.

[146] Michael Koziarski. Warn users about the race condition in validates_uniqueness_of.
[koz], 2007. rails/rails githash c01c28c at https://github.com/rails/rails/

commit/c01c28c.

[147] Glenn E Krasner, Stephen T Pope, et al. A description of the model-view-controller
user interface paradigm in the smalltalk-80 system. Journal of object oriented pro-
gramming, 1(3):26–49, 1988.

[148] S. Krishnamurthy, W. H. Sanders, and M. Cukier. An adaptive quality of service
aware middleware for replicated services. IEEE Transactions on Parallel and Dis-
tributed Systems, 14(11):1112–1125, 2003.

[149] Hsing-Tsung Kung and Christos H Papadimitriou. An optimality theory of concur-
rency control for databases. In SIGMOD, 1979.

https://github.com/matthuhiggins/foreigner
https://github.com/rails/rails/commit/c01c28c
https://github.com/rails/rails/commit/c01c28c

BIBLIOGRAPHY 204

[150] Craig Labovitz, Abha Ahuja, and Farnam Jahanian. Experimental study of internet
stability and backbone failures. In FTCS, 1999.

[151] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Providing high
availability using lazy replication. ACM TOCS, 10(4):360–391, November 1992.

[152] Hongli Lai. Document concurrency issues in validates_uniqueness_of., 2008. rail-
s/rails githash adacd94 at https://github.com/rails/rails/commit/adacd94.

[153] A. Lakshman and P. Malik. Cassandra - a decentralized structured storage system.
In LADIS, pages 35–40, 2008. Project site: http://cassandra.apache.org (2012).

[154] Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The ObjectStore
database system. Communications of the ACM, 34(10):50–63, 1991.

[155] Leslie Lamport. Towards a theory of correctness for multi-user database systems.
Technical report, CCA, 1976. Described in [12,202].

[156] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transac-
tions Software Engineering, 3(2):125–143, March 1977.

[157] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

[158] Jon Leighton. Support for specifying transaction isolation level, 2012. rails/rails
githash 392eeec at https://github.com/rails/rails/commit/392eeec.

[159] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues. Making
geo-replicated systems fast as possible, consistent when necessary. In OSDI, 2012.

[160] Cheng Li, Joao Leitao, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, et al.
Automating the choice of consistency levels in replicated systems. In USENIX ATC,
2014.

[161] Yi Lin, Bettina Kemme, Ricardo Jiménez-Peris, et al. Snapshot isolation and integrity
constraints in replicated databases. ACM TODS, 34(2), July 2009.

[162] Greg Linden. Marissa Mayer at Web 2.0. http://glinden.blogspot.com/2006/11/
marissa-mayer-at-web-20.html. 9 November 2006.

[163] Greg Linden. Make data useful. https://sites.google.com/site/glinden/Home/

StanfordDataMining.2006-11-29.ppt, 2006.

https://github.com/rails/rails/commit/adacd94
http://cassandra.apache.org
https://github.com/rails/rails/commit/392eeec
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-29.ppt
https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-29.ppt

BIBLIOGRAPHY 205

[164] R.J. Lipton and J.S. Sandberg. PRAM: A scalable shared memory. Technical Report
CS-TR-180-88, Princeton University, Department of Computer Science, 1988.

[165] V Liu, D Halperin, A Krishnamurthy, and T Anderson. F10: Fault tolerant engi-
neered networks. In NSDI, 2013.

[166] Francois Llirbat, Eric Simon, Dimitri Tombroff, et al. Using versions in update trans-
actions: Application to integrity checking. In VLDB, 1997.

[167] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Don’t settle for eventual: scalable causal consistency for wide-area storage with
COPS. In SOSP, 2011.

[168] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Stronger semantics for low-latency geo-replicated storage. In NSDI, 2013.

[169] Shiyong Lu, Arthur Bernstein, and Philip Lewis. Correct execution of transactions at
different isolation levels. IEEE TKDE, 16(9), 2004.

[170] Nancy A Lynch, Michael Merritt, William Weihl, and Alan Fekete. Atomic Trans-
actions: In Concurrent and Distributed Systems. Morgan Kaufmann Publishers Inc.,
1993.

[171] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availability, convergence. Tech-
nical Report TR-11-22, CS Department, UT Austin, May 2011.

[172] Dahlia Malkhi, Michael Reiter, Avishai Wool, and Rebecca Wright. Probabilistic
quorum systems. Information and Communication, 170:184–206, 2001.

[173] Ankit Malpani et al. Reverse engineering models from databases to bootstrap appli-
cation development. In ICDE, 2010.

[174] Adam Marcus. The nosql ecosystem. In HPTS, 2011. http://www.slideshare.net/
AdamMarcus/nosql-ecosystem.

[175] Athina Markopoulou et al. Characterization of failures in an operational IP back-
bone network. IEEE/ACM TON, 16(4), 2008.

[176] Declan McCullagh. How Pakistan knocked YouTube offline (and how to make sure
it never happens again). CNET, http://tinyurl.com/c4pffd, February 2008.

[177] Sean McCullough. Groupon Engineering Blog: “Geekon: I-Tier”, October 2013.
https://engineering.groupon.com/2013/node-js/geekon-i-tier/.

http://www.slideshare.net/AdamMarcus/nosql-ecosystem
http://www.slideshare.net/AdamMarcus/nosql-ecosystem
http://tinyurl.com/c4pffd
https://engineering.groupon.com/2013/node-js/geekon-i-tier/

BIBLIOGRAPHY 206

[178] Robert McMillan. Research experiment disrupts internet, for some. Computerworld,
http://tinyurl.com/23sqpek, August 2010.

[179] C Mohan. History repeats itself: Sensible and NonsenSQL aspects of the NoSQL
hoopla. In EDBT, 2013.

[180] Moni Naor and Avishai Wool. The load, capacity, and availability of quorum sys-
tems. SIAM Journal on Computing, 27(2):423–447, 1998.

[181] P. P. S. Narayan. Sherpa update. YDN Blog, http://tinyurl.com/c3ljuce, June
2010.

[182] Stephen Nguyen. A mind boggling 9 billion queries per second at facebook
@rocksdb, December 2011. Tweet by @Stephenitis, re-tweeted by @RocksDB.

[183] Jaideep Nijjar and Tevfik Bultan. Bounded verification of ruby on rails data models.
In ACM ISSTA, 2011.

[184] Charles Nutter. Q/a: What thread-safe Rails means, August 2008. http://blog.

headius.com/2008/08/qa-what-thread-safe-rails-means.html.

[185] Christopher Olston. Approximate Replication. PhD thesis, Stanford University,
2003.

[186] Patrick E O’Neil. The escrow transactional method. ACM TODS, 11(4):405–430,
1986.

[187] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. Skew-aware automatic database
partitioning in shared-nothing, parallel OLTP systems. In SIGMOD, 2012.

[188] Daniel Peng and Frank Dabek. Large-scale incremental processing using distributed
transactions and notifications. In OSDI, 2010.

[189] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and Alan J.
Demers. Flexible update propagation for weakly consistent replication. In SOSP,
1997.

[190] Shirish Hemant Phatak and BR Badrinath. Multiversion reconciliation for mobile
databases. In ICDE, 1999.

[191] Tom Preston-Werner. How we made GitHub fast, October 2009. https://github.

com/blog/530-how-we-made-github-fast.

http://tinyurl.com/23sqpek
http://tinyurl.com/c3ljuce
http://blog.headius.com/2008/08/qa-what-thread-safe-rails-means.html
http://blog.headius.com/2008/08/qa-what-thread-safe-rails-means.html
https://github.com/blog/530-how-we-made-github-fast
https://github.com/blog/530-how-we-made-github-fast

BIBLIOGRAPHY 207

[192] Lin Qiao et al. On brewing fresh Espresso: LinkedIn’s distributed data serving plat-
form. In SIGMOD, 2013.

[193] Rajiv Ranjan. Streaming big data processing in datacenter clouds. Cloud Computing,
IEEE, 1(1):78–83, 2014.

[194] Rajeev Rastogi, Sharad Mehrotra, Yuri Breitbart, Henry F. Korth, and Avi Silber-
schatz. On correctness of non-serializable executions. In PODS, 1993.

[195] Kun Ren, Alexander Thomson, and Daniel J. Abadi. Lightweight locking for main
memory database systems. VLDB, 2013.

[196] John Rizzo. Twitch: The official blog “Technically Speaking – Group Chat
and General Chat Engineering”, April 2014. http://blog.twitch.tv/2014/04/

technically-speaking-group-chat-and-general-chat-engineering/.

[197] Dave Roberts. #13234: Rails concurrency bug on save, 2013. rails/rails at https:
//github.com/rails/rails/issues/13234.

[198] Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat, Christoph Koch,
Nate Foster, and Johannes Gehrke. The homeostasis protocol: Avoiding transaction
coordination through program analysis. In SIGMOD, 2015.

[199] Sam Ruby, Dave Thomas, David Heinemeier Hansson, et al. Agile web development
with Rails 4. The Pragmatic Bookshelf, Dallas, Texas, 2013.

[200] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Comput. Surv., 37(1),
March 2005.

[201] Nicolas Schiper, Pierre Sutra, and Fernando Pedone. P-store: Genuine partial repli-
cation in wide area networks. In SRDS, 2010.

[202] Fred B Schneider. On concurrent programming. Springer, 1997.

[203] E. Schurman and J. Brutlag. Performance related changes and their user impact.
Presented at Velocity Web Performance and Operations Conference, June 2009.

[204] Laurie Segall. Internet routing glitch kicks millions offline. CNNMoney, http://
tinyurl.com/cmqqac3, November 2011.

[205] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehen-
sive study of convergent and commutative replicated data types. INRIA TR 7506,
2011.

http://blog.twitch.tv/2014/04/technically-speaking-group-chat-and-general-chat-engineering/
http://blog.twitch.tv/2014/04/technically-speaking-group-chat-and-general-chat-engineering/
https://github.com/rails/rails/issues/13234
https://github.com/rails/rails/issues/13234
http://tinyurl.com/cmqqac3
http://tinyurl.com/cmqqac3

BIBLIOGRAPHY 208

[206] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. Transac-
tion chopping: algorithms and performance studies. ACM TODS, 20(3):325–363,
September 1995.

[207] Jeff Shute et al. F1: A distributed SQL database that scales. In VLDB, 2013.

[208] Neeraj Singh. update_attributes and update_attributes! are now wrapped in a
transaction, 2010. rails/rails githash f4fbc2c at https://github.com/rails/rails/
commit/f4fbc2c.

[209] Nazari Skrupsky et al. Waves: Automatic synthesis of client-side validation code for
web applications. In IEEE CyberSecurity, 2012.

[210] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage for geo-
replicated systems. In SOSP, pages 385–400, 2011.

[211] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications. In
SIGCOMM, 2001.

[212] Klaas-Jan Stol et al. The use of empirical methods in open source software research:
Facts, trends and future directions. In FLOSS, 2009.

[213] Code Stoltman. initial stab at creating has_many relationships, 2013. balder-
dashy/waterline githash b05fb1c at https://github.com/balderdashy/waterline/

commit/b05fb1c. As of November 2014, this code has been moved but is still non-
transactional and the comment remains unchanged.

[214] Michael Stonebraker. The case for shared nothing. IEEE Database Eng. Bull., 9,
1986.

[215] M Tamer Özsu and Patrick Valduriez. Principles of distributed database systems.
Springer, 2011.

[216] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M.
Theimer, et al. Session guarantees for weakly consistent replicated data. In PDIS,
1994.

[217] A. Thomson, T. Diamond, S.C. Weng, K. Ren, P. Shao, and D.J. Abadi. Calvin: Fast
distributed transactions for partitioned database systems. In SIGMOD, 2012.

[218] Tim O’Reilly. What is web 2.0: Design patterns and business models for the next
generation of software. Communications and Strategies, 65(1):17–37, 2007.

https://github.com/rails/rails/commit/f4fbc2c
https://github.com/rails/rails/commit/f4fbc2c
https://github.com/balderdashy/waterline/commit/b05fb1c
https://github.com/balderdashy/waterline/commit/b05fb1c

BIBLIOGRAPHY 209

[219] TPC Council. TPC Benchmark C revision 5.11, 2010.

[220] Irving L. Traiger, Jim Gray, Cesare A. Galtieri, and Bruce G. Lindsay. Transactions
and consistency in distributed database systems. ACM TODS, 7(3):323–342, 1982.

[221] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
Speedy transactions in multicore in-memory databases. In SOSP, 2013.

[222] Daniel Turner, Kirill Levchenko, Jeffrey C Mogul, Stefan Savage, and Alex C Sno-
eren. On failure in managed enterprise networks. HP Labs HPL-2012-101, 2012.

[223] Daniel Turner, Kirill Levchenko, Alex C. Snoeren, and Stefan Savage. California
fault lines: understanding the causes and impact of network failures. In SIGCOMM,
2011.

[224] Werner Vogels. Eventually consistent. CACM, 52(1):40–44, January 2009.

[225] Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. Data consistency
properties and the trade-offs in commercial cloud storage: the consumers’ perspec-
tive. In CIDR, 2011.

[226] William Weihl. Specification and implementation of atomic data types. PhD thesis,
Massachusetts Institute of Technology, 1984.

[227] Kevin Weil. Rainbird: Real-time analytics at Twitter. Strata 2011 http://slidesha.

re/hjMOui.

[228] Jennifer Widom and Stefano Ceri. Active database systems: Triggers and rules for
advanced database processing. Morgan Kaufmann, 1996.

[229] Alex Williams. Techcrunch: Zendesk launches a help center that combines self-
service with design themes reminiscent of Tumblr, August 2013. http://on.tcrn.

ch/l/XMdz.

[230] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. Bobtail: avoiding
long tails in the cloud. In NSDI, 2013.

[231] Fan Yang et al. Hilda: A high-level language for data-drivenweb applications. In
ICDE, 2006.

[232] Haifeng Yu and Amin Vahdat. Design and evaluation of a conit-based continuous
consistency model for replicated services. ACM Transactions on Computer Systems,
20(3):239–âĂŞ282, 2002.

http://slidesha.re/hjMOui
http://slidesha.re/hjMOui
http://on.tcrn.ch/l/XMdz
http://on.tcrn.ch/l/XMdz

BIBLIOGRAPHY 210

[233] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa, Valter Balegas,
and Marc Shapiro. Write fast, read in the past: Causal consistency for client-side
applications. In Middleware, 2015.

[234] Stanley B. Zdonik. Object-oriented type evolution. In DBPL, pages 277–288, 1987.

[235] Kamal Zellag and Bettina Kemme. Real-time quantification and classification of
consistency anomalies in multi-tier architectures. In ICDE, 2011.

[236] Kamal Zellag and Bettina Kemme. How consistent is your cloud application? In
ACM SoCC, 2012.

[237] Chi Zhang and Zheng Zhang. Trading replication consistency for performance and
availability: an adaptive approach. In ICDCS, 2003.

[238] Jingren Zhou et al. Lazy maintenance of materialized views. In VLDB, 2007.

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Coordination Avoidance
	Primary Contributions
	Outline and Previously Published Work

	Coordination: Concepts and Costs
	Coordination and Correctness in Database Systems
	Understanding the Costs of Coordination
	Latency
	Throughput and Scalability
	Availability and Failures
	Summary: Costs
	Outcome: NoSQL, Historical Context, Safety and Liveness

	System Model

	Invariant Confluence and Coordination
	Invariant Confluence: Criteria Defined
	Invariant Confluence and Coordination-Freedom
	Discussion and Limitations
	Summary

	Coordination Avoidance and Weak Isolation
	ACID in the Wild
	Invariant Confluence Analysis: Isolation Levels
	Invariant Confluent Isolation Guarantees
	Sticky Availability
	Non-Invariant Confluent Semantics
	Summary

	Implications: Existing Algorithms and Empirical Impact
	Existing Algorithms
	Empirical Impact: Isolation Guarantees

	Isolation Models
	Summary

	Coordination Avoidance and RAMP Transactions
	Overview
	Read Atomic Isolation in the Wild
	Semantics and System Model
	RA Isolation: Formal Specification
	RA Implications and Limitations
	RA Compared to Other Isolation Models
	RA and Serializability
	System Model and Scalability

	RAMP Transaction Algorithms
	RAMP-Fast
	RAMP-Small: Trading Metadata for RTTs
	RAMP-Hybrid: An Intermediate Solution
	Summary and Additional Details
	Distribution and Fault Tolerance
	Additional Semantics
	Further Optimizations

	Experimental Evaluation
	Experimental Setup
	Experimental Results: Comparison
	Experimental Results: CTP Overhead
	Experimental Results: Scalability

	Applying and Modifying the RAMP Protocols
	Multi-Datacenter RAMP
	Quorum-Replicated RAMP Operation
	RAMP, Transitive Dependencies, and Causal Consistency

	RSIW Proof
	RAMP Correctness and Independence
	Discussion
	Summary

	Coordination Avoidance for Database Constraints
	Invariant Confluence of SQL Constraints
	Invariant Confluence for SQL Relations
	Invariant Confluence for SQL Data Types
	SQL Discussion and Limitations

	More Formal Invariant Confluence Analysis of SQL Constraints
	Empirical Impact: SQL-Based Constraints
	TPC-C Invariants and Execution
	Evaluating TPC-C New-Order
	Analyzing Additional Applications

	Constraints from Open Source Applications
	Background and Context
	Feral Mechanisms in Rails
	Rails Invariant Confluence Analysis

	Quantifying Integrity Violations in Rails
	Other Frameworks
	Implications for Databases
	Summary: Database Shortcomings Today
	Domesticating Feral Mechanisms

	Detailed Validation Behavior, Experimental Workload
	Uniqueness Validation Behavior
	Association Validation Behavior
	Uniqueness Validation Schema
	Uniqueness Stress Test
	Uniqueness Workload Test
	Association Validation Schema
	Association Stress Test
	Association Workload Test

	Summary

	Related Work
	Conclusions
	Design Patterns for Coordination Avoidance
	Limitations
	Future Work
	Automating Coordination Avoidance
	Comprehending Weak Isolation
	Emerging Application Patterns
	Statistical Coordination Avoidance

	Closing Thoughts

	Bibliography

